Principal coefficient encoding for subject-independent human activity analysis
Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly used to analyze the inertial data of activity recognition. Inspired by the autoencoder neural networks, we propose a layer-wise network, name...
Saved in:
Published in | International journal of electrical and computer engineering (Malacca, Malacca) Vol. 12; no. 4; p. 4391 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly used to analyze the inertial data of activity recognition. Inspired by the autoencoder neural networks, we propose a layer-wise network, namely principal coefficient encoder model (PCEM). Unlike the vanilla neural networks which apply random weight initialization andback-propagation for parameter updating, an optimized weight initialization is implemented in PCEM via principal coefficient learning. This principal coefficient encoding allows rapid data learning with no back-propagation intervention and no gigantic hyperparameter tuning. In PCEM, the most principal coefficients of the training data are determined to be the network weights. Two hidden layers with principal coefficient encoding are stacked in PCEM for the sake of deep architecture design. The performance of PCEM is evaluated based on a subject-independent protocol where training and testing samples are from different users, with no overlapping subjects in between the training and testing sets. This subject-independent protocol can better assess the generalization of the model to new data. Experimental results exhibit that PCEM outperforms certain state-of-the-art machine learning and deep learning models, including convolutional neural network, and deep belief network. PCEM can achieve ~97% accuracy in subject-independent human activity analysis. |
---|---|
AbstractList | Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly used to analyze the inertial data of activity recognition. Inspired by the autoencoder neural networks, we propose a layer-wise network, namely principal coefficient encoder model (PCEM). Unlike the vanilla neural networks which apply random weight initialization andback-propagation for parameter updating, an optimized weight initialization is implemented in PCEM via principal coefficient learning. This principal coefficient encoding allows rapid data learning with no back-propagation intervention and no gigantic hyperparameter tuning. In PCEM, the most principal coefficients of the training data are determined to be the network weights. Two hidden layers with principal coefficient encoding are stacked in PCEM for the sake of deep architecture design. The performance of PCEM is evaluated based on a subject-independent protocol where training and testing samples are from different users, with no overlapping subjects in between the training and testing sets. This subject-independent protocol can better assess the generalization of the model to new data. Experimental results exhibit that PCEM outperforms certain state-of-the-art machine learning and deep learning models, including convolutional neural network, and deep belief network. PCEM can achieve ~97% accuracy in subject-independent human activity analysis. |
Author | Guang, Tan Teck Han, Pang Ying Yin, Ooi Shih Raja Sekaran, Sarmela Anak Perempuan |
Author_xml | – sequence: 1 givenname: Pang Ying orcidid: 0000-0002-3781-6623 surname: Han fullname: Han, Pang Ying – sequence: 2 givenname: Sarmela Anak Perempuan orcidid: 0000-0002-6465-5503 surname: Raja Sekaran fullname: Raja Sekaran, Sarmela Anak Perempuan – sequence: 3 givenname: Ooi Shih orcidid: 0000-0002-3024-1011 surname: Yin fullname: Yin, Ooi Shih – sequence: 4 givenname: Tan Teck orcidid: 0000-0003-2576-0420 surname: Guang fullname: Guang, Tan Teck |
