Principal coefficient encoding for subject-independent human activity analysis

Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly used to analyze the inertial data of activity recognition. Inspired by the autoencoder neural networks, we propose a layer-wise network, name...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical and computer engineering (Malacca, Malacca) Vol. 12; no. 4; p. 4391
Main Authors Han, Pang Ying, Raja Sekaran, Sarmela Anak Perempuan, Yin, Ooi Shih, Guang, Tan Teck
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly used to analyze the inertial data of activity recognition. Inspired by the autoencoder neural networks, we propose a layer-wise network, namely principal coefficient encoder model (PCEM). Unlike the vanilla neural networks which apply random weight initialization andback-propagation for parameter updating, an optimized weight initialization is implemented in PCEM via principal coefficient learning. This principal coefficient encoding allows rapid data learning with no back-propagation intervention and no gigantic hyperparameter tuning. In PCEM, the most principal coefficients of the training data are determined to be the network weights. Two hidden layers with principal coefficient encoding are stacked in PCEM for the sake of deep architecture design. The performance of PCEM is evaluated based on a subject-independent protocol where training and testing samples are from different users, with no overlapping subjects in between the training and testing sets. This subject-independent protocol can better assess the generalization of the model to new data. Experimental results exhibit that PCEM outperforms certain state-of-the-art machine learning and deep learning models, including convolutional neural network, and deep belief network. PCEM can achieve ~97% accuracy in subject-independent human activity analysis.
AbstractList Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly used to analyze the inertial data of activity recognition. Inspired by the autoencoder neural networks, we propose a layer-wise network, namely principal coefficient encoder model (PCEM). Unlike the vanilla neural networks which apply random weight initialization andback-propagation for parameter updating, an optimized weight initialization is implemented in PCEM via principal coefficient learning. This principal coefficient encoding allows rapid data learning with no back-propagation intervention and no gigantic hyperparameter tuning. In PCEM, the most principal coefficients of the training data are determined to be the network weights. Two hidden layers with principal coefficient encoding are stacked in PCEM for the sake of deep architecture design. The performance of PCEM is evaluated based on a subject-independent protocol where training and testing samples are from different users, with no overlapping subjects in between the training and testing sets. This subject-independent protocol can better assess the generalization of the model to new data. Experimental results exhibit that PCEM outperforms certain state-of-the-art machine learning and deep learning models, including convolutional neural network, and deep belief network. PCEM can achieve ~97% accuracy in subject-independent human activity analysis.
Author Guang, Tan Teck
Han, Pang Ying
Yin, Ooi Shih
Raja Sekaran, Sarmela Anak Perempuan
Author_xml – sequence: 1
  givenname: Pang Ying
  orcidid: 0000-0002-3781-6623
  surname: Han
  fullname: Han, Pang Ying
– sequence: 2
  givenname: Sarmela Anak Perempuan
  orcidid: 0000-0002-6465-5503
  surname: Raja Sekaran
  fullname: Raja Sekaran, Sarmela Anak Perempuan
– sequence: 3
  givenname: Ooi Shih
  orcidid: 0000-0002-3024-1011
  surname: Yin
  fullname: Yin, Ooi Shih
– sequence: 4
  givenname: Tan Teck
  orcidid: 0000-0003-2576-0420
  surname: Guang
