Cell surface modification for delivery of mesenchymal stem cells (MSCs)
Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC has been reported to hold the potential for the treatment of inflammatory diseases and the regeneration of damaged tissue in various organs, in...
Saved in:
Published in | Drug Delivery System Vol. 40; no. 2; pp. 117 - 126 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM
25.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0913-5006 1881-2732 |
DOI | 10.2745/dds.40.117 |
Cover
Abstract | Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC has been reported to hold the potential for the treatment of inflammatory diseases and the regeneration of damaged tissue in various organs, including the heart, kidneys, liver, skin and neurons. However, following intravenous administration, only a small percentage of MSCs successfully accumulate in target tissue. The accumulation of MSCs at lesion sites and their interaction with target cells are critical for enhancing therapeutic efficacy. To address this limitation, modifying the surface of MSCs with targeting ligand molecules that specifically bind to proteins expressed on target cells has emerged as an effective strategy. Recently studies have demonstrated the feasibility and efficacy of modifying MSCs with a variety of targeting ligands. These ligands include receptors, adhesion molecules, antibodies, target-specific binding peptide, and aptamers. Currently, four principal methods, (1)pretreatment and preconditioning, (2)Genetic modification, (3)Anchorage via hydrophobic interactions, and (4)Covalent conjugation, are employed to modify the surface of MSCs with targeting ligand molecules. This review provides a comprehensive overview of cell surface modification techniques for MSCs using these methods. In addition, a comparative analysis of these approaches is presented, highlighting their respective characteristics. |
---|---|
AbstractList | Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC has been reported to hold the potential for the treatment of inflammatory diseases and the regeneration of damaged tissue in various organs, including the heart, kidneys, liver, skin and neurons. However, following intravenous administration, only a small percentage of MSCs successfully accumulate in target tissue. The accumulation of MSCs at lesion sites and their interaction with target cells are critical for enhancing therapeutic efficacy. To address this limitation, modifying the surface of MSCs with targeting ligand molecules that specifically bind to proteins expressed on target cells has emerged as an effective strategy. Recently studies have demonstrated the feasibility and efficacy of modifying MSCs with a variety of targeting ligands. These ligands include receptors, adhesion molecules, antibodies, target-specific binding peptide, and aptamers. Currently, four principal methods, (1)pretreatment and preconditioning, (2)Genetic modification, (3)Anchorage via hydrophobic interactions, and (4)Covalent conjugation, are employed to modify the surface of MSCs with targeting ligand molecules. This review provides a comprehensive overview of cell surface modification techniques for MSCs using these methods. In addition, a comparative analysis of these approaches is presented, highlighting their respective characteristics. |
