Technical note: an R package for fitting sparse neural networks with application in animal breeding1
Abstract Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-gen...
Saved in:
Published in | Journal of animal science Vol. 96; no. 5; pp. 2016 - 2026 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
04.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8812 1525-3163 |
DOI | 10.1093/jas/sky071 |
Cover
Loading…
Abstract | Abstract
Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-genome marker sets as high-dimensional NN input. In this note, we have developed an R package called snnR that finds an optimal sparse structure of a NN by minimizing the square error subject to a penalty on the L1-norm of the parameters (weights and biases), therefore solving the problem of over-parameterization in NN. We have also tested some models fitted in the snnR package to demonstrate their feasibility and effectiveness to be used in several cases as examples. In comparison of snnR to the R package brnn (the Bayesian regularized single layer NNs), with both using the entries of a genotype matrix or a genomic relationship matrix as inputs, snnR has greatly improved the computational efficiency and the prediction ability for the GS in animal breeding because snnR implements a sparse NN with many hidden layers. |
---|---|
AbstractList | Neural networks (
NN
s) have emerged as a new tool for genomic selection (
GS
) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-genome marker sets as high-dimensional NN input. In this note, we have developed an R package called snnR that finds an optimal sparse structure of a NN by minimizing the square error subject to a penalty on the
L
1
-norm of the parameters (weights and biases), therefore solving the problem of over-parameterization in NN. We have also tested some models fitted in the snnR package to demonstrate their feasibility and effectiveness to be used in several cases as examples. In comparison of snnR to the R package brnn (the Bayesian regularized single layer NNs), with both using the entries of a genotype matrix or a genomic relationship matrix as inputs, snnR has greatly improved the computational efficiency and the prediction ability for the GS in animal breeding because snnR implements a sparse NN with many hidden layers. Abstract Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-genome marker sets as high-dimensional NN input. In this note, we have developed an R package called snnR that finds an optimal sparse structure of a NN by minimizing the square error subject to a penalty on the L1-norm of the parameters (weights and biases), therefore solving the problem of over-parameterization in NN. We have also tested some models fitted in the snnR package to demonstrate their feasibility and effectiveness to be used in several cases as examples. In comparison of snnR to the R package brnn (the Bayesian regularized single layer NNs), with both using the entries of a genotype matrix or a genomic relationship matrix as inputs, snnR has greatly improved the computational efficiency and the prediction ability for the GS in animal breeding because snnR implements a sparse NN with many hidden layers. |
Author | Mi, Xue Lin, Ping Chen, Zhihui Rosa, Guilherme J M Bao, Zhenmin Wang, Yangfan Wang, Shi |
AuthorAffiliation | 4 Division of Mathematics, University of Dundee, Dundee, UK 3 Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, UK 1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China 6 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China 5 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China 2 Department of Animal Sciences, University of Wisconsin, Madison |
AuthorAffiliation_xml | – name: 3 Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, UK – name: 5 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China – name: 4 Division of Mathematics, University of Dundee, Dundee, UK – name: 6 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China – name: 1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China – name: 2 Department of Animal Sciences, University of Wisconsin, Madison |
Author_xml | – sequence: 1 givenname: Yangfan surname: Wang fullname: Wang, Yangfan organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China – sequence: 2 givenname: Xue surname: Mi fullname: Mi, Xue organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China – sequence: 3 givenname: Guilherme J M surname: Rosa fullname: Rosa, Guilherme J M organization: Department of Animal Sciences, University of Wisconsin, Madison – sequence: 4 givenname: Zhihui surname: Chen fullname: Chen, Zhihui organization: Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, UK – sequence: 5 givenname: Ping surname: Lin fullname: Lin, Ping organization: Division of Mathematics, University of Dundee, Dundee, UK – sequence: 6 givenname: Shi surname: Wang fullname: Wang, Shi organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China – sequence: 7 givenname: Zhenmin surname: Bao fullname: Bao, Zhenmin email: zmbao@ouc.edu.cn organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China |
BookMark | eNp9kMtKAzEUhoNU7EU3PkE2boTRnEwzFxeCFG9QEKSuQyaTadNLMiSppW9v6uhCETfJIt__5Zx_iHrGGoXQOZArIGV6vRT-2q_2JIcjNABGWZJClvbQgBAKSVEA7aOh90tCgLKSnaA-LRktKRQDVM-UXBgtxRobG9QNFga_4lbIlZgr3FiHGx2CNnPsW-G8wkZt3QFWYWfdyuOdDgss2nYdHUFbg7WJDr2JTOWUqmMUTtFxI9ZenX3dI_T2cD-bPCXTl8fnyd00kVDmkOR5VVBaZxUlTVrJUgpS5bQaQwrQNGk8geYlKwSDiNYiA5aJSuYNU4woUqcjdNt52221UbVUJsRZeeviOG7PrdD854vRCz637zyDMSlpFgWkE0hnvXeq4VKHz7UirtccCD80zmPjvGs8Ri5_Rb6_-xO-6GC7bf_jPgAE-ZL4 |
CitedBy_id | crossref_primary_10_1016_j_aquaculture_2021_737171 crossref_primary_10_1016_j_aquaculture_2020_736214 crossref_primary_10_1093_nar_gkac424 crossref_primary_10_1016_j_foreco_2020_118800 crossref_primary_10_1016_j_hpj_2023_04_008 crossref_primary_10_1093_g3journal_jkab228 crossref_primary_10_1186_s12711_020_00544_8 crossref_primary_10_1016_j_aquaculture_2021_736489 crossref_primary_10_1007_s10126_018_9847_z crossref_primary_10_1007_s42995_024_00252_y crossref_primary_10_1111_raq_12458 |
Cites_doi | 10.1186/s12711-015-0097-5 10.1016/0893-6080(92)90012-8 10.1186/1471-2156-12-87 10.1534/genetics.113.150078 10.1214/aos/1176344136 10.1016/S0893-6080(98)00117-8 10.1109/TNN.2011.2146789 10.1186/1297-9686-45-34 10.1534/genetics.107.084285 10.1093/genetics/157.4.1819 10.1016/j.neucom.2017.02.029 10.2527/jas.2012-6162 10.1038/nature14539 10.1109/TIP.2007.908079 10.1111/j.1467-9892.2010.00693.x 10.1111/j.2517-6161.1996.tb02080.x 10.1111/j.1467-9868.2005.00503.x 10.1090/S0025-5718-1980-0572855-7 10.3168/jds.2007-0980 10.1186/s12863-015-0241-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018 |
DBID | AAYXX CITATION 5PM |
DOI | 10.1093/jas/sky071 |
DatabaseName | CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1525-3163 |
EndPage | 2026 |
ExternalDocumentID | PMC6140926 10_1093_jas_sky071 10.1093/jas/sky071 |