  fullname: Guang, Tan Teck
BookMark eNotkFtLAzEQhYNUsNb-h4DPW5NsNpdHKd6gqA_6HLK5aEqbrMluof_e2PpyZmAOM2e-azCLKToAIEYrjDuJ78LWGbc6YBLoahhoK3FTRV6AOeGENKTjYlZ7JEQjOBJXYFlK6BGlnCLOujl4fc8hmjDoHTTJeR9McHGELppkQ_yCPmVYpr6eGZsQrRtclWr4nvY6Qm3GcAjjEeqod8cSyg249HpX3PK_LsDn48PH-rnZvD29rO83jcGSy0YiwahFhBkujdS0s9QLioXtHXG99a20DOvOWcYx1hrVieXaMyKRlZTjdgFuz3uHnH4mV0a1TVOuIYoinDFWn6esusTZZXIqJTuvhhz2Oh8VRuoEUJ0AqhNAdQao_gC2v5lNaas
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2022
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2022
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.11591/ijece.v12i4.pp4391-4399
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest East & South Asia Database
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2722-2578
2088-8708
ExternalDocumentID 10_11591_ijece_v12i4_pp4391_4399
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c1979-90864d026c79c9a45d4f8418dbe2ebdf39d61a5ed6711aa018dd7af6290d94713
IEDL.DBID BENPR
ISSN 2088-8708
IngestDate Fri Jul 25 12:29:01 EDT 2025
Tue Jul 01 01:21:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1979-90864d026c79c9a45d4f8418dbe2ebdf39d61a5ed6711aa018dd7af6290d94713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3781-6623
0000-0002-3024-1011
0000-0002-6465-5503
0000-0003-2576-0420
OpenAccessLink https://ijece.iaescore.com/index.php/IJECE/article/download/27149/15847
PQID 2766672246
PQPubID 1686344
ParticipantIDs proquest_journals_2766672246
crossref_primary_10_11591_ijece_v12i4_pp4391_4399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2022
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib044740765
ssj0000866295
Score 2.2454178
Snippet Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 4391
SubjectTerms Activity recognition
Artificial neural networks
Back propagation
Back propagation networks
Belief networks
Coders
Coefficients
Deep learning
Machine learning
Neural networks
Training
Title Principal coefficient encoding for subject-independent human activity analysis
URI https://www.proquest.com/docview/2766672246
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGG4ELnowfkYUyQ5eC-vWruvJqAGJCYQYSbgtXT8SPMAU8Ohv9223oVw8Lt2lz5u-X337PAjdGRszHhmDrYpDTLnWOCfWYhlbkaQ5lM2erHo8SUYz-jJn86rhtq7GKmuf6B21XinXI-9HHBJt7ujP7osP7FSj3O1qJaHRQC1wwWnaRK3HwWT6uuuyQMKeRILVIzxMkP7i3SjT-yLRgvaKwj08xS4n349L-27Zx5rhCTquksTgobTqKTowyzN09Ic68BxNpmWXHH5TK-N5ICB8BI6W0kWjAHLRYL3NXZcFL3ZSt5vAa_IF7jWDE40IZMVJcoFmw8Hb0whX2ghYEcEFFrAzqqGAUlwoISnT1KaUpDo3kcm1jYVOiGRGJ5wQKUNY0VxaACPUAgJSfImay9XSXKGAhe7u0irKKaU61XCiEwVZCsupkCymbURqZLKipMDIfOkAaGYezcyjmZVoZg7NNurUEGbVoVhnvya8_n_5Bh1G7pWBn7ProObmc2tuIfZv8i5qpMPnbmVm-Bp_D34AGRyyWQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1BKIACcYojgAsoDfGuvY4LhBAQwhVRgERndn1IoUgCCSB-im9k7M1yNHTUtlw8j-fyzBuAHedTIRPnqDdpg3JpLS2Y9zRPvcqaBYbNkaz6upO17_jFvbifgI-qFyaUVVY6MSpq2zchR76fSHS0ZaA_Oxw80TA1KvyuViM0SrG4dO9vGLIND85P8H53k6R1envcpuOpAtQwJRVV6MRzi6GHkcqonAvLfZOzpi1c4grrU2UzlgtnM8lYnjdwxcrcZ4lqWIWqPMVzJ2GKp2jJQ2d66-wrp4Mn4zZRFQwJxfa7j864vVeWdPneYBDaXGmIAH5bwd9GIFq21jzMjV1SclTK0AJMuN4izP4gKlyCzk2Zk8dtpu8i6wQaKxJIMIPtI-j5kuFLEXI6tPs1WHdE4gRAEnonwogKko8ZUJbh7l8wW4Far99zq0BEI_yUesMl59w2LeqPzKBPJAqucpHyNWAVMnpQEm7oGKggmjqiqSOaukRTBzTXoF5BqMdPcKi_BWb97-VtmG7fXl_pq_PO5QbMJKG_IVb41aE2en5xm-h1jIqteNUEHv5btj4B1h7rNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+coefficient+encoding+for+subject-independent+human+activity+analysis&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Han%2C+Pang+Ying&rft.au=Raja+Sekaran%2C+Sarmela+Anak+Perempuan&rft.au=Yin%2C+Ooi+Shih&rft.au=Guang%2C+Tan+Teck&rft.date=2022-08-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=12&rft.issue=4&rft.spage=4391&rft_id=info:doi/10.11591%2Fijece.v12i4.pp4391-4399&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v12i4_pp4391_4399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon