Rivalling Dynamic Adaptation of Intrinsic Neuronal Plasticity in Dual‐Mode Mott Memristor Electronic Neuron for Spiking Control
Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of...
Saved in:
Published in | Advanced functional materials |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
25.07.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of conductive filament formation and Mott transition. Excitatory and inhibitory pulses independently modulate spiking frequency, time‐to‐first‐spike, and leaky integrate‐and‐fire behavior without altering synaptic input. Notably, the device exhibits adaptive INP responses under sustained modulation, dynamically stabilizing spiking behavior and preventing excessive excitation or inhibition. It is further demonstrated that INP can compensate for synaptic failure and help the neuron recover periodic spiking. These findings establish a compact, intrinsically plastic artificial neuron capable of self‐regulating excitability, offering a scalable solution for next‐generation neuromorphic hardware. |
---|---|
AbstractList | Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of conductive filament formation and Mott transition. Excitatory and inhibitory pulses independently modulate spiking frequency, time‐to‐first‐spike, and leaky integrate‐and‐fire behavior without altering synaptic input. Notably, the device exhibits adaptive INP responses under sustained modulation, dynamically stabilizing spiking behavior and preventing excessive excitation or inhibition. It is further demonstrated that INP can compensate for synaptic failure and help the neuron recover periodic spiking. These findings establish a compact, intrinsically plastic artificial neuron capable of self‐regulating excitability, offering a scalable solution for next‐generation neuromorphic hardware. |
Author | Hsu, Kai‐Shin Chen, Jen‐Sue Chen, Chi‐Chein Chen, Shuai‐Ming Chen, Kuan‐Ting Shih, Li‐Chung Liao, Zih‐Siao Lin, Kuan‐Han |
Author_xml | – sequence: 1 givenname: Zih‐Siao orcidid: 0009-0000-4359-2999 surname: Liao fullname: Liao, Zih‐Siao organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 2 givenname: Kuan‐Ting orcidid: 0000-0002-5834-870X surname: Chen fullname: Chen, Kuan‐Ting organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 3 givenname: Li‐Chung orcidid: 0000-0003-1582-0426 surname: Shih fullname: Shih, Li‐Chung organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 4 givenname: Shuai‐Ming surname: Chen fullname: Chen, Shuai‐Ming organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 5 givenname: Kai‐Shin surname: Hsu fullname: Hsu, Kai‐Shin organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 6 givenname: Chi‐Chein surname: Chen fullname: Chen, Chi‐Chein organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 7 givenname: Kuan‐Han orcidid: 0009-0001-9516-4344 surname: Lin fullname: Lin, Kuan‐Han organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan – sequence: 8 givenname: Jen‐Sue orcidid: 0000-0002-5973-8670 surname: Chen fullname: Chen, Jen‐Sue organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan, Program on Semiconductor Packaging and Testing, Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan 70101 Taiwan |
BookMark | eNo9kE1OwzAQhS1UJNrClrUvkGLHSewsq7TQSi0gfiR2kePYyODYle0idQc34IychESgrmbmSe_N0zcBI-usBOASoxlGKL3irepmKUpzxHKWn4AxLnCREJSy0XHHL2dgEsIbQphSko3B14P-4MZo-woXB8s7LeC85bvIo3YWOgXXNnptQ6_fyr13lht4b3iIWuh4gNrCxZ6bn8_vrWsl3LoY4VZ2XofoPFwaKWLvOZqh6tXHnX4f_lWuj3bmHJwqboK8-J9T8Hy9fKpWyebuZl3NN4nAZREToVqVMlLSsqF5X19lKiOI5Iwr2WQE0_7MaFkKxBlinBVpIxqCSaFowZqMkSmY_eUK70LwUtU7rzvuDzVG9QCwHgDWR4DkF1d8aOE |
Cites_doi | 10.1109/TED.2018.2862917 10.1016/j.nlm.2020.107266 10.1177/1073858416648311 10.1088/1361-6528/ad3c4b 10.1016/j.mtphys.2020.100201 10.1038/s41467-022-30432-2 10.1109/LED.2024.3456816 10.1021/acsami.3c16003 10.1002/adma.202200481 10.1038/s41928-020-0412-1 10.1039/C6NR00476H 10.1002/adma.201702162 10.1016/j.mtadv.2021.100192 10.1002/adfm.202306428 10.1038/s41563-024-01913-0 10.1038/s41586-020-2735-5 10.1109/TETCI.2018.2829914 10.1038/nature09160 10.1002/advs.202301323 10.1002/adma.202201895 10.1016/j.ssi.2021.115746 10.1038/nature23307 10.1038/nrn2852 10.1109/TED.2022.3152468 10.1109/LED.2022.3150034 10.1038/s41467-020-20692-1 10.1038/s41467-021-24427-8 10.1109/TNNLS.2021.3084955 10.1109/LED.2022.3184671 10.1016/j.mejo.2019.104616 10.1146/annurev-neuro-062111-150339 10.1523/JNEUROSCI.0277-13.2013 10.1021/acsami.8b03726 10.1371/journal.pone.0062894 10.1016/j.celrep.2015.09.066 10.1088/2634-4386/ad139b 10.1038/s41467-020-17215-3 10.1038/s41467-023-39430-4 10.1016/j.conb.2018.09.001 10.1038/nature05347 10.1002/adfm.202111996 10.1002/aisy.202200076 10.3389/fnins.2021.786694 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/adfm.202508585 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202508585 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT |
ID | FETCH-LOGICAL-c196t-cfdf283979b75001f4f430358afeb4317f434799c0a808a862bcb3136f768b483 |
ISSN | 1616-301X |
IngestDate | Thu Jul 31 00:01:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c196t-cfdf283979b75001f4f430358afeb4317f434799c0a808a862bcb3136f768b483 |
ORCID | 0000-0002-5834-870X 0000-0002-5973-8670 0000-0003-1582-0426 0009-0001-9516-4344 0009-0000-4359-2999 |
ParticipantIDs | crossref_primary_10_1002_adfm_202508585 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-25 |
PublicationDateYYYYMMDD | 2025-07-25 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
References | Lin J. (e_1_2_8_22_1) 2022; 43 Armendarez N. X. (e_1_2_8_2_1) 2024; 16 Wu L. (e_1_2_8_26_1) 2022; 69 e_1_2_8_46_1 Ma Y. (e_1_2_8_31_1) 2018; 10 Zhong Y. (e_1_2_8_3_1) 2021; 12 Shaw N. P. (e_1_2_8_19_1) 2020; 15 Zhu J. (e_1_2_8_7_1) 2022; 34 Guo T. (e_1_2_8_23_1) 2021; 12 Petersen A. V. (e_1_2_8_40_1) 2017; 23 Wang Y. (e_1_2_8_8_1) 2022; 43 Yuan R. (e_1_2_8_11_1) 2023; 14 Ding Y. (e_1_2_8_44_1) 2022; 15 e_1_2_8_45_1 Zhang A. (e_1_2_8_20_1) 2021; 33 Shi X. (e_1_2_8_21_1) 2018; 2 Shao Z.‐Y. (e_1_2_8_30_1) 2021; 370 Chen C. (e_1_2_8_6_1) 2022; 34 Kuba H. (e_1_2_8_38_1) 2006; 444 Wang Z. (e_1_2_8_28_1) 2016; 8 Rasband M. N. (e_1_2_8_35_1) 2010; 11 Zhong S. (e_1_2_8_13_1) 2022; 4 Lin C.‐Y. (e_1_2_8_33_1) 2020; 13 Evans M. D. (e_1_2_8_41_1) 2013; 33 Chen L. (e_1_2_8_5_1) 2020; 173 Kumar S. (e_1_2_8_17_1) 2020; 585 Bender K. J. (e_1_2_8_36_1) 2012; 35 Chee H. L. (e_1_2_8_29_1) 2019; 93 Sung S. H. (e_1_2_8_25_1) 2022; 13 Chen C.‐K. (e_1_2_8_34_1) 2018; 65 Nath S. K. (e_1_2_8_42_1) 2023; 33 Wu J. (e_1_2_8_15_1) 2023; 3 Li Y. (e_1_2_8_18_1) 2013; 8 Kim G. (e_1_2_8_14_1) 2024; 23 Fu Y. (e_1_2_8_32_1) 2022; 32 Xue W. (e_1_2_8_43_1) 2017; 29 Grubb M. S. (e_1_2_8_37_1) 2010; 465 Fida A. A. (e_1_2_8_10_1) 2024; 35 Duan Q. (e_1_2_8_12_1) 2020; 11 Yang Y. (e_1_2_8_27_1) 2024; 45 Kumar S. (e_1_2_8_16_1) 2017; 548 Debanne D. (e_1_2_8_4_1) 2019; 54 Evans M. D. (e_1_2_8_39_1) 2015; 13 Jiang Y. (e_1_2_8_9_1) 2023; 10 Baek E. (e_1_2_8_24_1) 2020; 3 Shaban A. (e_1_2_8_1_1) 2021; 12 |