GroupedDBID | --- ..I 0R~ 18M 29J 2WC 48X 53G 5GY 5RE 5WD 7RQ 7X2 7X7 7XC 88E 88I 8AF 8FE 8FG 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP ABCQX ABDFA ABEJV ABGNP ABJCF ABJNI ABMNT ABPQP ABPTD ABUWG ABVGC ABWST ABXVV ABXZS ACGFO ACGOD ACIWK ACPRK ADBBV ADFRT ADGKP ADGZP ADIPN ADNBA ADNWM ADQBN ADRTK ADVEK AELWJ AENEX AETBJ AEUYN AFFZL AFGWE AFKRA AFRAH AGINJ AGQXC AHMBA AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AOIJS ATCPS ATGXG AZQEC BAYMD BBNVY BCRHZ BENPR BEYMZ BGLVJ BHPHI BKOMP BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS ECGQY EJD EYRJQ F5P F9R FHSFR FJW FLUFQ FOEOM FQBLK FYUFA GAUVT GNUQQ GUQSH H13 HCIFZ HMCUK HYE INIJC JXSIZ KBUDW KOP KSI KSN L6V L7B LK8 M0K M1P M2O M2P M2Q M7P M7S ML0 MV1 MW2 NLBLG NOMLY O9- OBOKY ODMLO OJZSN OK1 OWPYF P2P PATMY PHGZT PQQKQ PRG PROAC PSQYO PTHSS PYCSY Q2X ROX RPM RUSNO RWL RXW S0X SJN TAE TR2 TWZ UKHRP W8F WH7 WOQ YKV YR5 YXANX ~KM AAYXX AGORE AJBYB CITATION PHGZM 5PM PJZUB PPXIY PQGLB |
ID | FETCH-LOGICAL-c1971-77b822d6b20f3bc9ca0b72b41311ff3311127958a5177bda6156abc7f5e50e0d3 |
ISSN | 0021-8812 |
IngestDate | Thu Aug 21 13:35:28 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 00:44:07 EDT 2025 Wed Apr 02 07:03:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | animal breeding genomic selection dominance and additive effects genetic markers sparse neural networks |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) https://academic.oup.com/journals/pages/about_us/legal/notices |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1971-77b822d6b20f3bc9ca0b72b41311ff3311127958a5177bda6156abc7f5e50e0d3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6140926 |
PMID | 29529218 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6140926 crossref_citationtrail_10_1093_jas_sky071 crossref_primary_10_1093_jas_sky071 oup_primary_10_1093_jas_sky071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180504 |
PublicationDateYYYYMMDD | 2018-05-04 |
PublicationDate_xml | – month: 05 year: 2018 text: 20180504 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | US |
PublicationPlace_xml | – name: US |
PublicationTitle | Journal of animal science |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Aliloo ( key 20180917115207_CIT0002) 2015; 16 Meuwissen ( key 20180917115207_CIT0016) 2001; 157 Krishnan ( key 20180917115207_CIT0014) 2007; 16 Gianola ( key 20180917115207_CIT0010) 2011; 12 Akaike ( key 20180917115207_CIT0001) 1973 Zou ( key 20180917115207_CIT0026) 2005; 67 Dennis ( key 20180917115207_CIT0006) 1997; 19 Anders ( key 20180917115207_CIT0003) 1999; 12 Beck ( key 20180917115207_CIT0004) 2015 Gill ( key 20180917115207_CIT0011) 1984 LeCun ( key 20180917115207_CIT0013) 2015; 521 Gripon ( key 20180917115207_CIT0012) 2011; 22 Thomaidis ( key 20180917115207_CIT0022) 2011; 32 Fletcher ( key 20180917115207_CIT0008) 2001 Wimmer ( key 20180917115207_CIT0025) 2013; 195 Nocedal ( key 20180917115207_CIT0017) 1980; 35 Ehret ( key 20180917115207_CIT0007) 2015; 47 Gianola ( key 20180917115207_CIT0009) 2008; 178 Okut ( key 20180917115207_CIT0018) 2013; 45 Kurkova ( key 20180917115207_CIT0015) 1992; 5 VanRaden ( key 20180917115207_CIT0024) 2008; 91 Bertsekas ( key 20180917115207_CIT0005) 2003 Schwarz ( key 20180917115207_CIT0021) 1978; 6 Scardapane ( key 20180917115207_CIT0020) 2017; 241 Tibshirani ( key 20180917115207_CIT0023) 1996; 58 Pérez-Rodríguez ( key 20180917115207_CIT0019) 2013; 91 |
References_xml | – volume: 47 start-page: 22 year: 2015 ident: key 20180917115207_CIT0007 article-title: Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle publication-title: Genet. Sel. Evol doi: 10.1186/s12711-015-0097-5 – volume: 5 start-page: 501 year: 1992 ident: key 20180917115207_CIT0015 article-title: Kolmogorov theorem and multilayer neural networks publication-title: Neural Netw doi: 10.1016/0893-6080(92)90012-8 – volume: 12 start-page: 87 year: 2011 ident: key 20180917115207_CIT0010 article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with jersey cows and wheat publication-title: BMC Genet doi: 10.1186/1471-2156-12-87 – volume: 195 start-page: 573 year: 2013 ident: key 20180917115207_CIT0025 article-title: Genome-wide prediction of traits with different genetic architecture through efficient variable selection publication-title: Genetics doi: 10.1534/genetics.113.150078 – volume: 6 start-page: 461 year: 1978 ident: key 20180917115207_CIT0021 article-title: Estimating the dimension of a model publication-title: Ann. Stat doi: 10.1214/aos/1176344136 – volume: 12 start-page: 309 year: 1999 ident: key 20180917115207_CIT0003 article-title: Model selection in neural networks publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00117-8 – volume: 22 start-page: 1087 year: 2011 ident: key 20180917115207_CIT0012 article-title: Sparse neural networks with large learning diversity publication-title: IEEE Trans. Neural Netw. Learn. Syst doi: 10.1109/TNN.2011.2146789 – volume-title: On the Barzilai-Borwein method, Technical Report year: 2001 ident: key 20180917115207_CIT0008 – volume: 45 start-page: 34 year: 2013 ident: key 20180917115207_CIT0018 article-title: Predicting expected progeny difference for marbling score in angus cattle using artificial neural networks and Bayesian regression models publication-title: Genet. Sel. Evol doi: 10.1186/1297-9686-45-34 – volume: 178 start-page: 2289 year: 2008 ident: key 20180917115207_CIT0009 article-title: Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits publication-title: Genetics doi: 10.1534/genetics.107.084285 – year: 2015 ident: key 20180917115207_CIT0004 – volume: 19 start-page: 46 year: 1997 ident: key 20180917115207_CIT0006 article-title: Quasi-Newton methods, motivation and theory publication-title: SIAM Rev Soc. Ind. Appl. Math – volume: 157 start-page: 1819 year: 2001 ident: key 20180917115207_CIT0016 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume-title: Convex analysis and optimization year: 2003 ident: key 20180917115207_CIT0005 – volume: 241 start-page: 81 year: 2017 ident: key 20180917115207_CIT0020 article-title: Group sparse regularization for deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.029 – start-page: 267 volume-title: Second international symposium on information theory year: 1973 ident: key 20180917115207_CIT0001 article-title: Information theory and an extension of the maximum likelihood principle – volume: 91 start-page: 3522 year: 2013 ident: key 20180917115207_CIT0019 article-title: Technical note:an R package for fitting Bayesian regularized neural networks with applications in animal breeding publication-title: J. Anim. Sci doi: 10.2527/jas.2012-6162 – volume: 521 start-page: 436 year: 2015 ident: key 20180917115207_CIT0013 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 16 start-page: 2766 year: 2007 ident: key 20180917115207_CIT0014 article-title: A primal-dual active-set method for non-negativity constrained total variation deblurring problems publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2007.908079 – volume: 32 start-page: 204 year: 2011 ident: key 20180917115207_CIT0022 article-title: On detecting the optimal structure of a neural network under strong statistical features in errors publication-title: J. Time Ser. Anal doi: 10.1111/j.1467-9892.2010.00693.x – volume: 58 start-page: 267 year: 1996 ident: key 20180917115207_CIT0023 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 67 start-page: 301 year: 2005 ident: key 20180917115207_CIT0026 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. A Stat. Soc doi: 10.1111/j.1467-9868.2005.00503.x – volume: 35 start-page: 773 year: 1980 ident: key 20180917115207_CIT0017 article-title: Updating quasi-newton matrices with limited storage publication-title: Math. Comput doi: 10.1090/S0025-5718-1980-0572855-7 – volume-title: Practical optimization year: 1984 ident: key 20180917115207_CIT0011 – volume: 91 start-page: 4414 year: 2008 ident: key 20180917115207_CIT0024 article-title: Efficient methods to compute genomic predictions publication-title: J. Dairy Sci doi: 10.3168/jds.2007-0980 – volume: 16 start-page: 89 year: 2015 ident: key 20180917115207_CIT0002 article-title: Validation of markers with non-additive effects on milk yield and fertility in holstein and jersey cows publication-title: BMC Genet doi: 10.1186/s12863-015-0241-9 |
SSID | ssj0012595 |
Score | 2.2290874 |
Snippet | Abstract
Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the... Neural networks ( NN s) have emerged as a new tool for genomic selection ( GS ) in animal breeding. However, the properties of NN used in GS for the prediction... |
SourceID | pubmedcentral crossref oup |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 2016 |
SubjectTerms | Technology in Animal Science |
Title | Technical note: an R package for fitting sparse neural networks with application in animal breeding1 |
URI | https://pubmed.ncbi.nlm.nih.gov/PMC6140926 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCucAB8RTlUVmCC4qW2t6Xl1tVUapKQahqpcAlsne9zdJmUyXZQ_uT-JXMrL0v0SLoZRNtZmPF82U8M575TMh7ZkQKMDJeKLXxAggZPJlq7pmEpzFSAsoAe4cnX6PD0-BoGk5Ho1-9qqVqoz-m1zf2ldxFq3AP9Ipdsv-h2fZL4Qa8B_3CFTQM13_TcU3AirNcLjd1kzkm5McQBp9jKQ5WEOaFLWwGw7FamzHSV6K4Lf5uWtu6TWxMf6iyWIAMxMr1wsZv8V-dmFtCu8S8NR7f4TXvkDepiwamVSt3vFzXbuuXqrgA2CzM-GjcqzWwxvDHvJhXRT8xwWVdBtglJm9peOwbY8E9KV0VtXH2V-DGvLN5zkDbI28dEMO-tWU86q3cgtnm-z9WBcuY9RM75A7W51fMHvrSA8jlokaISEKRCLceDFm4v032I-QGE9E9cl9ASMKbzJDbsYIw0p6W4X5UQ4Wb-Lsw8K4dFqmn3RgDP8j2Vg6rcntuzslj8sjpl-5ZsD0hI1M-JQ_3zlaOo8U8I1kLO4qw-0RVSY-pAx0FdVAHOmpBRy3oaAM6iqCjPdDRoqQWTbQF3XNyevD5ZP_Qc4d1eClPYg5RmgZfM4u0YLmv0yRVTMdCB0jnlOc-XLmIk1CqkINopsCTjpRO4zw0ITMs81-QrXJZmpeExgweU4kEWxEEUQ4xiIoTludS-VGYKb5NPjRTN0sdkz0eqHIxsxUV_gxmfGZnfJu8a2UvLX_LjVI7oIG_CsQD5bSiyM4-_KQs5jVLu4PLqzs_-Zo86P5Wb8jWZlWZt-ABb_RODb3fue24mQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+an+R+package+for+fitting+sparse+neural+networks+with+application+in+animal+breeding1&rft.jtitle=Journal+of+animal+science&rft.au=Wang%2C+Yangfan&rft.au=Mi%2C+Xue&rft.au=Rosa%2C+Guilherme+J+M&rft.au=Chen%2C+Zhihui&rft.date=2018-05-04&rft.pub=Oxford+University+Press&rft.issn=0021-8812&rft.eissn=1525-3163&rft.volume=96&rft.issue=5&rft.spage=2016&rft.epage=2026&rft_id=info:doi/10.1093%2Fjas%2Fsky071&rft_id=info%3Apmid%2F29529218&rft.externalDocID=PMC6140926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8812&client=summon |