Maximum Likelihood and Bayesian Estimation of Rayleigh with Partly Interval-Censored Case-I Data
In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get the maximum probability estimators (MLE.s) for non-personal parameters. MLEs cannot be obtained in clear formats. We also consider Bayesian re...
Saved in:
Published in | NeuroQuantology Vol. 18; no. 5; pp. 26 - 28 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bornova Izmir
NeuroQuantology
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get the maximum probability estimators (MLE.s) for non-personal parameters. MLEs cannot be obtained in clear formats. We also consider Bayesian reasoning for nonpersonal parameters Bayes estimates and associated reliable periods cannot be we get in closed shapes. We use an important sampling technique to round (calculate) Bayes estimates and their associated reliable time periods. For in order to compare we also used the accurate method to calculate Bayes. estimaties and related reliable periods. Monte Carlo simulation is performed using the R programming language to compare the proposed fashion performance, and one data set was analyzed for illustration purposes. We take into account the Bayes forecast trouble based on observable sampling. |
---|---|
AbstractList | In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get the maximum probability estimators (MLE.s) for non-personal parameters. MLEs cannot be obtained in clear formats. We also consider Bayesian reasoning for nonpersonal parameters Bayes estimates and associated reliable periods cannot be we get in closed shapes. We use an important sampling technique to round (calculate) Bayes estimates and their associated reliable time periods. For in order to compare we also used the accurate method to calculate Bayes. estimaties and related reliable periods. Monte Carlo simulation is performed using the R programming language to compare the proposed fashion performance, and one data set was analyzed for illustration purposes. We take into account the Bayes forecast trouble based on observable sampling. |
Author | Ghafil, Wisam Kamil |
Author_xml | – sequence: 1 givenname: Wisam Kamil surname: Ghafil fullname: Ghafil, Wisam Kamil |
BookMark | eNpNkEtPwzAQhC1UJNrCT0CyxDnFjuM8jhAKVCpPwdls4g1NSe3WToH8ewLtgdPMSKNZ7TciA2MNEnLK2YRHCYvOzWYSsrBP6URO7p9CxmNxQIZcMBFILtngnz8iI--XjMmEZfGQvN3Bd73arui8_sCmXlirKRhNL6FDX4OhU9_WK2hra6it6DN0DdbvC_pVtwv6CK5tOjozLbpPaIIcjbcONc3BYzCjV9DCMTmsoPF4stcxeb2evuS3wfzhZpZfzIOSZ3EbIFalZKiTSGORZHERJjoSQkiAoigiLGQCXMgYpNbAYq3TFMqsApCIIuSlGJOz3e7a2c0WfauWdutMf1KFUcijNM0y0bfkrlU6673DSq1d_57rFGfqD6YyG_ULU_FUSbWHKX4Ab69rxA |
CitedBy_id | crossref_primary_10_3934_era_2023242 |
ContentType | Journal Article |
Copyright | Copyright NeuroQuantology 2020 |
Copyright_xml | – notice: Copyright NeuroQuantology 2020 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88G 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M2M P5Z P62 PQEST PQQKQ PQUKI PRINS PSYQQ Q9U |
DOI | 10.14704/nq.2020.18.5.NQ20163 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Psychology Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1303-5150 |
EndPage | 28 |
ExternalDocumentID | 10_14704_nq_2020_18_5_NQ20163 |
GroupedDBID | --- 123 29N 2WC 3V. 7X7 8FE 8FG 8FI 8FJ AAYXX ABUWG ACIHN ADBBV AEAQA AENEX AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVXVI CCPQU CITATION DWQXO E3Z ESX FYUFA GNUQQ GX1 HCIFZ HMCUK IAO IEA KWQ M2M M~E OK1 P62 P6G PQQKQ PROAC PSYQQ PV9 RZL TR2 UKHRP XSB 7XB 8FK K9. PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c196t-eefc50ed74deb796b27d43335aabbb4eb57a1356a5dda06dd88ac9faa5ee321c3 |
IEDL.DBID | 7X7 |
ISSN | 1303-5150 |
IngestDate | Thu Oct 10 19:56:23 EDT 2024 Fri Aug 23 00:55:41 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c196t-eefc50ed74deb796b27d43335aabbb4eb57a1356a5dda06dd88ac9faa5ee321c3 |
PQID | 2421488993 |
PQPubID | 2035897 |
PageCount | 3 |
ParticipantIDs | proquest_journals_2421488993 crossref_primary_10_14704_nq_2020_18_5_NQ20163 |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Bornova Izmir |
PublicationPlace_xml | – name: Bornova Izmir |
PublicationTitle | NeuroQuantology |
PublicationYear | 2020 |
Publisher | NeuroQuantology |
Publisher_xml | – name: NeuroQuantology |
SSID | ssj0057096 |
Score | 2.1903987 |
Snippet | In this research, we consider the time interval for estimating non-character parameter functions for a single parameter Rayleigh apportionment. First, we get... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 26 |
SubjectTerms | Bayesian analysis Computer simulation Mathematical analysis Maximum likelihood estimation Monte Carlo simulation Parameter estimation Programming languages Sampling methods |
Title | Maximum Likelihood and Bayesian Estimation of Rayleigh with Partly Interval-Censored Case-I Data |
URI | https://www.proquest.com/docview/2421488993 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXryIomJ9lBy8pmY3yT5OorW1ii1VLPQWJ5ssFHX7sIL9907ardKLl8CykMO8vpkvmQwhF2gCPAVjWajylMmIA4OAW1zS3IrQ5InxvcPdXtQZyIehGpaE22d5rXIdE5eB2o4zz5Ff-qNLNDaE06vJlPmpUf50tRyhsU2qQcgjf6UrHv4WXCrG_Lzs2pExl5fFFAvCEL-Shmr0nhD7IrGJR5vheIkx7T2yWyaH9HqlzX2y5YoD8tqF79HH1wd9HL2595F_hphi-U9vYOF8ByRtoZeuGhDpOKfPWIJ7upN6hpX20TLeF3TJ-6FNsSZWreOZs7SJ6MXu6S3M4ZAM2q2XZoeVcxFYhv4yZ87lmeLOxtI6E6eRCWMrhRAKwBgjnVExBEJFoKwFHlmbJJClOYByToRBJo5IpRgX7pjQwIE0gPslJpXSYr5lHecGtReFLleiRhpr6ejJ6vkL7csGL05dTLUXpw4SrXQpzho5W8tQl97wqf90d_L_71Oy43dcURxnpDKffblzBP25qS81i2vSvquT6k2r13_-AdlWsLo |
link.rule.ids | 315,783,787,4031,12068,12777,21400,27935,27936,27937,31731,33385,33756,43322,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4DLAgECAeBTywuk1iO48JQaEUaCtARWIz59iRKtr0LcG_55ykQiwsliJLHu713X3O-Qi5RBPwEtCGBTJLmAg9YOB7BpckMzzQWaxd73C3F7bfxOO7fK8It3n1W-UqJhaB2oxTx5E33NUlGhvC6dVkytzUKHe7Wo3QWCebgiNWu07x1v0qEssI8_Oqa0dEnmjkUywIA_yK67Lee0HsC_lfPPobjguMae2SnSo5pNelNvfIms33yUcXvgaj5Yh2Bp92OHDPEFMs_-kNfFvXAUnv0EvLBkQ6zugrluCO7qSOYaXPaBnDb1rwfmhTrIlV63hmDW0ierEHegsLOCBvrbt-s82quQgsRX9ZMGuzVHrWRMJYHSWhDiIjOOcSQGstrJYR-FyGII0BLzQmjiFNMgBpLQ_8lB-SjXyc2yNCfQtCA54X60QIg_mWsZ6nUXthYDPJj0l9JR01KZ-_UK5scOJU-VQ5cSo_VlJV4jwmtZUMVeUNc_Wru5P_ty_IVrvf7ajOQ-_plGy700u6o0Y2FrOlPcMEYKHPCy3_AIyTsSE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Likelihood+and+Bayesian+Estimation+of+Rayleigh+with+Partly+Interval-Censored+Case-I+Data&rft.jtitle=NeuroQuantology&rft.au=Wisam+Kamil+Ghafil&rft.au=Khraibet%2C+Tahani+Jabbar&rft.au=Alwan%2C+Alyaa+Athab&rft.date=2020&rft.pub=NeuroQuantology&rft.eissn=1303-5150&rft.volume=18&rft.issue=5&rft.spage=26&rft_id=info:doi/10.14704%2Fnq.2020.18.5.NQ20163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1303-5150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1303-5150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1303-5150&client=summon |