Author | Hirata, Tsuyoshi Higuchi, Yuriko |
Author_xml | – sequence: 1 fullname: Hirata, Tsuyoshi organization: Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University – sequence: 1 fullname: Higuchi, Yuriko organization: Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University |
BookMark | eNo9UE1LxDAUDLKC3dWLvyBHPbS-16Sb9uBBirsKKx7Uc0mTF7dLPySpwv57I4qXGZhhhmGWbDFOIzF2iZDlShY31oZMQoaoTliCZYlprkS-YAlUKNICYH3GliEcAGQ0MWHbmvqeh0_vtCE-TLZzndFzN43cTZ5b6rsv8kc-OT5QoNHsj4OOgZkGbmI08Kunlzpcn7NTp_tAF3-8Ym-b-9f6Id09bx_ru11qsFIqVa5axxVOihYg19SCLgFUYSxWpiistC5XSrVOtSjJobVOo2hFW6EGAU6s2O1v7yHM-p2aD98N2h8b7efO9NTEAxoJTf4D8YV_3ey1b2gU36DtWMk |
ContentType | Journal Article |
Copyright | 2025 The Japan Society of Drug Delivery System |
Copyright_xml | – notice: 2025 The Japan Society of Drug Delivery System |
DOI | 10.2745/dds.40.117 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1881-2732 |
EndPage | 126 |
ExternalDocumentID | article_dds_40_2_40_117_article_char_en |
GroupedDBID | .55 2WC 53G 5GY ACIWK ACPRK AFRAH ALMA_UNASSIGNED_HOLDINGS AUIBY CS3 JSF JSH OK1 RJT RZJ X7M |
ID | FETCH-LOGICAL-c1977-7f96500f43b002aeb0a80075cd19c55d4df2777bf7b14ef1ddfa13b3b91a030f3 |
ISSN | 0913-5006 |
IngestDate | Wed Sep 03 06:30:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1977-7f96500f43b002aeb0a80075cd19c55d4df2777bf7b14ef1ddfa13b3b91a030f3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/dds/40/2/40_117/_article/-char/en |
PageCount | 10 |
ParticipantIDs | jstage_primary_article_dds_40_2_40_117_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025/03/25 |
PublicationDateYYYYMMDD | 2025-03-25 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025/03/25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Drug Delivery System |
PublicationTitleAlternate | DDS |
PublicationYear | 2025 |
Publisher | THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM |
Publisher_xml | – name: THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM |
References | 1)Chan A.M.L., et al., Am. J. Transl. Res., 14, 2147-2161 (2022 25)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2023 41)Itagaki B., et al., Colloids Surf., B, 135, 765-773 (2015 24)Komarova S., et al., J. Ovarian Res., 3, 12 (2010 29)Wang K., et al., Stem Cell Res. Ther., 8, 162 (2017 21)Cheng Z., et al., Mol. Ther. J. Am. Soc. Gene Ther., 16, 571-579(2008 63)Hong V., et al., Bioconjugate Chem., 21, 1912-1916 (2010 16)Wang Q., et al., Tissue Cell, 87, 102326 (2024 32)Stewart M.P., et al., Chem. Rev., 118, 7409-7531 (2018 49)Han X., et al., J. Control. Release, 304, 233-241 (2019 66)Wang X., et al., ACS Chem. Biol., 16, 724-730 (2021 14)Yu X., et al., PLoS One., 8, e62703 (2013 43)Yan H., et al., Adv. Sci., 7, 1903516 (2020 60)Harmand T.J., et al., ACS Chem. Biol., 16, 1201-1207 (2021 39)Roy S., et al., Bioconjugate Chem., 31, 2465-2465 (2020 28)Liu N., et al., Am. J. Physiol. Renal Physiol., 305, F1064-1703(2013 22)Lien C.Y., et al., J. Bone Miner. Res., 24, 837-848 (2009 46)Ko I.K., et