Cell surface modification for delivery of mesenchymal stem cells (MSCs)

Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC has been reported to hold the potential for the treatment of inflammatory diseases and the regeneration of damaged tissue in various organs, in...

Full description

Saved in:
Bibliographic Details
Published inDrug Delivery System Vol. 40; no. 2; pp. 117 - 126
Main Authors Hirata, Tsuyoshi, Higuchi, Yuriko
Format Journal Article
LanguageJapanese
Published THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM 25.03.2025
Subjects
Online AccessGet full text
ISSN0913-5006
1881-2732
DOI10.2745/dds.40.117

Cover

Abstract Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC has been reported to hold the potential for the treatment of inflammatory diseases and the regeneration of damaged tissue in various organs, including the heart, kidneys, liver, skin and neurons. However, following intravenous administration, only a small percentage of MSCs successfully accumulate in target tissue. The accumulation of MSCs at lesion sites and their interaction with target cells are critical for enhancing therapeutic efficacy. To address this limitation, modifying the surface of MSCs with targeting ligand molecules that specifically bind to proteins expressed on target cells has emerged as an effective strategy. Recently studies have demonstrated the feasibility and efficacy of modifying MSCs with a variety of targeting ligands. These ligands include receptors, adhesion molecules, antibodies, target-specific binding peptide, and aptamers. Currently, four principal methods, (1)pretreatment and preconditioning, (2)Genetic modification, (3)Anchorage via hydrophobic interactions, and (4)Covalent conjugation, are employed to modify the surface of MSCs with targeting ligand molecules. This review provides a comprehensive overview of cell surface modification techniques for MSCs using these methods. In addition, a comparative analysis of these approaches is presented, highlighting their respective characteristics.
AbstractList Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC has been reported to hold the potential for the treatment of inflammatory diseases and the regeneration of damaged tissue in various organs, including the heart, kidneys, liver, skin and neurons. However, following intravenous administration, only a small percentage of MSCs successfully accumulate in target tissue. The accumulation of MSCs at lesion sites and their interaction with target cells are critical for enhancing therapeutic efficacy. To address this limitation, modifying the surface of MSCs with targeting ligand molecules that specifically bind to proteins expressed on target cells has emerged as an effective strategy. Recently studies have demonstrated the feasibility and efficacy of modifying MSCs with a variety of targeting ligands. These ligands include receptors, adhesion molecules, antibodies, target-specific binding peptide, and aptamers. Currently, four principal methods, (1)pretreatment and preconditioning, (2)Genetic modification, (3)Anchorage via hydrophobic interactions, and (4)Covalent conjugation, are employed to modify the surface of MSCs with targeting ligand molecules. This review provides a comprehensive overview of cell surface modification techniques for MSCs using these methods. In addition, a comparative analysis of these approaches is presented, highlighting their respective characteristics.
Author Hirata, Tsuyoshi
Higuchi, Yuriko
Author_xml – sequence: 1
  fullname: Hirata, Tsuyoshi
  organization: Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
– sequence: 1
  fullname: Higuchi, Yuriko
  organization: Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
BookMark eNo9UE1LxDAUDLKC3dWLvyBHPbS-16Sb9uBBirsKKx7Uc0mTF7dLPySpwv57I4qXGZhhhmGWbDFOIzF2iZDlShY31oZMQoaoTliCZYlprkS-YAlUKNICYH3GliEcAGQ0MWHbmvqeh0_vtCE-TLZzndFzN43cTZ5b6rsv8kc-OT5QoNHsj4OOgZkGbmI08Kunlzpcn7NTp_tAF3-8Ym-b-9f6Id09bx_ru11qsFIqVa5axxVOihYg19SCLgFUYSxWpiistC5XSrVOtSjJobVOo2hFW6EGAU6s2O1v7yHM-p2aD98N2h8b7efO9NTEAxoJTf4D8YV_3ey1b2gU36DtWMk
ContentType Journal Article
Copyright 2025 The Japan Society of Drug Delivery System
Copyright_xml – notice: 2025 The Japan Society of Drug Delivery System
DOI 10.2745/dds.40.117
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1881-2732
EndPage 126
ExternalDocumentID article_dds_40_2_40_117_article_char_en
GroupedDBID .55
2WC
53G
5GY
ACIWK
ACPRK
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AUIBY
CS3
JSF
JSH
OK1
RJT
RZJ
X7M
ID FETCH-LOGICAL-c1977-7f96500f43b002aeb0a80075cd19c55d4df2777bf7b14ef1ddfa13b3b91a030f3
ISSN 0913-5006
IngestDate Wed Sep 03 06:30:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1977-7f96500f43b002aeb0a80075cd19c55d4df2777bf7b14ef1ddfa13b3b91a030f3
OpenAccessLink https://www.jstage.jst.go.jp/article/dds/40/2/40_117/_article/-char/en
PageCount 10
ParticipantIDs jstage_primary_article_dds_40_2_40_117_article_char_en
PublicationCentury 2000
PublicationDate 2025/03/25
PublicationDateYYYYMMDD 2025-03-25
PublicationDate_xml – month: 03
  year: 2025
  text: 2025/03/25
  day: 25
PublicationDecade 2020
PublicationTitle Drug Delivery System
PublicationTitleAlternate DDS
PublicationYear 2025
Publisher THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM
Publisher_xml – name: THE JAPAN SOCIETY OF DRUG DELIVERY SYSTEM
References 1)Chan A.M.L., et al., Am. J. Transl. Res., 14, 2147-2161 (2022
25)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2023
41)Itagaki B., et al., Colloids Surf., B, 135, 765-773 (2015
24)Komarova S., et al., J. Ovarian Res., 3, 12 (2010
29)Wang K., et al., Stem Cell Res. Ther., 8, 162 (2017
21)Cheng Z., et al., Mol. Ther. J. Am. Soc. Gene Ther., 16, 571-579(2008
63)Hong V., et al., Bioconjugate Chem., 21, 1912-1916 (2010
16)Wang Q., et al., Tissue Cell, 87, 102326 (2024
32)Stewart M.P., et al., Chem. Rev., 118, 7409-7531 (2018
49)Han X., et al., J. Control. Release, 304, 233-241 (2019
66)Wang X., et al., ACS Chem. Biol., 16, 724-730 (2021
14)Yu X., et al., PLoS One., 8, e62703 (2013
43)Yan H., et al., Adv. Sci., 7, 1903516 (2020
60)Harmand T.J., et al., ACS Chem. Biol., 16, 1201-1207 (2021
39)Roy S., et al., Bioconjugate Chem., 31, 2465-2465 (2020
28)Liu N., et al., Am. J. Physiol. Renal Physiol., 305, F1064-1703(2013
22)Lien C.Y., et al., J. Bone Miner. Res., 24, 837-848 (2009
46)Ko I.K., et al., Mol. Ther., 18, 1365-1372 (2010
17)Meshkin H.N., et al., Cell Biol. Int., 39, 23-34 (2014
45)Ko I.K., et al., Biomaterials, 30, 3702-3710 (2009
6)Hajinejad M., et al., J. Cell Biochem., 119, 2939-2950 (2018
9)Zwezdaryk K.J., et al., Exp. Hematol., 35, 640-652 (2007
10)Liu N., et al., Exp. Cell. Res., 319, 2019-2027 (2013
53)Zhao W., et al., FASEB J., 25, 3054-3056 (2011
65)Liao N., et al., Nanoscale, 13, 1813-1822 (2021
4)Jones G.N., et al., Stem Cells Transl. Med., 1, 70-78(2012
27)Yu X., et al., J. Neurol. Sci., 316, 141-149 (2012
37)Liao W., et al., Biomaterials, 77, 87-97 (2016
3)Yuan M., et al., Stem Cell Res. Ther., 13, 179 (2022
