Technical note: an R package for fitting sparse neural networks with application in animal breeding1

Abstract Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-gen...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science Vol. 96; no. 5; pp. 2016 - 2026
Main Authors Wang, Yangfan, Mi, Xue, Rosa, Guilherme J M, Chen, Zhihui, Lin, Ping, Wang, Shi, Bao, Zhenmin
Format Journal Article
LanguageEnglish
Published US Oxford University Press 04.05.2018
Subjects
Online AccessGet full text
ISSN0021-8812
1525-3163
DOI10.1093/jas/sky071

Cover

Loading…
Abstract Abstract Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-genome marker sets as high-dimensional NN input. In this note, we have developed an R package called snnR that finds an optimal sparse structure of a NN by minimizing the square error subject to a penalty on the L1-norm of the parameters (weights and biases), therefore solving the problem of over-parameterization in NN. We have also tested some models fitted in the snnR package to demonstrate their feasibility and effectiveness to be used in several cases as examples. In comparison of snnR to the R package brnn (the Bayesian regularized single layer NNs), with both using the entries of a genotype matrix or a genomic relationship matrix as inputs, snnR has greatly improved the computational efficiency and the prediction ability for the GS in animal breeding because snnR implements a sparse NN with many hidden layers.
AbstractList Neural networks ( NN s) have emerged as a new tool for genomic selection ( GS ) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-genome marker sets as high-dimensional NN input. In this note, we have developed an R package called snnR that finds an optimal sparse structure of a NN by minimizing the square error subject to a penalty on the L 1 -norm of the parameters (weights and biases), therefore solving the problem of over-parameterization in NN. We have also tested some models fitted in the snnR package to demonstrate their feasibility and effectiveness to be used in several cases as examples. In comparison of snnR to the R package brnn (the Bayesian regularized single layer NNs), with both using the entries of a genotype matrix or a genomic relationship matrix as inputs, snnR has greatly improved the computational efficiency and the prediction ability for the GS in animal breeding because snnR implements a sparse NN with many hidden layers.
Abstract Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the prediction of phenotypic outcomes are not well characterized due to the problem of over-parameterization of NN and difficulties in using whole-genome marker sets as high-dimensional NN input. In this note, we have developed an R package called snnR that finds an optimal sparse structure of a NN by minimizing the square error subject to a penalty on the L1-norm of the parameters (weights and biases), therefore solving the problem of over-parameterization in NN. We have also tested some models fitted in the snnR package to demonstrate their feasibility and effectiveness to be used in several cases as examples. In comparison of snnR to the R package brnn (the Bayesian regularized single layer NNs), with both using the entries of a genotype matrix or a genomic relationship matrix as inputs, snnR has greatly improved the computational efficiency and the prediction ability for the GS in animal breeding because snnR implements a sparse NN with many hidden layers.
Author Mi, Xue
Lin, Ping
Chen, Zhihui
Rosa, Guilherme J M
Bao, Zhenmin
Wang, Yangfan
Wang, Shi
AuthorAffiliation 4 Division of Mathematics, University of Dundee, Dundee, UK
3 Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, UK
1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
6 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
5 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
2 Department of Animal Sciences, University of Wisconsin, Madison
AuthorAffiliation_xml – name: 3 Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, UK
– name: 5 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
– name: 4 Division of Mathematics, University of Dundee, Dundee, UK
– name: 6 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
– name: 1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
– name: 2 Department of Animal Sciences, University of Wisconsin, Madison
Author_xml – sequence: 1
  givenname: Yangfan
  surname: Wang
  fullname: Wang, Yangfan
  organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
– sequence: 2
  givenname: Xue
  surname: Mi
  fullname: Mi, Xue
  organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
– sequence: 3
  givenname: Guilherme J M
  surname: Rosa
  fullname: Rosa, Guilherme J M
  organization: Department of Animal Sciences, University of Wisconsin, Madison
– sequence: 4
  givenname: Zhihui
  surname: Chen
  fullname: Chen, Zhihui
  organization: Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, UK
– sequence: 5
  givenname: Ping
  surname: Lin
  fullname: Lin, Ping
  organization: Division of Mathematics, University of Dundee, Dundee, UK
– sequence: 6
  givenname: Shi
  surname: Wang
  fullname: Wang, Shi
  organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
– sequence: 7
  givenname: Zhenmin
  surname: Bao
  fullname: Bao, Zhenmin
  email: zmbao@ouc.edu.cn
  organization: Ministry of Education Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
BookMark eNp9kMtKAzEUhoNU7EU3PkE2boTRnEwzFxeCFG9QEKSuQyaTadNLMiSppW9v6uhCETfJIt__5Zx_iHrGGoXQOZArIGV6vRT-2q_2JIcjNABGWZJClvbQgBAKSVEA7aOh90tCgLKSnaA-LRktKRQDVM-UXBgtxRobG9QNFga_4lbIlZgr3FiHGx2CNnPsW-G8wkZt3QFWYWfdyuOdDgss2nYdHUFbg7WJDr2JTOWUqmMUTtFxI9ZenX3dI_T2cD-bPCXTl8fnyd00kVDmkOR5VVBaZxUlTVrJUgpS5bQaQwrQNGk8geYlKwSDiNYiA5aJSuYNU4woUqcjdNt52221UbVUJsRZeeviOG7PrdD854vRCz637zyDMSlpFgWkE0hnvXeq4VKHz7UirtccCD80zmPjvGs8Ri5_Rb6_-xO-6GC7bf_jPgAE-ZL4
CitedBy_id crossref_primary_10_1016_j_aquaculture_2021_737171
crossref_primary_10_1016_j_aquaculture_2020_736214
crossref_primary_10_1093_nar_gkac424
crossref_primary_10_1016_j_foreco_2020_118800
crossref_primary_10_1016_j_hpj_2023_04_008
crossref_primary_10_1093_g3journal_jkab228
crossref_primary_10_1186_s12711_020_00544_8
crossref_primary_10_1016_j_aquaculture_2021_736489
crossref_primary_10_1007_s10126_018_9847_z
crossref_primary_10_1007_s42995_024_00252_y
crossref_primary_10_1111_raq_12458
Cites_doi 10.1186/s12711-015-0097-5
10.1016/0893-6080(92)90012-8
10.1186/1471-2156-12-87
10.1534/genetics.113.150078
10.1214/aos/1176344136
10.1016/S0893-6080(98)00117-8
10.1109/TNN.2011.2146789
10.1186/1297-9686-45-34
10.1534/genetics.107.084285
10.1093/genetics/157.4.1819
10.1016/j.neucom.2017.02.029
10.2527/jas.2012-6162
10.1038/nature14539
10.1109/TIP.2007.908079
10.1111/j.1467-9892.2010.00693.x
10.1111/j.2517-6161.1996.tb02080.x
10.1111/j.1467-9868.2005.00503.x
10.1090/S0025-5718-1980-0572855-7
10.3168/jds.2007-0980
10.1186/s12863-015-0241-9
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2018
DBID AAYXX
CITATION
5PM
DOI 10.1093/jas/sky071
DatabaseName CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3163
EndPage 2026
ExternalDocumentID PMC6140926
10_1093_jas_sky071
10.1093/jas/sky071
GroupedDBID ---
..I
0R~
18M
29J
2WC
48X
53G
5GY
5RE
5WD
7RQ
7X2
7X7
7XC
88E
88I
8AF
8FE
8FG
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
ABCQX
ABDFA
ABEJV
ABGNP
ABJCF
ABJNI
ABMNT
ABPQP
ABPTD
ABUWG
ABVGC
ABWST
ABXVV
ABXZS
ACGFO
ACGOD
ACIWK
ACPRK
ADBBV
ADFRT
ADGKP
ADGZP
ADIPN
ADNBA
ADNWM
ADQBN
ADRTK
ADVEK
AELWJ
AENEX
AETBJ
AEUYN
AFFZL
AFGWE
AFKRA
AFRAH
AGINJ
AGQXC
AHMBA
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AOIJS
ATCPS
ATGXG
AZQEC
BAYMD
BBNVY
BCRHZ
BENPR
BEYMZ
BGLVJ
BHPHI
BKOMP
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
ECGQY
EJD
EYRJQ
F5P
F9R
FHSFR
FJW
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GNUQQ
GUQSH
H13
HCIFZ
HMCUK
HYE
INIJC
JXSIZ
KBUDW
KOP
KSI
KSN
L6V
L7B
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
M7S
ML0
MV1
MW2
NLBLG
NOMLY
O9-
OBOKY
ODMLO
OJZSN
OK1
OWPYF
P2P
PATMY
PHGZT
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q2X
ROX
RPM
RUSNO
RWL
RXW
S0X
SJN
TAE
TR2
TWZ
UKHRP
W8F
WH7
WOQ
YKV
YR5
YXANX
~KM
AAYXX
AGORE
AJBYB
CITATION
PHGZM
5PM
PJZUB
PPXIY
PQGLB
ID FETCH-LOGICAL-c1971-77b822d6b20f3bc9ca0b72b41311ff3311127958a5177bda6156abc7f5e50e0d3
ISSN 0021-8812
IngestDate Thu Aug 21 13:35:28 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
Tue Jul 01 00:44:07 EDT 2025
Wed Apr 02 07:03:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords animal breeding
genomic selection
dominance and additive effects
genetic markers
sparse neural networks
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
https://academic.oup.com/journals/pages/about_us/legal/notices
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1971-77b822d6b20f3bc9ca0b72b41311ff3311127958a5177bda6156abc7f5e50e0d3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6140926
PMID 29529218
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6140926
crossref_citationtrail_10_1093_jas_sky071
crossref_primary_10_1093_jas_sky071
oup_primary_10_1093_jas_sky071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180504
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 05
  year: 2018
  text: 20180504
  day: 04
PublicationDecade 2010
PublicationPlace US
PublicationPlace_xml – name: US
PublicationTitle Journal of animal science
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Aliloo ( key 20180917115207_CIT0002) 2015; 16
Meuwissen ( key 20180917115207_CIT0016) 2001; 157
Krishnan ( key 20180917115207_CIT0014) 2007; 16
Gianola ( key 20180917115207_CIT0010) 2011; 12
Akaike ( key 20180917115207_CIT0001) 1973
Zou ( key 20180917115207_CIT0026) 2005; 67
Dennis ( key 20180917115207_CIT0006) 1997; 19
Anders ( key 20180917115207_CIT0003) 1999; 12
Beck ( key 20180917115207_CIT0004) 2015
Gill ( key 20180917115207_CIT0011) 1984
LeCun ( key 20180917115207_CIT0013) 2015; 521
Gripon ( key 20180917115207_CIT0012) 2011; 22
Thomaidis ( key 20180917115207_CIT0022) 2011; 32
Fletcher ( key 20180917115207_CIT0008) 2001
Wimmer ( key 20180917115207_CIT0025) 2013; 195
Nocedal ( key 20180917115207_CIT0017) 1980; 35
Ehret ( key 20180917115207_CIT0007) 2015; 47
Gianola ( key 20180917115207_CIT0009) 2008; 178
Okut ( key 20180917115207_CIT0018) 2013; 45
Kurkova ( key 20180917115207_CIT0015) 1992; 5
VanRaden ( key 20180917115207_CIT0024) 2008; 91
Bertsekas ( key 20180917115207_CIT0005) 2003
Schwarz ( key 20180917115207_CIT0021) 1978; 6
Scardapane ( key 20180917115207_CIT0020) 2017; 241
Tibshirani ( key 20180917115207_CIT0023) 1996; 58
Pérez-Rodríguez ( key 20180917115207_CIT0019) 2013; 91
References_xml – volume: 47
  start-page: 22
  year: 2015
  ident: key 20180917115207_CIT0007
  article-title: Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
  publication-title: Genet. Sel. Evol
  doi: 10.1186/s12711-015-0097-5
– volume: 5
  start-page: 501
  year: 1992
  ident: key 20180917115207_CIT0015
  article-title: Kolmogorov theorem and multilayer neural networks
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(92)90012-8
– volume: 12
  start-page: 87
  year: 2011
  ident: key 20180917115207_CIT0010
  article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with jersey cows and wheat
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-12-87
– volume: 195
  start-page: 573
  year: 2013
  ident: key 20180917115207_CIT0025
  article-title: Genome-wide prediction of traits with different genetic architecture through efficient variable selection
  publication-title: Genetics
  doi: 10.1534/genetics.113.150078
– volume: 6
  start-page: 461
  year: 1978
  ident: key 20180917115207_CIT0021
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat
  doi: 10.1214/aos/1176344136
– volume: 12
  start-page: 309
  year: 1999
  ident: key 20180917115207_CIT0003
  article-title: Model selection in neural networks
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00117-8
– volume: 22
  start-page: 1087
  year: 2011
  ident: key 20180917115207_CIT0012
  article-title: Sparse neural networks with large learning diversity
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNN.2011.2146789
– volume-title: On the Barzilai-Borwein method, Technical Report
  year: 2001
  ident: key 20180917115207_CIT0008
– volume: 45
  start-page: 34
  year: 2013
  ident: key 20180917115207_CIT0018
  article-title: Predicting expected progeny difference for marbling score in angus cattle using artificial neural networks and Bayesian regression models
  publication-title: Genet. Sel. Evol
  doi: 10.1186/1297-9686-45-34
– volume: 178
  start-page: 2289
  year: 2008
  ident: key 20180917115207_CIT0009
  article-title: Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
  publication-title: Genetics
  doi: 10.1534/genetics.107.084285
– year: 2015
  ident: key 20180917115207_CIT0004
– volume: 19
  start-page: 46
  year: 1997
  ident: key 20180917115207_CIT0006
  article-title: Quasi-Newton methods, motivation and theory
  publication-title: SIAM Rev Soc. Ind. Appl. Math
– volume: 157
  start-page: 1819
  year: 2001
  ident: key 20180917115207_CIT0016
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume-title: Convex analysis and optimization
  year: 2003
  ident: key 20180917115207_CIT0005
– volume: 241
  start-page: 81
  year: 2017
  ident: key 20180917115207_CIT0020
  article-title: Group sparse regularization for deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.029
– start-page: 267
  volume-title: Second international symposium on information theory
  year: 1973
  ident: key 20180917115207_CIT0001
  article-title: Information theory and an extension of the maximum likelihood principle
– volume: 91
  start-page: 3522
  year: 2013
  ident: key 20180917115207_CIT0019
  article-title: Technical note:an R package for fitting Bayesian regularized neural networks with applications in animal breeding
  publication-title: J. Anim. Sci
  doi: 10.2527/jas.2012-6162
– volume: 521
  start-page: 436
  year: 2015
  ident: key 20180917115207_CIT0013
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 2766
  year: 2007
  ident: key 20180917115207_CIT0014
  article-title: A primal-dual active-set method for non-negativity constrained total variation deblurring problems
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2007.908079
– volume: 32
  start-page: 204
  year: 2011
  ident: key 20180917115207_CIT0022
  article-title: On detecting the optimal structure of a neural network under strong statistical features in errors
  publication-title: J. Time Ser. Anal
  doi: 10.1111/j.1467-9892.2010.00693.x
– volume: 58
  start-page: 267
  year: 1996
  ident: key 20180917115207_CIT0023
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 67
  start-page: 301
  year: 2005
  ident: key 20180917115207_CIT0026
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. A Stat. Soc
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 35
  start-page: 773
  year: 1980
  ident: key 20180917115207_CIT0017
  article-title: Updating quasi-newton matrices with limited storage
  publication-title: Math. Comput
  doi: 10.1090/S0025-5718-1980-0572855-7
– volume-title: Practical optimization
  year: 1984
  ident: key 20180917115207_CIT0011
– volume: 91
  start-page: 4414
  year: 2008
  ident: key 20180917115207_CIT0024
  article-title: Efficient methods to compute genomic predictions
  publication-title: J. Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 16
  start-page: 89
  year: 2015
  ident: key 20180917115207_CIT0002
  article-title: Validation of markers with non-additive effects on milk yield and fertility in holstein and jersey cows
  publication-title: BMC Genet
  doi: 10.1186/s12863-015-0241-9
SSID ssj0012595
Score 2.2290874
Snippet Abstract Neural networks (NNs) have emerged as a new tool for genomic selection (GS) in animal breeding. However, the properties of NN used in GS for the...