BookMark | eNotkFtLAzEQhYNUsNb-h4DPW5NsNpdHKd6gqA_6HLK5aEqbrMluof_e2PpyZmAOM2e-azCLKToAIEYrjDuJ78LWGbc6YBLoahhoK3FTRV6AOeGENKTjYlZ7JEQjOBJXYFlK6BGlnCLOujl4fc8hmjDoHTTJeR9McHGELppkQ_yCPmVYpr6eGZsQrRtclWr4nvY6Qm3GcAjjEeqod8cSyg249HpX3PK_LsDn48PH-rnZvD29rO83jcGSy0YiwahFhBkujdS0s9QLioXtHXG99a20DOvOWcYx1hrVieXaMyKRlZTjdgFuz3uHnH4mV0a1TVOuIYoinDFWn6esusTZZXIqJTuvhhz2Oh8VRuoEUJ0AqhNAdQao_gC2v5lNaas |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science 2022 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science 2022 |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.11591/ijece.v12i4.pp4391-4399 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest East & South Asia Database ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2722-2578 2088-8708 |
ExternalDocumentID | 10_11591_ijece_v12i4_pp4391_4399 |
GroupedDBID | .4S .DC 8FE 8FG AAKDD AAYXX ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC HCIFZ I-F K6V K7- KWQ L6V M7S OBODZ OK1 P62 PHGZM PHGZT PQQKQ PROAC PTHSS TUS AZQEC DWQXO GNUQQ JQ2 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c1979-90864d026c79c9a45d4f8418dbe2ebdf39d61a5ed6711aa018dd7af6290d94713 |
IEDL.DBID | BENPR |
ISSN | 2088-8708 |
IngestDate | Fri Jul 25 12:29:01 EDT 2025 Tue Jul 01 01:21:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1979-90864d026c79c9a45d4f8418dbe2ebdf39d61a5ed6711aa018dd7af6290d94713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3781-6623 0000-0002-3024-1011 0000-0002-6465-5503 0000-0003-2576-0420 |
OpenAccessLink | https://ijece.iaescore.com/index.php/IJECE/article/download/27149/15847 |
PQID | 2766672246 |
PQPubID | 1686344 |
ParticipantIDs | proquest_journals_2766672246 crossref_primary_10_11591_ijece_v12i4_pp4391_4399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | International journal of electrical and computer engineering (Malacca, Malacca) |
PublicationYear | 2022 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib044740765 ssj0000866295 |
Score | 2.2454178 |
Snippet | Tracking human physical activity using smartphones is an emerging trend in healthcare monitoring and healthy lifestyle management. Neural networks are broadly... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 4391 |
SubjectTerms | Activity recognition Artificial neural networks Back propagation Back propagation networks Belief networks Coders Coefficients Deep learning Machine learning Neural networks Training |
Title | Principal coefficient encoding for subject-independent human activity analysis |
URI | https://www.proquest.com/docview/2766672246 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8IwGG4ELnowfkYUyQ5eC-vWruvJqAGJCYQYSbgtXT8SPMAU8Ohv9223oVw8Lt2lz5u-X337PAjdGRszHhmDrYpDTLnWOCfWYhlbkaQ5lM2erHo8SUYz-jJn86rhtq7GKmuf6B21XinXI-9HHBJt7ujP7osP7FSj3O1qJaHRQC1wwWnaRK3HwWT6uuuyQMKeRILVIzxMkP7i3SjT-yLRgvaKwj08xS4n349L-27Zx5rhCTquksTgobTqKTowyzN09Ic68BxNpmWXHH5TK-N5ICB8BI6W0kWjAHLRYL3NXZcFL3ZSt5vAa_IF7jWDE40IZMVJcoFmw8Hb0whX2ghYEcEFFrAzqqGAUlwoISnT1KaUpDo3kcm1jYVOiGRGJ5wQKUNY0VxaACPUAgJSfImay9XSXKGAhe7u0irKKaU61XCiEwVZCsupkCymbURqZLKipMDIfOkAaGYezcyjmZVoZg7NNurUEGbVoVhnvya8_n_5Bh1G7pWBn7ProObmc2tuIfZv8i5qpMPnbmVm-Bp_D34AGRyyWQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB1BKIACcYojgAsoDfGuvY4LhBAQwhVRgERndn1IoUgCCSB-im9k7M1yNHTUtlw8j-fyzBuAHedTIRPnqDdpg3JpLS2Y9zRPvcqaBYbNkaz6upO17_jFvbifgI-qFyaUVVY6MSpq2zchR76fSHS0ZaA_Oxw80TA1KvyuViM0SrG4dO9vGLIND85P8H53k6R1envcpuOpAtQwJRVV6MRzi6GHkcqonAvLfZOzpi1c4grrU2UzlgtnM8lYnjdwxcrcZ4lqWIWqPMVzJ2GKp2jJQ2d66-wrp4Mn4zZRFQwJxfa7j864vVeWdPneYBDaXGmIAH5bwd9GIFq21jzMjV1SclTK0AJMuN4izP4gKlyCzk2Zk8dtpu8i6wQaKxJIMIPtI-j5kuFLEXI6tPs1WHdE4gRAEnonwogKko8ZUJbh7l8wW4Far99zq0BEI_yUesMl59w2LeqPzKBPJAqucpHyNWAVMnpQEm7oGKggmjqiqSOaukRTBzTXoF5BqMdPcKi_BWb97-VtmG7fXl_pq_PO5QbMJKG_IVb41aE2en5xm-h1jIqteNUEHv5btj4B1h7rNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+coefficient+encoding+for+subject-independent+human+activity+analysis&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Han%2C+Pang+Ying&rft.au=Raja+Sekaran%2C+Sarmela+Anak+Perempuan&rft.au=Yin%2C+Ooi+Shih&rft.au=Guang%2C+Tan+Teck&rft.date=2022-08-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=12&rft.issue=4&rft.spage=4391&rft_id=info:doi/10.11591%2Fijece.v12i4.pp4391-4399&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v12i4_pp4391_4399 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon |