Radial-balanced phase transfer functions for accurate retrieval in quantitative differential phase contrast microscopy
Quantitative differential phase contrast microscopy (qDPC) is a potent quantitative phase imaging (QPI) technique for biological applications due to its high resolution and rapid image acquisition. Traditionally, qDPC employs an asymmetric 12 axis illumination pattern and reconstructs the phase usin...
Saved in:
Published in | Optics express Vol. 33; no. 14; p. 30529 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
14.07.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative differential phase contrast microscopy (qDPC) is a potent quantitative phase imaging (QPI) technique for biological applications due to its high resolution and rapid image acquisition. Traditionally, qDPC employs an asymmetric 12 axis illumination pattern and reconstructs the phase using Tikhonov regularization. Numerous endeavors have been made to enhance qDPC performance, including reducing the number of illumination patterns and refining retrieval algorithms. However, a comprehensive theoretical framework linking illumination patterns to the radial profile of the phase transfer function (PTF) within qDPC microscopy remains largely unexplored, leading to suboptimal phase retrieval. To address this shortage, this study presents a rigorous mathematical derivation of this correlation and introduces an illumination pattern designed to achieve precise phase retrieval based on the desired PTF. The effectiveness of the proposed method was assessed through numerical computations using a customized phantom phase object, demonstrating a phase retrieval accuracy surpassing that of existing qDPC techniques. Further experiments with phase targets corroborated the numerical computation results, demonstrating the advancement of our approach. |
---|---|
AbstractList | Quantitative differential phase contrast microscopy (qDPC) is a potent quantitative phase imaging (QPI) technique for biological applications due to its high resolution and rapid image acquisition. Traditionally, qDPC employs an asymmetric 12 axis illumination pattern and reconstructs the phase using Tikhonov regularization. Numerous endeavors have been made to enhance qDPC performance, including reducing the number of illumination patterns and refining retrieval algorithms. However, a comprehensive theoretical framework linking illumination patterns to the radial profile of the phase transfer function (PTF) within qDPC microscopy remains largely unexplored, leading to suboptimal phase retrieval. To address this shortage, this study presents a rigorous mathematical derivation of this correlation and introduces an illumination pattern designed to achieve precise phase retrieval based on the desired PTF. The effectiveness of the proposed method was assessed through numerical computations using a customized phantom phase object, demonstrating a phase retrieval accuracy surpassing that of existing qDPC techniques. Further experiments with phase targets corroborated the numerical computation results, demonstrating the advancement of our approach. Quantitative differential phase contrast microscopy (qDPC) is a potent quantitative phase imaging (QPI) technique for biological applications due to its high resolution and rapid image acquisition. Traditionally, qDPC employs an asymmetric 12 axis illumination pattern and reconstructs the phase using Tikhonov regularization. Numerous endeavors have been made to enhance qDPC performance, including reducing the number of illumination patterns and refining retrieval algorithms. However, a comprehensive theoretical framework linking illumination patterns to the radial profile of the phase transfer function (PTF) within qDPC microscopy remains largely unexplored, leading to suboptimal phase retrieval. To address this shortage, this study presents a rigorous mathematical derivation of this correlation and introduces an illumination pattern designed to achieve precise phase retrieval based on the desired PTF. The effectiveness of the proposed method was assessed through numerical computations using a customized phantom phase object, demonstrating a phase retrieval accuracy surpassing that of existing qDPC techniques. Further experiments with phase targets corroborated the numerical computation results, demonstrating the advancement of our approach.Quantitative differential phase contrast microscopy (qDPC) is a potent quantitative phase imaging (QPI) technique for biological applications due to its high resolution and rapid image acquisition. Traditionally, qDPC employs an asymmetric 12 axis illumination pattern and reconstructs the phase using Tikhonov regularization. Numerous endeavors have been made to enhance qDPC performance, including reducing the number of illumination patterns and refining retrieval algorithms. However, a comprehensive theoretical framework linking illumination patterns to the radial profile of the phase transfer function (PTF) within qDPC microscopy remains largely unexplored, leading to suboptimal phase retrieval. To address this shortage, this study presents a rigorous mathematical derivation of this correlation and introduces an illumination pattern designed to achieve precise phase retrieval based on the desired PTF. The effectiveness of the proposed method was assessed through numerical computations using a customized phantom phase object, demonstrating a phase retrieval accuracy surpassing that of existing qDPC techniques. Further experiments with phase targets corroborated the numerical computation results, demonstrating the advancement of our approach. |
Author | Lin, Ching-En Vyas, Sunil Luo, Yuan Yu, Cheng Chiu, Hao-Pin |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0009-0005-4991-4967 surname: Yu fullname: Yu, Cheng – sequence: 2 givenname: Ching-En surname: Lin fullname: Lin, Ching-En – sequence: 3 givenname: Sunil surname: Vyas fullname: Vyas, Sunil – sequence: 4 givenname: Hao-Pin surname: Chiu fullname: Chiu, Hao-Pin – sequence: 5 givenname: Yuan orcidid: 0000-0001-9776-7897 surname: Luo fullname: Luo, Yuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40734147$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkctKAzEUhoNU7EUXvoBkqYupyUwymSyl1AsUCqLrIZM5wcg00yaZQt_elFZxdW7f-eE_Z4pGrneA0C0lc1qU7HG9nHMuWU4v0IQSyTJGKjH6l4_RNIRvQigTUlyhMSOiYKmYoP27aq3qskZ1ymlo8fZLBcDRKxcMeGwGp6PtXcCm91hpPXgVAXuI3sJeddg6vBuUizaqaPeAW2vSHqRGGp7EdO-SXoh4Y7Xvg-63h2t0aVQX4OYcZ-jzefmxeM1W65e3xdMq01QKmrW80BIII5xVOidCqrIpVFXKRrecG8OrkosSKMmTyVLmhjVKlNxQVrW6krSYofuT7tb3uwFCrDc2aOiSWeiHUBd5wQQRrGQJvTujQ7OBtt56u1H-UP_eKgEPJ-BoIngwfwgl9fEP9XpZn_5Q_ADiwHrq |
Cites_doi | 10.1038/nmeth817 10.1126/science.121.3141.345 10.1893/0005-3155(2004)75<78:TIOTM>2.0.CO;2 10.1002/jbio.201700364 10.1088/1361-6463/ac43da 10.1117/1.JBO.27.5.056002 10.1364/OE.26.032888 10.1038/s42254-021-00280-y 10.1038/s41566-018-0253-x 10.1371/journal.pone.0171228 10.1038/s41556-018-0251-8 10.1038/s41551-019-0362-y 10.1364/OE.514225 10.1137/S0895479897326432 10.1021/acsnano.1c11507 10.1364/PRJ.7.000890 10.1038/s41377-024-01453-x 10.1364/OE.23.011394 10.1038/s41467-023-37606-6 10.1016/j.jappgeo.2014.05.006 10.1038/nphoton.2013.187 10.1111/j.1365-2818.1984.tb00460.x 10.1364/OL.493167 10.1364/OE.516623 10.1364/OL.44.004542 10.1364/OE.409890 10.1038/nmeth.1483 10.1002/smtd.202101228 10.48550/arXiv.2306.17088 10.1016/j.conb.2009.03.009 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.559421 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 40734147 10_1364_OE_559421 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM 7X8 |
ID | FETCH-LOGICAL-c1971-d53c9e040548c2079a6b3a869bcd55ff586576e102087692f4ba765f148dc8913 |
ISSN | 1094-4087 |
IngestDate | Wed Jul 30 23:55:28 EDT 2025 Thu Jul 31 01:53:17 EDT 2025 Wed Jul 16 16:47:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1971-d53c9e040548c2079a6b3a869bcd55ff586576e102087692f4ba765f148dc8913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9776-7897 0009-0005-4991-4967 |
OpenAccessLink | https://doi.org/10.1364/oe.559421 |
PMID | 40734147 |
PQID | 3234707464 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3234707464 pubmed_primary_40734147 crossref_primary_10_1364_OE_559421 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-14 2025-Jul-14 20250714 |
PublicationDateYYYYMMDD | 2025-07-14 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2025 |
References | Nguyen (oe-33-14-30529-R12) 2022; 16 Hamilton (oe-33-14-30529-R17) 1984; 133 Rivenson (oe-33-14-30529-R10) 2019; 3 Fan (oe-33-14-30529-R23) 2019; 7 Lichtman (oe-33-14-30529-R9) 2005; 2 Chen (oe-33-14-30529-R22) 2018; 11 Zernike (oe-33-14-30529-R5) 1955; 121 Fernández-Martínez (oe-33-14-30529-R32) 2014; 108 Schermelleh (oe-33-14-30529-R4) 2019; 21 Vyas (oe-33-14-30529-R19) 2022; 55 Chen (oe-33-14-30529-R25) 2022; 27 Goodman (oe-33-14-30529-R20) 2005 Wang (oe-33-14-30529-R6) 2023; 14 Ji (oe-33-14-30529-R3) 2008; 18 Chen (oe-33-14-30529-R28) 2018; 26 Tian (oe-33-14-30529-R18) 2015; 23 Phillips (oe-33-14-30529-R24) 2017; 12 Tsai (oe-33-14-30529-R14) 2024; 32 Chuang (oe-33-14-30529-R26) 2019; 44 Luo (oe-33-14-30529-R8) 2022; 6 Zheng (oe-33-14-30529-R16) 2021; 3 Golub (oe-33-14-30529-R21) 1999; 21 Bardell (oe-33-14-30529-R1) 2004; 75 Bonati (oe-33-14-30529-R31) 2020; 28 Park (oe-33-14-30529-R11) 2018; 12 Zhang (oe-33-14-30529-R30) 2023 Liu (oe-33-14-30529-R29) 2024; 32 Ntziachristos (oe-33-14-30529-R7) 2010; 7 Zheng (oe-33-14-30529-R15) 2013; 7 Huang (oe-33-14-30529-R13) 2024; 13 Haden (oe-33-14-30529-R2) 1939; 1 Liu (oe-33-14-30529-R27) 2023; 48 |
References_xml | – volume: 2 start-page: 910 year: 2005 ident: oe-33-14-30529-R9 publication-title: Nat. Methods doi: 10.1038/nmeth817 – year: 2005 ident: oe-33-14-30529-R20 – volume: 121 start-page: 345 year: 1955 ident: oe-33-14-30529-R5 publication-title: Science doi: 10.1126/science.121.3141.345 – volume: 75 start-page: 78 year: 2004 ident: oe-33-14-30529-R1 publication-title: Bios doi: 10.1893/0005-3155(2004)75<78:TIOTM>2.0.CO;2 – volume: 1 start-page: 30 year: 1939 ident: oe-33-14-30529-R2 publication-title: Annals of Medical History – volume: 11 start-page: e201700364 year: 2018 ident: oe-33-14-30529-R22 publication-title: J. Biophotonics doi: 10.1002/jbio.201700364 – volume: 55 start-page: 183001 year: 2022 ident: oe-33-14-30529-R19 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ac43da – volume: 27 start-page: 056002 year: 2022 ident: oe-33-14-30529-R25 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.27.5.056002 – volume: 26 start-page: 32888 year: 2018 ident: oe-33-14-30529-R28 publication-title: Opt. Express doi: 10.1364/OE.26.032888 – volume: 3 start-page: 207 year: 2021 ident: oe-33-14-30529-R16 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00280-y – volume: 12 start-page: 578 year: 2018 ident: oe-33-14-30529-R11 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0253-x – volume: 12 start-page: e0171228 year: 2017 ident: oe-33-14-30529-R24 publication-title: PLoS One doi: 10.1371/journal.pone.0171228 – volume: 21 start-page: 72 year: 2019 ident: oe-33-14-30529-R4 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0251-8 – volume: 3 start-page: 466 year: 2019 ident: oe-33-14-30529-R10 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0362-y – volume: 32 start-page: 7919 year: 2024 ident: oe-33-14-30529-R14 publication-title: Opt. Express doi: 10.1364/OE.514225 – volume: 21 start-page: 185 year: 1999 ident: oe-33-14-30529-R21 publication-title: SIAM J. Matrix Anal. & Appl. doi: 10.1137/S0895479897326432 – volume: 16 start-page: 11516 year: 2022 ident: oe-33-14-30529-R12 publication-title: ACS Nano doi: 10.1021/acsnano.1c11507 – volume: 7 start-page: 890 year: 2019 ident: oe-33-14-30529-R23 publication-title: Photonics Res. doi: 10.1364/PRJ.7.000890 – volume: 13 start-page: 145 year: 2024 ident: oe-33-14-30529-R13 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-024-01453-x – volume: 23 start-page: 11394 year: 2015 ident: oe-33-14-30529-R18 publication-title: Opt. Express doi: 10.1364/OE.23.011394 – volume: 14 start-page: 2063 year: 2023 ident: oe-33-14-30529-R6 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37606-6 – volume: 108 start-page: 176 year: 2014 ident: oe-33-14-30529-R32 publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2014.05.006 – volume: 7 start-page: 739 year: 2013 ident: oe-33-14-30529-R15 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.187 – volume: 133 start-page: 27 year: 1984 ident: oe-33-14-30529-R17 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1984.tb00460.x – volume: 48 start-page: 3559 year: 2023 ident: oe-33-14-30529-R27 publication-title: Opt. Lett. doi: 10.1364/OL.493167 – volume: 32 start-page: 16629 year: 2024 ident: oe-33-14-30529-R29 publication-title: Opt. Express doi: 10.1364/OE.516623 – volume: 44 start-page: 4542 year: 2019 ident: oe-33-14-30529-R26 publication-title: Opt. Lett. doi: 10.1364/OL.44.004542 – volume: 28 start-page: 33767 year: 2020 ident: oe-33-14-30529-R31 publication-title: Opt. Express doi: 10.1364/OE.409890 – volume: 7 start-page: 603 year: 2010 ident: oe-33-14-30529-R7 publication-title: Nat. Methods doi: 10.1038/nmeth.1483 – volume: 6 start-page: 2101228 year: 2022 ident: oe-33-14-30529-R8 publication-title: Small Methods doi: 10.1002/smtd.202101228 – year: 2023 ident: oe-33-14-30529-R30 doi: 10.48550/arXiv.2306.17088 – volume: 18 start-page: 605 year: 2008 ident: oe-33-14-30529-R3 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2009.03.009 |
SSID | ssj0014797 |
Score | 2.4798377 |
Snippet | Quantitative differential phase contrast microscopy (qDPC) is a potent quantitative phase imaging (QPI) technique for biological applications due to its high... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | 30529 |
Title | Radial-balanced phase transfer functions for accurate retrieval in quantitative differential phase contrast microscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40734147 https://www.proquest.com/docview/3234707464 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxPhagU0G8VZ5kNhO4keEMlVoWxG0qG-R47hiEkurNp02HvjbubOdtEVFGrxEVZScKt8vd_75vgh5m-pIacAFU5UCglJxw3QlJVOZkoJnMjYazyHPzpPBWHyayMk6lddVlzTlsfm5s67kf7QK90CvWCX7D5rthMIN-A36hStoGK630vEXbCzwg5WYnohx_Pl38Ek49QH2onbRR5_lE91cqqQxK-wL0V-4IVpXrtsGFlXWrs4MM4jaaSkNHqN7YS6VXS-b_iVm7mENy1YceDh3bZ7t9bxL5XBTvnwk3wa3iAk_FyG6D66S5R0iv934grKvq3qd6wEPOQEDPWOfQ2fwcDARSzzx9AWhwZYCcwR6Gvyp3XEvGGDfCaMFmtgwpxzjkDsNPU8EaGeYHwMjEr7GeruZ9vmwOBmfnhajfDK6S-7FwCJwwMXZr7wLMonUz95p_1NoPAWi33WCt7crf-Egbi8yekQeBhJBP3hE7JM7tn5M7rtkXrN8Qq7-wAV1qqQtLmiHCwq4oC0uaIcLelHTTVzQTVwEYS0u6BoXT8n4JB99HLAwX4OZSKURqyQ3yoIVB9Zq4vep0knJdZao0sDnOp3KLAE2aiOc45omKp6KUqeJnAKDrgyGt5-RvXpW2wNCE1ECs09tpDMuqkyUaVXGvLIGHlXwwffIm3YZi7lvo1K4WGoiimFe-LXukdftAhdg5DBypWs7Wy0LHnOR4mQc0SPP_cp3YgQ4KQG6fHGLt1-SB2ukviJ7zWJlD2FT2ZRH7jDmyAHkN-4pfRw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial-balanced+phase+transfer+functions+for+accurate+retrieval+in+quantitative+differential+phase+contrast+microscopy&rft.jtitle=Optics+express&rft.au=Yu%2C+Cheng&rft.au=Lin%2C+Ching-En&rft.au=Vyas%2C+Sunil&rft.au=Chiu%2C+Hao-Pin&rft.date=2025-07-14&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=33&rft.issue=14&rft.spage=30529&rft_id=info:doi/10.1364%2FOE.559421&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |