Rivalling Dynamic Adaptation of Intrinsic Neuronal Plasticity in Dual‐Mode Mott Memristor Electronic Neuron for Spiking Control

Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials
Main Authors Liao, Zih‐Siao, Chen, Kuan‐Ting, Shih, Li‐Chung, Chen, Shuai‐Ming, Hsu, Kai‐Shin, Chen, Chi‐Chein, Lin, Kuan‐Han, Chen, Jen‐Sue
Format Journal Article
LanguageEnglish
Published 25.07.2025
Online AccessGet full text

Cover

Loading…
Abstract Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of conductive filament formation and Mott transition. Excitatory and inhibitory pulses independently modulate spiking frequency, time‐to‐first‐spike, and leaky integrate‐and‐fire behavior without altering synaptic input. Notably, the device exhibits adaptive INP responses under sustained modulation, dynamically stabilizing spiking behavior and preventing excessive excitation or inhibition. It is further demonstrated that INP can compensate for synaptic failure and help the neuron recover periodic spiking. These findings establish a compact, intrinsically plastic artificial neuron capable of self‐regulating excitability, offering a scalable solution for next‐generation neuromorphic hardware.
AbstractList Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a dual‐mode Pt/V/TaO x /Pt Mott memristor is presented that achieves INP through resistance‐dependent threshold modulation, enabled by the coupling of conductive filament formation and Mott transition. Excitatory and inhibitory pulses independently modulate spiking frequency, time‐to‐first‐spike, and leaky integrate‐and‐fire behavior without altering synaptic input. Notably, the device exhibits adaptive INP responses under sustained modulation, dynamically stabilizing spiking behavior and preventing excessive excitation or inhibition. It is further demonstrated that INP can compensate for synaptic failure and help the neuron recover periodic spiking. These findings establish a compact, intrinsically plastic artificial neuron capable of self‐regulating excitability, offering a scalable solution for next‐generation neuromorphic hardware.
Author Hsu, Kai‐Shin
Chen, Jen‐Sue
Chen, Chi‐Chein
Chen, Shuai‐Ming
Chen, Kuan‐Ting
Shih, Li‐Chung
Liao, Zih‐Siao
Lin, Kuan‐Han
Author_xml – sequence: 1
  givenname: Zih‐Siao
  orcidid: 0009-0000-4359-2999
  surname: Liao
  fullname: Liao, Zih‐Siao
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 2
  givenname: Kuan‐Ting
  orcidid: 0000-0002-5834-870X
  surname: Chen
  fullname: Chen, Kuan‐Ting
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 3
  givenname: Li‐Chung
  orcidid: 0000-0003-1582-0426
  surname: Shih
  fullname: Shih, Li‐Chung
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 4
  givenname: Shuai‐Ming
  surname: Chen
  fullname: Chen, Shuai‐Ming
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 5
  givenname: Kai‐Shin
  surname: Hsu
  fullname: Hsu, Kai‐Shin
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 6
  givenname: Chi‐Chein
  surname: Chen
  fullname: Chen, Chi‐Chein
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 7
  givenname: Kuan‐Han
  orcidid: 0009-0001-9516-4344
  surname: Lin
  fullname: Lin, Kuan‐Han