13)Ceradini D.J., et al., Nat. Med., 10, 858-864 (2004
12)Li N., et al., Am. J. Transl. Res., 7, 1058-1070 (2015
36)Levy O., et al., Blood, 122, e23-e32 (2013
8)Li M., et al., J. Neuropathol. Exp. Neurol., 78, 315-325 (2019
35)Mun J.Y., et al., Biomaterials, 101, 310-320 (2016
56)Li H.K., et al., Cancers, 13, 2724 (2021
44)Smith W.J., et al., Biomaterials, 161, 57-68 (2018
50)Ji W., et al., Acta Biomater., 101, 422-435 (2020
51)Sarkar D., et al., Bioconjugate Chem., 19, 2105-2109 (2008
38)Basalova N., et al., Non-Coding RNA, 9, 49 (2023
19)Hamann A., et al., J. Biol. Eng., 13, 7 (2019
20)Zhang D., et al., J. Mol. Cell. Cardiol., 44, 281-292(2008
59)Swee L.K., et al., ACS Chem. Biol., 1, 460-465 (2015
57)Li H.K., et al., Cancers, 15, 4844 (2023
23)Kumar S., et al., FASEB J., 21, 3917-3927 (2007
47)Zou X., et al., Stem Cells Transl. Med., 7, 394-403 (2018
52)Sarkar D., et al., Blood, 118, e184 (2011
33)Dean D., et al., Gene Ther., 12, 881-890 (2005
61)Maza J.C., et al., ACS Cent. Sci., 8, 955-962 (2022
62)Liwei Y., et al., Front. Cell Dev. Biol., 10, 840831 (2022
11)Tsai L.K., et al., Stroke., 42, 2932-2939 (2011
26)Wozowicz S.B., et al., Exp. Hematol., 39, 686-696.e4 (2011
30)Balyasnikova I.V., et al., J. Tissue Eng. Regen. Med., 4, 247-258 (2010
55)Frank M.J., et al., Cytotherapy, 22, 135-143 (2020
31)Golinelli G., et al., Cancer Gene Ther., 27, 558-570 (2020
67)Gong L., et al., small, 17, 2103463 (2021
15)Zhu A., et al., J. Cell Biochem., 117, 1370-1383(2016
64)Webler C.B., et al., Angew. Chem. Int. Ed., 50, 8051-8056 (2011
5)Hughes A.M., et al., Sci. Rep., 14, 12396 (2024
48)Sarkar D., et al., Biomaterials, 31, 5266-5274 (2010
7)Xinaris C., et al., Cell Transplant., 22, 423-436 (2013
40)Kato K., et al., Biotechnol. Progress, 20, 897-904 (2004
54)Wu P.J., et al., ACS Appl. Bio Mater., 3, 2930-2939 (2020
58)Kumada Y., et al., Biotechnol. Progress, 31, 1563-1570 (2015
2)Fu X., et al., Cells, 8, 784 (2019
18)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2024
42)Won Y. W., et al., Biomaterials, 35, 5627 (2024
34)Wiehe J.M., et al., J. Cell Mol. Med., 11, 521-530 (2007
References_xml – reference: 18)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2024)
– reference: 28)Liu N., et al., Am. J. Physiol. Renal Physiol., 305, F1064-1703(2013)
– reference: 64)Webler C.B., et al., Angew. Chem. Int. Ed., 50, 8051-8056 (2011)
– reference: 12)Li N., et al., Am. J. Transl. Res., 7, 1058-1070 (2015)
– reference: 13)Ceradini D.J., et al., Nat. Med., 10, 858-864 (2004)
– reference: 14)Yu X., et al., PLoS One., 8, e62703 (2013)
– reference: 2)Fu X., et al., Cells, 8, 784 (2019)
– reference: 57)Li H.K., et al., Cancers, 15, 4844 (2023)
– reference: 59)Swee L.K., et al., ACS Chem. Biol., 1, 460-465 (2015)
– reference: 4)Jones G.N., et al., Stem Cells Transl. Med., 1, 70-78(2012)
– reference: 17)Meshkin H.N., et al., Cell Biol. Int., 39, 23-34 (2014)
– reference: 40)Kato K., et al., Biotechnol. Progress, 20, 897-904 (2004)
– reference: 6)Hajinejad M., et al., J. Cell Biochem., 119, 2939-2950 (2018)
– reference: 29)Wang K., et al., Stem Cell Res. Ther., 8, 162 (2017)
– reference: 9)Zwezdaryk K.J., et al., Exp. Hematol., 35, 640-652 (2007)
– reference: 66)Wang X., et al., ACS Chem. Biol., 16, 724-730 (2021)
– reference: 21)Cheng Z., et al., Mol. Ther. J. Am. Soc. Gene Ther., 16, 571-579(2008)
– reference: 44)Smith W.J., et al., Biomaterials, 161, 57-68 (2018)
– reference: 54)Wu P.J., et al., ACS Appl. Bio Mater., 3, 2930-2939 (2020)
– reference: 53)Zhao W., et al., FASEB J., 25, 3054-3056 (2011)
– reference: 26)Wozowicz S.B., et al., Exp. Hematol., 39, 686-696.e4 (2011)
– reference: 7)Xinaris C., et al., Cell Transplant., 22, 423-436 (2013)
– reference: 42)Won Y. W., et al., Biomaterials, 35, 5627 (2024)
– reference: 41)Itagaki B., et al., Colloids Surf., B, 135, 765-773 (2015)
– reference: 10)Liu N., et al., Exp. Cell. Res., 319, 2019-2027 (2013)
– reference: 56)Li H.K., et al., Cancers, 13, 2724 (2021)
– reference: 15)Zhu A., et al., J. Cell Biochem., 117, 1370-1383(2016)
– reference: 35)Mun J.Y., et al., Biomaterials, 101, 310-320 (2016)
– reference: 19)Hamann A., et al., J. Biol. Eng., 13, 7 (2019)
– reference: 65)Liao N., et al., Nanoscale, 13, 1813-1822 (2021)
– reference: 11)Tsai L.K., et al., Stroke., 42, 2932-2939 (2011)
– reference: 25)Sun Y., et al., Stem Cells Dev., 32, 13-14 (2023)
– reference: 34)Wiehe J.M., et al., J. Cell Mol. Med., 11, 521-530 (2007)
– reference: 47)Zou X., et al., Stem Cells Transl. Med., 7, 394-403 (2018)
– reference: 39)Roy S., et al., Bioconjugate Chem., 31, 2465-2465 (2020)
– reference: 30)Balyasnikova I.V., et al., J. Tissue Eng. Regen. Med., 4, 247-258 (2010)
– reference: 52)Sarkar D., et al., Blood, 118, e184 (2011)
– reference: 43)Yan H., et al., Adv. Sci., 7, 1903516 (2020)
– reference: 38)Basalova N., et al., Non-Coding RNA, 9, 49 (2023)
– reference: 1)Chan A.M.L., et al., Am. J. Transl. Res., 14, 2147-2161 (2022)
– reference: 8)Li M., et al., J. Neuropathol. Exp. Neurol., 78, 315-325 (2019)
– reference: 67)Gong L., et al., small, 17, 2103463 (2021)
– reference: 49)Han X., et al., J. Control. Release, 304, 233-241 (2019)
– reference: 50)Ji W., et al., Acta Biomater., 101, 422-435 (2020)
– reference: 63)Hong V., et al., Bioconjugate Chem., 21, 1912-1916 (2010)
– reference: 45)Ko I.K., et al., Biomaterials, 30, 3702-3710 (2009)
– reference: 27)Yu X., et al., J. Neurol. Sci., 316, 141-149 (2012)
– reference: 22)Lien C.Y., et al., J. Bone Miner. Res., 24, 837-848 (2009)
– reference: 33)Dean D., et al., Gene Ther., 12, 881-890 (2005)
– reference: 62)Liwei Y., et al., Front. Cell Dev. Biol., 10, 840831 (2022)
– reference: 37)Liao W., et al., Biomaterials, 77, 87-97 (2016)
– reference: 23)Kumar S., et al., FASEB J., 21, 3917-3927 (2007)
– reference: 36)Levy O., et al., Blood, 122, e23-e32 (2013)
– reference: 55)Frank M.J., et al., Cytotherapy, 22, 135-143 (2020)
– reference: 48)Sarkar D., et al., Biomaterials, 31, 5266-5274 (2010)
– reference: 24)Komarova S., et al., J. Ovarian Res., 3, 12 (2010)
– reference: 60)Harmand T.J., et al., ACS Chem. Biol., 16, 1201-1207 (2021)
– reference: 32)Stewart M.P., et al., Chem. Rev., 118, 7409-7531 (2018)
– reference: 5)Hughes A.M., et al., Sci. Rep., 14, 12396 (2024)
– reference: 61)Maza J.C., et al., ACS Cent. Sci., 8, 955-962 (2022)
– reference: 16)Wang Q., et al., Tissue Cell, 87, 102326 (2024)
– reference: 58)Kumada Y., et al., Biotechnol. Progress, 31, 1563-1570 (2015)
– reference: 51)Sarkar D., et al., Bioconjugate Chem., 19, 2105-2109 (2008)
– reference: 46)Ko I.K., et al., Mol. Ther., 18, 1365-1372 (2010)
– reference: 20)Zhang D., et al., J. Mol. Cell. Cardiol., 44, 281-292(2008)
– reference: 3)Yuan M., et al., Stem Cell Res. Ther., 13, 179 (2022)
– reference: 31)Golinelli G., et al., Cancer Gene Ther., 27, 558-570 (2020)
SSID ssj0048811
ssib058492641
ssib007483962
ssib001535732
ssib002484529
Score 2.2908447
Snippet Mesenchymal stem cells(MSCs) exhibit anti-inflammatory, antioxidant, pro-angiogenic, and anti-fibrotic properties, as well as differentiation potential. MSC...
SourceID jstage
SourceType Publisher
StartPage 117
SubjectTerms cell surface modification
cell therapeutics
drug delivery system
mesenchymal stem cells (MSCs)
targeting
Title Cell surface modification for delivery of mesenchymal stem cells (MSCs)
URI https://www.jstage.jst.go.jp/article/dds/40/2/40_117/_article/-char/en
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Drug Delivery System, 2025/03/25, Vol.40(2), pp.117-126
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZguXBBPMVbPqAVqJslfqRJjlVb9gGsyjZF21OUxDG7C92gpjmUX8-M7TYBcVj2EqVWUlmeL-Px-JvPhLwJQyV0JrinJJeeVEJ5cay5l8dR3NcyEqVl-Z70D2fy-Cw4a6lDprpkle8Xv_5ZV3ITq0Ib2BWrZP_Dsts_hQa4B_vCFSwM12vZeIiJt7pZ6gy-zkWlkPbTkgdV-QNJF24LvYaOn68XpjykXPQwYW8Srp-nw3qTDnBB6mjZfANH5N62muZtihogYwLOpG7WVX1-0Ule48Eqxqc3y4vvVTehwANkVNniYwMBZBodDyaDE9RiOBonc6QfjU5nB73R-NPR1_HpvDedTxOXGHK5RCa8wPedprX1pFHEsO7nD1drlZkcpHjHbzJbwOmmYGaL6P_27rCARiEMpep9aXab2zlsyyx0tkjhoVT6KccLPJlu2rGWDaBzm9zhYWj29T9-6W4biiDs6rnJCDemt79DAG_c6itC8BZDQLnlFIEzNAc-b8fD6uFiv9-3vYZY5xIi_w1r0AQyyX1yz61A6MB29QG5dZk9JLsTK2G-3qNJW5FX79FdOmnFzdePyAFijjrM0S7mKGCObjBHK007mKMIIWowR98i4t49JrMP42R46LnDOLyCwRrBC3UMwbyvpcBxycrczyKMNwvF4iIIlFQaRjTMdZgzWWqmlM6YyEUeswwmEi2ekJ2r6qp8SmhU8EwUHLWvhMylzngR8dIXBao5ch49I307QOlPq7iSXtOqz2_64gtyt_0SXpKd1bIpX0GwucpfG4D8BvrdfE0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+surface+modification+for+delivery+of+mesenchymal+stem+cells+%28MSCs%29&rft.jtitle=Drug+Delivery+System&rft.au=Hirata%2C+Tsuyoshi&rft.au=Higuchi%2C+Yuriko&rft.date=2025-03-25&rft.pub=THE+JAPAN+SOCIETY+OF+DRUG+DELIVERY+SYSTEM&rft.issn=0913-5006&rft.eissn=1881-2732&rft.volume=40&rft.issue=2&rft.spage=117&rft.epage=126&rft_id=info:doi/10.2745%2Fdds.40.117&rft.externalDocID=article_dds_40_2_40_117_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0913-5006&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0913-5006&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0913-5006&client=summon