References_xml | – volume: 65 start-page: 4622 year: 2018 ident: e_1_2_8_34_1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2862917 – volume: 173 year: 2020 ident: e_1_2_8_5_1 publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2020.107266 – volume: 23 start-page: 364 year: 2017 ident: e_1_2_8_40_1 publication-title: Neuroscientist doi: 10.1177/1073858416648311 – ident: e_1_2_8_45_1 – volume: 35 year: 2024 ident: e_1_2_8_10_1 publication-title: Nanotechnology doi: 10.1088/1361-6528/ad3c4b – volume: 13 year: 2020 ident: e_1_2_8_33_1 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2020.100201 – volume: 13 start-page: 2811 year: 2022 ident: e_1_2_8_25_1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30432-2 – volume: 45 start-page: 2225 year: 2024 ident: e_1_2_8_27_1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2024.3456816 – volume: 16 start-page: 6176 year: 2024 ident: e_1_2_8_2_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c16003 – volume: 34 year: 2022 ident: e_1_2_8_7_1 publication-title: Adv. Mater. doi: 10.1002/adma.202200481 – volume: 3 start-page: 398 year: 2020 ident: e_1_2_8_24_1 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0412-1 – volume: 8 year: 2016 ident: e_1_2_8_28_1 publication-title: Nanoscale doi: 10.1039/C6NR00476H – volume: 29 year: 2017 ident: e_1_2_8_43_1 publication-title: Adv. Mater. doi: 10.1002/adma.201702162 – volume: 12 year: 2021 ident: e_1_2_8_23_1 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2021.100192 – volume: 33 year: 2023 ident: e_1_2_8_42_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306428 – volume: 23 start-page: 1237 year: 2024 ident: e_1_2_8_14_1 publication-title: Nat. Mater. doi: 10.1038/s41563-024-01913-0 – volume: 585 start-page: 518 year: 2020 ident: e_1_2_8_17_1 publication-title: Nature doi: 10.1038/s41586-020-2735-5 – volume: 2 start-page: 359 year: 2018 ident: e_1_2_8_21_1 publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2018.2829914 – volume: 465 start-page: 1070 year: 2010 ident: e_1_2_8_37_1 publication-title: Nature doi: 10.1038/nature09160 – volume: 10 year: 2023 ident: e_1_2_8_9_1 publication-title: Adv. Sci. doi: 10.1002/advs.202301323 – volume: 34 year: 2022 ident: e_1_2_8_6_1 publication-title: Adv. Mater. doi: 10.1002/adma.202201895 – volume: 370 year: 2021 ident: e_1_2_8_30_1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2021.115746 – volume: 548 start-page: 318 year: 2017 ident: e_1_2_8_16_1 publication-title: Nature doi: 10.1038/nature23307 – volume: 11 start-page: 552 year: 2010 ident: e_1_2_8_35_1 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2852 – volume: 69 start-page: 1830 year: 2022 ident: e_1_2_8_26_1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3152468 – volume: 43 start-page: 631 year: 2022 ident: e_1_2_8_8_1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2022.3150034 – volume: 15 year: 2020 ident: e_1_2_8_19_1 publication-title: PLoS One – volume: 12 start-page: 408 year: 2021 ident: e_1_2_8_3_1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20692-1 – volume: 12 start-page: 4234 year: 2021 ident: e_1_2_8_1_1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24427-8 – volume: 33 start-page: 1986 year: 2021 ident: e_1_2_8_20_1 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3084955 – ident: e_1_2_8_46_1 – volume: 43 start-page: 1231 year: 2022 ident: e_1_2_8_22_1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2022.3184671 – volume: 93 year: 2019 ident: e_1_2_8_29_1 publication-title: Microelectron. J. doi: 10.1016/j.mejo.2019.104616 – volume: 35 start-page: 249 year: 2012 ident: e_1_2_8_36_1 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150339 – volume: 33 start-page: 6950 year: 2013 ident: e_1_2_8_41_1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0277-13.2013 – volume: 10 year: 2018 ident: e_1_2_8_31_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03726 – volume: 8 year: 2013 ident: e_1_2_8_18_1 publication-title: PLoS One doi: 10.1371/journal.pone.0062894 – volume: 13 start-page: 1233 year: 2015 ident: e_1_2_8_39_1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.066 – volume: 3 year: 2023 ident: e_1_2_8_15_1 publication-title: Neuromorph. Comput. Eng. doi: 10.1088/2634-4386/ad139b – volume: 11 start-page: 3399 year: 2020 ident: e_1_2_8_12_1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17215-3 – volume: 14 start-page: 3695 year: 2023 ident: e_1_2_8_11_1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39430-4 – volume: 54 start-page: 73 year: 2019 ident: e_1_2_8_4_1 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.09.001 – volume: 444 start-page: 1069 year: 2006 ident: e_1_2_8_38_1 publication-title: Nature doi: 10.1038/nature05347 – volume: 32 year: 2022 ident: e_1_2_8_32_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111996 – volume: 4 year: 2022 ident: e_1_2_8_13_1 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202200076 – volume: 15 year: 2022 ident: e_1_2_8_44_1 publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.786694 |
SSID | ssj0017734 |
Score | 2.4814873 |
SecondaryResourceType | online_first |
Snippet | Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a... |
SourceID | crossref |
SourceType | Index Database |
Title | Rivalling Dynamic Adaptation of Intrinsic Neuronal Plasticity in Dual‐Mode Mott Memristor Electronic Neuron for Spiking Control |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKsIEF4ine8gKJRRXIw81jWU0HDaAiNO1IIzaVHdtqBGSqytmwgj_gK_gwvoTrd4BZDGyi1rGdKvc099g5916EnsGSgIPfE0nF8zIhNacJFaRM6lZmsqVNnnEdjbx8Vx6fkjdns7PJ5MdItTQo9qL9cmFcyf9YFdrArjpK9h8sGyaFBvgM9oUjWBiOl7LxSQezmXjyhS0sP51zulOBBb7u1b7rwQ5Tk4NDE8_3wJa1kFqZeL_FQD8FuYMuiwb_caWmS_HZpBzYT49ilRw7hZElrnbdR6sXMDr3McGde02BdphunxFIsb0bQf3TUbND-6HbhquvoC1qDezD8O1A-9Bh7Z2sSSjZbe2OQjh9uB3ieT_BajvQ2GXpZ3C7HPlMb5_aiGj3YC4zrdEz5XXAb43bbHD5X67AppalXOp8A0D09AvQ6PT8i_4_fGFQKNpszvlGj9-E8VfQ1RyWI7pSxuIkpCnLqsqqF_xv9MlB0_zl79cfkZ8Ri1nfRDfc8gPPLZZuoYnob6Pro6SUd9C3gCrsUIUjqvC5xAFV2KMKR1ThrscaVT-_ftd4whpPOOAJRzy5wRjwhB2esMPTXXT66mh9eJy4Qh1JCw9wlbSSS6CpTdUwIKBpJokkQI1mNZWCaYYKX0nVNG1K67SmsIhmLSuyopSw2GWkLu6hg_68F_cRTttZlReScJZRQqigrKBVJlOmc_txkT9Az_0d3OxsPpbNxbZ6eOmej9C1CLnH6EDtB_EEqKZiT42dfwGbwH4h |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rivalling+Dynamic+Adaptation+of+Intrinsic+Neuronal+Plasticity+in+Dual%E2%80%90Mode+Mott+Memristor+Electronic+Neuron+for+Spiking+Control&rft.jtitle=Advanced+functional+materials&rft.au=Liao%2C+Zih%E2%80%90Siao&rft.au=Chen%2C+Kuan%E2%80%90Ting&rft.au=Shih%2C+Li%E2%80%90Chung&rft.au=Chen%2C+Shuai%E2%80%90Ming&rft.date=2025-07-25&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002%2Fadfm.202508585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202508585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |