Maximum Likelihood and Bayesian Estimation of Rayleigh with Partly Interval-Censored Case-I Data

In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get the maximum probability estimators (MLE.s) for non-personal parameters. MLEs cannot be obtained in clear formats. We also consider Bayesian re...

Full description

Saved in:
Bibliographic Details
Published inNeuroQuantology Vol. 18; no. 5; pp. 26 - 28
Main Author Ghafil, Wisam Kamil
Format Journal Article
LanguageEnglish
Published Bornova Izmir NeuroQuantology 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get the maximum probability estimators (MLE.s) for non-personal parameters. MLEs cannot be obtained in clear formats. We also consider Bayesian reasoning for nonpersonal parameters Bayes estimates and associated reliable periods cannot be we get in closed shapes. We use an important sampling technique to round (calculate) Bayes estimates and their associated reliable time periods. For in order to compare we also used the accurate method to calculate Bayes. estimaties and related reliable periods. Monte Carlo simulation is performed using the R programming language to compare the proposed fashion performance, and one data set was analyzed for illustration purposes. We take into account the Bayes forecast trouble based on observable sampling.
AbstractList In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get the maximum probability estimators (MLE.s) for non-personal parameters. MLEs cannot be obtained in clear formats. We also consider Bayesian reasoning for nonpersonal parameters Bayes estimates and associated reliable periods cannot be we get in closed shapes. We use an important sampling technique to round (calculate) Bayes estimates and their associated reliable time periods. For in order to compare we also used the accurate method to calculate Bayes. estimaties and related reliable periods. Monte Carlo simulation is performed using the R programming language to compare the proposed fashion performance, and one data set was analyzed for illustration purposes. We take into account the Bayes forecast trouble based on observable sampling.
Author Ghafil, Wisam Kamil
Author_xml – sequence: 1
  givenname: Wisam Kamil
  surname: Ghafil
  fullname: Ghafil, Wisam Kamil
BookMark eNpNkEtPwzAQhC1UJNrCT0CyxDnFjuM8jhAKVCpPwdls4g1NSe3WToH8ewLtgdPMSKNZ7TciA2MNEnLK2YRHCYvOzWYSsrBP6URO7p9CxmNxQIZcMBFILtngnz8iI--XjMmEZfGQvN3Bd73arui8_sCmXlirKRhNL6FDX4OhU9_WK2hra6it6DN0DdbvC_pVtwv6CK5tOjozLbpPaIIcjbcONc3BYzCjV9DCMTmsoPF4stcxeb2evuS3wfzhZpZfzIOSZ3EbIFalZKiTSGORZHERJjoSQkiAoigiLGQCXMgYpNbAYq3TFMqsApCIIuSlGJOz3e7a2c0WfauWdutMf1KFUcijNM0y0bfkrlU6673DSq1d_57rFGfqD6YyG_ULU_FUSbWHKX4Ab69rxA
CitedBy_id crossref_primary_10_3934_era_2023242
ContentType Journal Article
Copyright Copyright NeuroQuantology 2020
Copyright_xml – notice: Copyright NeuroQuantology 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
88G
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M2M
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
DOI 10.14704/nq.2020.18.5.NQ20163
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Psychology Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList ProQuest One Psychology
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1303-5150
EndPage 28
ExternalDocumentID 10_14704_nq_2020_18_5_NQ20163
GroupedDBID ---
123
29N
2WC
3V.
7X7
8FE
8FG
8FI
8FJ
AAYXX
ABUWG
ACIHN
ADBBV
AEAQA
AENEX
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
E3Z
ESX
FYUFA
GNUQQ
GX1
HCIFZ
HMCUK
IAO
IEA
KWQ
M2M
M~E
OK1
P62
P6G
PQQKQ
PROAC
PSYQQ
PV9
RZL
TR2
UKHRP
XSB
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c196t-eefc50ed74deb796b27d43335aabbb4eb57a1356a5dda06dd88ac9faa5ee321c3
IEDL.DBID 7X7
ISSN 1303-5150
IngestDate Thu Oct 10 19:56:23 EDT 2024
Fri Aug 23 00:55:41 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c196t-eefc50ed74deb796b27d43335aabbb4eb57a1356a5dda06dd88ac9faa5ee321c3
PQID 2421488993
PQPubID 2035897
PageCount 3
ParticipantIDs proquest_journals_2421488993
crossref_primary_10_14704_nq_2020_18_5_NQ20163
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Bornova Izmir
PublicationPlace_xml – name: Bornova Izmir
PublicationTitle NeuroQuantology
PublicationYear 2020
Publisher NeuroQuantology
Publisher_xml – name: NeuroQuantology
SSID ssj0057096
Score 2.1903987
Snippet In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 26
SubjectTerms Bayesian analysis
Computer simulation
Mathematical analysis
Maximum likelihood estimation
Monte Carlo simulation
Parameter estimation
Programming languages
Sampling methods
Title Maximum Likelihood and Bayesian Estimation of Rayleigh with Partly Interval-Censored Case-I Data
URI https://www.proquest.com/docview/2421488993
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXryIomJ9lBy8pmY3yT5OorW1ii1VLPQWJ5ssFHX7sIL9907ardKLl8CykMO8vpkvmQwhF2gCPAVjWajylMmIA4OAW1zS3IrQ5InxvcPdXtQZyIehGpaE22d5rXIdE5eB2o4zz5Ff-qNLNDaE06vJlPmpUf50tRyhsU2qQcgjf6UrHv4WXCrG_Lzs2pExl5fFFAvCEL-Shmr0nhD7IrGJR5vheIkx7T2yWyaH9HqlzX2y5YoD8tqF79HH1wd9HL2595F_hphi-U9vYOF8ByRtoZeuGhDpOKfPWIJ7upN6hpX20TLeF3TJ-6FNsSZWreOZs7SJ6MXu6S3M4ZAM2q2XZoeVcxFYhv4yZ87lmeLOxtI6E6eRCWMrhRAKwBgjnVExBEJFoKwFHlmbJJClOYByToRBJo5IpRgX7pjQwIE0gPslJpXSYr5lHecGtReFLleiRhpr6ejJ6vkL7csGL05dTLUXpw4SrXQpzho5W8tQl97wqf90d_L_71Oy43dcURxnpDKffblzBP25qS81i2vSvquT6k2r13_-AdlWsLo
link.rule.ids 315,783,787,4031,12068,12777,21400,27935,27936,27937,31731,33385,33756,43322,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4DLAgECAeBTywuk1iO48JQaEUaCtARWIz59iRKtr0LcG_55ykQiwsliJLHu713X3O-Qi5RBPwEtCGBTJLmAg9YOB7BpckMzzQWaxd73C3F7bfxOO7fK8It3n1W-UqJhaB2oxTx5E33NUlGhvC6dVkytzUKHe7Wo3QWCebgiNWu07x1v0qEssI8_Oqa0dEnmjkUywIA_yK67Lee0HsC_lfPPobjguMae2SnSo5pNelNvfIms33yUcXvgaj5Yh2Bp92OHDPEFMs_-kNfFvXAUnv0EvLBkQ6zugrluCO7qSOYaXPaBnDb1rwfmhTrIlV63hmDW0ierEHegsLOCBvrbt-s82quQgsRX9ZMGuzVHrWRMJYHSWhDiIjOOcSQGstrJYR-FyGII0BLzQmjiFNMgBpLQ_8lB-SjXyc2yNCfQtCA54X60QIg_mWsZ6nUXthYDPJj0l9JR01KZ-_UK5scOJU-VQ5cSo_VlJV4jwmtZUMVeUNc_Wru5P_ty_IVrvf7ajOQ-_plGy700u6o0Y2FrOlPcMEYKHPCy3_AIyTsSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Likelihood+and+Bayesian+Estimation+of+Rayleigh+with+Partly+Interval-Censored+Case-I+Data&rft.jtitle=NeuroQuantology&rft.au=Wisam+Kamil+Ghafil&rft.au=Khraibet%2C+Tahani+Jabbar&rft.au=Alwan%2C+Alyaa+Athab&rft.date=2020&rft.pub=NeuroQuantology&rft.eissn=1303-5150&rft.volume=18&rft.issue=5&rft.spage=26&rft_id=info:doi/10.14704%2Fnq.2020.18.5.NQ20163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1303-5150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1303-5150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1303-5150&client=summon