Neural networks ( NN s) have emerged as a new tool for genomic selection ( GS ) in animal breeding. However, the properties of NN used in GS for the prediction...
SourceID pubmedcentral
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2016
SubjectTerms Technology in Animal Science
Title Technical note: an R package for fitting sparse neural networks with application in animal breeding1
URI https://pubmed.ncbi.nlm.nih.gov/PMC6140926
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCucAB8RTlUVmCC4qW2t6Xl1tVUapKQahqpcAlsne9zdJmUyXZQ_uT-JXMrL0v0SLoZRNtZmPF82U8M575TMh7ZkQKMDJeKLXxAggZPJlq7pmEpzFSAsoAe4cnX6PD0-BoGk5Ho1-9qqVqoz-m1zf2ldxFq3AP9Ipdsv-h2fZL4Qa8B_3CFTQM13_TcU3AirNcLjd1kzkm5McQBp9jKQ5WEOaFLWwGw7FamzHSV6K4Lf5uWtu6TWxMf6iyWIAMxMr1wsZv8V-dmFtCu8S8NR7f4TXvkDepiwamVSt3vFzXbuuXqrgA2CzM-GjcqzWwxvDHvJhXRT8xwWVdBtglJm9peOwbY8E9KV0VtXH2V-DGvLN5zkDbI28dEMO-tWU86q3cgtnm-z9WBcuY9RM75A7W51fMHvrSA8jlokaISEKRCLceDFm4v032I-QGE9E9cl9ASMKbzJDbsYIw0p6W4X5UQ4Wb-Lsw8K4dFqmn3RgDP8j2Vg6rcntuzslj8sjpl-5ZsD0hI1M-JQ_3zlaOo8U8I1kLO4qw-0RVSY-pAx0FdVAHOmpBRy3oaAM6iqCjPdDRoqQWTbQF3XNyevD5ZP_Qc4d1eClPYg5RmgZfM4u0YLmv0yRVTMdCB0jnlOc-XLmIk1CqkINopsCTjpRO4zw0ITMs81-QrXJZmpeExgweU4kEWxEEUQ4xiIoTludS-VGYKb5NPjRTN0sdkz0eqHIxsxUV_gxmfGZnfJu8a2UvLX_LjVI7oIG_CsQD5bSiyM4-_KQs5jVLu4PLqzs_-Zo86P5Wb8jWZlWZt-ABb_RODb3fue24mQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+an+R+package+for+fitting+sparse+neural+networks+with+application+in+animal+breeding1&rft.jtitle=Journal+of+animal+science&rft.au=Wang%2C+Yangfan&rft.au=Mi%2C+Xue&rft.au=Rosa%2C+Guilherme+J+M&rft.au=Chen%2C+Zhihui&rft.date=2018-05-04&rft.pub=Oxford+University+Press&rft.issn=0021-8812&rft.eissn=1525-3163&rft.volume=96&rft.issue=5&rft.spage=2016&rft.epage=2026&rft_id=info:doi/10.1093%2Fjas%2Fsky071&rft_id=info%3Apmid%2F29529218&rft.externalDocID=PMC6140926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8812&client=summon