al., Mol. Ther., 18, 1365-1372 (2010 17)Meshkin H.N., et al., Cell Biol. Int., 39, 23-34 (2014 45)Ko I.K., et al., Biomaterials, 30, 3702-3710 (2009 6)Hajinejad M., et al., J. Cell Biochem., 119, 2939-2950 (2018 9)Zwezdaryk K.J., et al., Exp. Hematol., 35, 640-652 (2007 10)Liu N., et al., Exp. Cell. Res., 319, 2019-2027 (2013 53)Zhao W., et al., FASEB J., 25, 3054-3056 (2011 65)Liao N., et al., Nanoscale, 13, 1813-1822 (2021 4)Jones G.N., et al., Stem Cells Transl. Med., 1, 70-78(2012 27)Yu X., et al., J. Neurol. Sci., 316, 141-149 (2012 37)Liao W., et al., Biomaterials, 77, 87-97 (2016 3)Yuan M., et al., Stem Cell Res. Ther., 13, 179 (2022 13)Ceradini D.J., et al., Nat. Med., 10, 858-864 (2004 12)Li N., et al., Am. J. Transl. Res., 7, 1058-1070 (2015 36)Levy O., et al., Blood, 122, e23-e32 (2013 8)Li M., et al., J. Neuropathol. Exp. Neurol., 78, 315-325 (2019 35)Mun J.Y., et al., Biomaterials, 101, 310-320 (2016 56)Li H.K., et al., Cancers, 13, 2724 (2021 44)Smith W.J., et al., Biomaterials, 161, 57-68 (2018 50)Ji W., et al., Acta Biomater., 101, 422-435 (2020 51)Sarkar D., et al., Bioconjugate Chem., 19, 2105-2109 (2008 38)Basalova N., et al., Non-Coding RNA, 9, 49 (2023 19)Hamann A., et al., J. Biol. Eng., 13, 7 (2019 20)Zhang D., et al., J. Mol. Cell. Cardiol., 44, 281-292(2008 59)Swee L.K., et al., ACS Chem. Biol., 1, 460-465 (2015 57)Li H.K., et al., Cancers, 15, 4844 (2023 23)Kumar S., et al., FASEB J., 21, 3917-3927 (2007 47)Zou X., et al., Stem Cells Transl. Med., 7, 394-403 (2018 52)Sarkar D., et al., Blood, 118, e184 (2011 33)Dean D., et al., Gene Ther., 12, 881-890 (2005 61)Maza J.C., et al., ACS Cent. Sci., 8, 955-962 (2022 62)Liwei Y., et al., Front. Cell Dev. Biol., 10, 840831 (2022 11)Tsai L.K., et al., Stroke., 42, 2932-2939 (2011 26)Wozowicz S.B., et al., Exp. Hematol., 39, 686-696.e4 (2011 30)Balyasnikova I.V., et al., J. Tissue Eng. Regen. Med., 4, 247-258 (2010 55)Frank M.J., et al., Cytotherapy, 22, 135-143 (2020 31)Golinelli G., et al., Cancer Gene Ther., 27, 558-570 (2020 67)Gong L., et al., small, 17, 2103463 (2021 15)Zhu A., et al., J. Cell Biochem., 117, 1370-1383(2016 64)Webler C.B., et al., Angew. Chem. Int. Ed., 50, 8051-8056 (2011 5)Hughes A.M., et al., Sci. Rep., 14, 12396 (2024 48)Sarkar D., et al., Biomaterials, 31, 5266-5274 (2010 7)Xinaris C., et al., Cell Transplant., 22, 423-436 (2013 40)Kato K., et al., Biotechnol. Progress, 20, 897-904 (2004 54)Wu P.J., et al., ACS Appl. Bio Mater., 3, 2930-2939 (2020 58)Kumada Y., et al., Biotechnol. Progress, 31, 1563-1570 (2015 2)Fu X., et al., Cells, 8, 784 (2019 18)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2024 42)Won Y. W., et al., Biomaterials, 35, 5627 (2024 34)Wiehe J.M., et al., J. Cell Mol. Med., 11, 521-530 (2007 |
References_xml | – reference: 18)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2024) – reference: 28)Liu N., et al., Am. J. Physiol. Renal Physiol., 305, F1064-1703(2013) – reference: 64)Webler C.B., et al., Angew. Chem. Int. Ed., 50, 8051-8056 (2011) – reference: 12)Li N., et al., Am. J. Transl. Res., 7, 1058-1070 (2015) – reference: 13)Ceradini D.J., et al., Nat. Med., 10, 858-864 (2004) – reference: 14)Yu X., et al., PLoS One., 8, e62703 (2013) – reference: 2)Fu X., et al., Cells, 8, 784 (2019) – reference: 57)Li H.K., et al., Cancers, 15, 4844 (2023) – reference: 59)Swee L.K., et al., ACS Chem. Biol., 1, 460-465 (2015) – reference: 4)Jones G.N., et al., Stem Cells Transl. Med., 1, 70-78(2012) – reference: 17)Meshkin H.N., et al., Cell Biol. Int., 39, 23-34 (2014) – reference: 40)Kato K., et al., Biotechnol. Progress, 20, 897-904 (2004) – reference: 6)Hajinejad M., et al., J. Cell Biochem., 119, 2939-2950 (2018) – reference: 29)Wang K., et al., Stem Cell Res. Ther., 8, 162 (2017) – reference: 9)Zwezdaryk K.J., et al., Exp. Hematol., 35, 640-652 (2007) – reference: 66)Wang X., et al., ACS Chem. Biol., 16, 724-730 (2021) – reference: 21)Cheng Z., et al., Mol. Ther. J. Am. Soc. Gene Ther., 16, 571-579(2008) – reference: 44)Smith W.J., et al., Biomaterials, 161, 57-68 (2018) – reference: 54)Wu P.J., et al., ACS Appl. Bio Mater., 3, 2930-2939 (2020) – reference: 53)Zhao W., et al., FASEB J., 25, 3054-3056 (2011) – reference: 26)Wozowicz S.B., et al., Exp. Hematol., 39, 686-696.e4 (2011) – reference: 7)Xinaris C., et al., Cell Transplant., 22, 423-436 (2013) – reference: 42)Won Y. W., et al., Biomaterials, 35, 5627 (2024) – reference: 41)Itagaki B., et al., Colloids Surf., B, 135, 765-773 (2015) – reference: 10)Liu N., et al., Exp. Cell. Res., 319, 2019-2027 (2013) – reference: 56)Li H.K., et al., Cancers, 13, 2724 (2021) – reference: 15)Zhu A., et al., J. Cell Biochem., 117, 1370-1383(2016) – reference: 35)Mun J.Y., et al., Biomaterials, 101, 310-320 (2016) – reference: 19)Hamann A., et al., J. Biol. Eng., 13, 7 (2019) – reference: 65)Liao N., et al., Nanoscale, 13, 1813-1822 (2021) – reference: 11)Tsai L.K., et al., Stroke., 42, 2932-2939 (2011) – reference: 25)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2023) – reference: 34)Wiehe J.M., et al., J. Cell Mol. Med., 11, 521-530 (2007) – reference: 47)Zou X., et al., Stem Cells Transl. Med., 7, 394-403 (2018) – reference: 39)Roy S., et al., Bioconjugate Chem., 31, 2465-2465 (2020) – reference: 30)Balyasnikova I.V., et al., J. Tissue Eng. Regen. Med., 4, 247-258 (2010) – reference: 52)Sarkar D., et al., Blood, 118, e184 (2011) – reference: 43)Yan H., et al., Adv. Sci., 7, 1903516 (2020) – reference: 38)Basalova N., et al., Non-Coding RNA, 9, 49 (2023) – reference: 1)Chan A.M.L., et al., Am. J. Transl. Res., 14, 2147-2161 (2022) – reference: 8)Li M., et al., J. Neuropathol. Exp. Neurol., 78, 315-325 (2019) – reference: 67)Gong L., et al., small, 17, 2103463 (2021) – reference: 49)Han X., et al., J. Control. Release, 304, 233-241 (2019) – reference: 50)Ji W., et al., Acta Biomater., 101, 422-435 (2020) – reference: 63)Hong V., et al., Bioconjugate Chem., 21, 1912-1916 (2010) – reference: 45)Ko I.K., et al., Biomaterials, 30, 3702-3710 (2009) – reference: 27)Yu X., et al., J. Neurol. Sci., 316, 141-149 (2012) – reference: 22)Lien C.Y., et al., J. Bone Miner. Res., 24, 837-848 (2009) – reference: 33)Dean D., et al., Gene Ther., 12, 881-890 (2005) – reference: 62)Liwei Y., et al., Front. Cell Dev. Biol., 10, 840831 (2022) – reference: 37)Liao W., et al., Biomaterials, 77, 87-97 (2016) – reference: 23)Kumar S., et al., FASEB J., 21, 3917-3927 (2007) – reference: 36)Levy O., et al., Blood, 122, e23-e32 (2013) – reference: 55)Frank M.J., et al., Cytotherapy, 22, 135-143 (2020) – reference: 48)Sarkar D., et al., Biomaterials, 31, 5266-5274 (2010) – reference: 24)Komarova S., et al., J. Ovarian Res., 3, 12 (2010) – reference: 60)Harmand T.J., et al., ACS Chem. Biol., 16, 1201-1207 (2021) – reference: 32)Stewart M.P., et al., Chem. Rev., 118, 7409-7531 (2018) – reference: 5)Hughes A.M., et al., Sci. Rep., 14, 12396 (2024) – reference: 61)Maza J.C., et al., ACS Cent. Sci., 8, 955-962 (2022) – reference: 16)Wang Q., et al., Tissue Cell, 87, 102326 (2024) – reference: 58)Kumada Y., et al., Biotechnol. Progress, 31, 1563-1570 (2015) – reference: 51)Sarkar D., et al., Bioconjugate Chem., 19, 2105-2109 (2008) – reference: 46)Ko I.K., et al., Mol. Ther., 18, 1365-1372 (2010) – reference: 20)Zhang D., et al., J. Mol. Cell. Cardiol., 44, 281-292(2008) – reference: 3)Yuan M., et al., Stem Cell Res. Ther., 13, 179 (2022) – reference: 31)Golinelli G., et al., Cancer Gene Ther., 27, 558-570 (2020) |
SSID | ssj0048811 ssib058492641 ssib007483962 ssib001535732 ssib002484529 |
Score | 2.2908447 |
Snippet | Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 117 |
SubjectTerms | cell surface modification cell therapeutics drug delivery system mesenchymal stem cells (MSCs) targeting |
Title | Cell surface modification for delivery of mesenchymal stem cells (MSCs) |
URI | https://www.jstage.jst.go.jp/article/dds/40/2/40_117/_article/-char/en |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Drug Delivery System, 2025/03/25, Vol.40(2), pp.117-126 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBPMVbPqAVqJslfqRJjlVb9gGsyjZF21OUxDG7C92gpjmUX8-M7TYBcVj2EqVWUlmeL-Px-JvPhLwJQyV0JrinJJeeVEJ5cay5l8dR3NcyEqVl-Z70D2fy-Cw4a6lDprpkle8Xv_5ZV3ITq0Ib2BWrZP_Dsts_hQa4B_vCFSwM12vZeIiJt7pZ6gy-zkWlkPbTkgdV-QNJF24LvYaOn68XpjykXPQwYW8Srp-nw3qTDnBB6mjZfANH5N62muZtihogYwLOpG7WVX1-0Ule48Eqxqc3y4vvVTehwANkVNniYwMBZBodDyaDE9RiOBonc6QfjU5nB73R-NPR1_HpvDedTxOXGHK5RCa8wPedprX1pFHEsO7nD1drlZkcpHjHbzJbwOmmYGaL6P_27rCARiEMpep9aXab2zlsyyx0tkjhoVT6KccLPJlu2rGWDaBzm9zhYWj29T9-6W4biiDs6rnJCDemt79DAG_c6itC8BZDQLnlFIEzNAc-b8fD6uFiv9-3vYZY5xIi_w1r0AQyyX1yz61A6MB29QG5dZk9JLsTK2G-3qNJW5FX79FdOmnFzdePyAFijjrM0S7mKGCObjBHK007mKMIIWowR98i4t49JrMP42R46LnDOLyCwRrBC3UMwbyvpcBxycrczyKMNwvF4iIIlFQaRjTMdZgzWWqmlM6YyEUeswwmEi2ekJ2r6qp8SmhU8EwUHLWvhMylzngR8dIXBao5ch49I307QOlPq7iSXtOqz2_64gtyt_0SXpKd1bIpX0GwucpfG4D8BvrdfE0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+surface+modification+for+delivery+of+mesenchymal+stem+cells+%28MSCs%29&rft.jtitle=Drug+Delivery+System&rft.au=Hirata%2C+Tsuyoshi&rft.au=Higuchi%2C+Yuriko&rft.date=2025-03-25&rft.pub=THE+JAPAN+SOCIETY+OF+DRUG+DELIVERY+SYSTEM&rft.issn=0913-5006&rft.eissn=1881-2732&rft.volume=40&rft.issue=2&rft.spage=117&rft.epage=126&rft_id=info:doi/10.2745%2Fdds.40.117&rft.externalDocID=article_dds_40_2_40_117_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0913-5006&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0913-5006&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0913-5006&client=summon |