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan
– sequence: 8
  givenname: Jen‐Sue
  orcidid: 0000-0002-5973-8670
  surname: Chen
  fullname: Chen, Jen‐Sue
  organization: Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan, Program on Semiconductor Packaging and Testing, Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan 70101 Taiwan
BookMark eNo9kE1OwzAQhS1UJNrClrUvkGLHSewsq7TQSi0gfiR2kePYyODYle0idQc34IychESgrmbmSe_N0zcBI-usBOASoxlGKL3irepmKUpzxHKWn4AxLnCREJSy0XHHL2dgEsIbQphSko3B14P-4MZo-woXB8s7LeC85bvIo3YWOgXXNnptQ6_fyr13lht4b3iIWuh4gNrCxZ6bn8_vrWsl3LoY4VZ2XofoPFwaKWLvOZqh6tXHnX4f_lWuj3bmHJwqboK8-J9T8Hy9fKpWyebuZl3NN4nAZREToVqVMlLSsqF5X19lKiOI5Iwr2WQE0_7MaFkKxBlinBVpIxqCSaFowZqMkSmY_eUK70LwUtU7rzvuDzVG9QCwHgDWR4DkF1d8aOE
Cites_doi 10.1109/TED.2018.2862917
10.1016/j.nlm.2020.107266
10.1177/1073858416648311
10.1088/1361-6528/ad3c4b
10.1016/j.mtphys.2020.100201
10.1038/s41467-022-30432-2
10.1109/LED.2024.3456816
10.1021/acsami.3c16003
10.1002/adma.202200481
10.1038/s41928-020-0412-1
10.1039/C6NR00476H
10.1002/adma.201702162
10.1016/j.mtadv.2021.100192
10.1002/adfm.202306428
10.1038/s41563-024-01913-0
10.1038/s41586-020-2735-5
10.1109/TETCI.2018.2829914
10.1038/nature09160
10.1002/advs.202301323
10.1002/adma.202201895
10.1016/j.ssi.2021.115746
10.1038/nature23307
10.1038/nrn2852
10.1109/TED.2022.3152468
10.1109/LED.2022.3150034
10.1038/s41467-020-20692-1
10.1038/s41467-021-24427-8
10.1109/TNNLS.2021.3084955
10.1109/LED.2022.3184671
10.1016/j.mejo.2019.104616
10.1146/annurev-neuro-062111-150339
10.1523/JNEUROSCI.0277-13.2013
10.1021/acsami.8b03726
10.1371/journal.pone.0062894
10.1016/j.celrep.2015.09.066
10.1088/2634-4386/ad139b
10.1038/s41467-020-17215-3
10.1038/s41467-023-39430-4
10.1016/j.conb.2018.09.001
10.1038/nature05347
10.1002/adfm.202111996
10.1002/aisy.202200076
10.3389/fnins.2021.786694
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.202508585
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202508585
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-c196t-cfdf283979b75001f4f430358afeb4317f434799c0a808a862bcb3136f768b483
ISSN 1616-301X
IngestDate Thu Jul 31 00:01:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c196t-cfdf283979b75001f4f430358afeb4317f434799c0a808a862bcb3136f768b483
ORCID 0000-0002-5834-870X
0000-0002-5973-8670
0000-0003-1582-0426
0009-0001-9516-4344
0009-0000-4359-2999
ParticipantIDs crossref_primary_10_1002_adfm_202508585
PublicationCentury 2000
PublicationDate 2025-07-25
PublicationDateYYYYMMDD 2025-07-25
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-25
  day: 25
PublicationDecade 2020
PublicationTitle Advanced functional materials
PublicationYear 2025
References Lin J. (e_1_2_8_22_1) 2022; 43
Armendarez N. X. (e_1_2_8_2_1) 2024; 16
Wu L. (e_1_2_8_26_1) 2022; 69
e_1_2_8_46_1
Ma Y. (e_1_2_8_31_1) 2018; 10
Zhong Y. (e_1_2_8_3_1) 2021; 12
Shaw N. P. (e_1_2_8_19_1) 2020; 15
Zhu J. (e_1_2_8_7_1) 2022; 34
Guo T. (e_1_2_8_23_1) 2021; 12
Petersen A. V. (e_1_2_8_40_1) 2017; 23
Wang Y. (e_1_2_8_8_1) 2022; 43
Yuan R. (e_1_2_8_11_1) 2023; 14
Ding Y. (e_1_2_8_44_1) 2022; 15
e_1_2_8_45_1
Zhang A. (e_1_2_8_20_1) 2021; 33
Shi X. (e_1_2_8_21_1) 2018; 2
Shao Z.‐Y. (e_1_2_8_30_1) 2021; 370
Chen C. (e_1_2_8_6_1) 2022; 34
Kuba H. (e_1_2_8_38_1) 2006; 444
Wang Z. (e_1_2_8_28_1) 2016; 8
Rasband M. N. (e_1_2_8_35_1) 2010; 11
Zhong S. (e_1_2_8_13_1) 2022; 4
Lin C.‐Y. (e_1_2_8_33_1) 2020; 13
Evans M. D. (e_1_2_8_41_1) 2013; 33
Chen L. (e_1_2_8_5_1) 2020; 173
Kumar S. (e_1_2_8_17_1) 2020; 585
Bender K. J. (e_1_2_8_36_1) 2012; 35
Chee H. L. (e_1_2_8_29_1) 2019; 93
Sung S. H. (e_1_2_8_25_1) 2022; 13
Chen C.‐K. (e_1_2_8_34_1) 2018; 65
Nath S. K. (e_1_2_8_42_1) 2023; 33
Wu J. (e_1_2_8_15_1) 2023; 3
Li Y. (e_1_2_8_18_1) 2013; 8
Kim G. (e_1_2_8_14_1) 2024; 23
Fu Y. (e_1_2_8_32_1) 2022; 32
Xue W. (e_1_2_8_43_1) 2017; 29
Grubb M. S. (e_1_2_8_37_1) 2010; 465
Fida A. A. (e_1_2_8_10_1) 2024; 35
Duan Q. (e_1_2_8_12_1) 2020; 11
Yang Y. (e_1_2_8_27_1) 2024; 45
Kumar S. (e_1_2_8_16_1) 2017; 548
Debanne D. (e_1_2_8_4_1) 2019; 54
Evans M. D. (e_1_2_8_39_1) 2015; 13
Jiang Y. (e_1_2_8_9_1) 2023; 10
Baek E. (e_1_2_8_24_1) 2020; 3
Shaban A. (e_1_2_8_1_1) 2021; 12
References_xml – volume: 65
  start-page: 4622
  year: 2018
  ident: e_1_2_8_34_1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2862917
– volume: 173
  year: 2020
  ident: e_1_2_8_5_1
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2020.107266
– volume: 23
  start-page: 364
  year: 2017
  ident: e_1_2_8_40_1
  publication-title: Neuroscientist
  doi: 10.1177/1073858416648311
– ident: e_1_2_8_45_1
– volume: 35
  year: 2024
  ident: e_1_2_8_10_1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ad3c4b
– volume: 13
  year: 2020
  ident: e_1_2_8_33_1
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2020.100201
– volume: 13
  start-page: 2811
  year: 2022
  ident: e_1_2_8_25_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30432-2
– volume: 45
  start-page: 2225
  year: 2024
  ident: e_1_2_8_27_1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2024.3456816
– volume: 16
  start-page: 6176
  year: 2024
  ident: e_1_2_8_2_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c16003
– volume: 34
  year: 2022
  ident: e_1_2_8_7_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200481
– volume: 3
  start-page: 398
  year: 2020
  ident: e_1_2_8_24_1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0412-1
– volume: 8
  year: 2016
  ident: e_1_2_8_28_1
  publication-title: Nanoscale
  doi: 10.1039/C6NR00476H
– volume: 29
  year: 2017
  ident: e_1_2_8_43_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702162
– volume: 12
  year: 2021
  ident: e_1_2_8_23_1
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2021.100192
– volume: 33
  year: 2023
  ident: e_1_2_8_42_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306428
– volume: 23
  start-page: 1237
  year: 2024
  ident: e_1_2_8_14_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-024-01913-0
– volume: 585
  start-page: 518
  year: 2020
  ident: e_1_2_8_17_1
  publication-title: Nature
  doi: 10.1038/s41586-020-2735-5
– volume: 2
  start-page: 359
  year: 2018
  ident: e_1_2_8_21_1
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2018.2829914
– volume: 465
  start-page: 1070
  year: 2010
  ident: e_1_2_8_37_1
  publication-title: Nature
  doi: 10.1038/nature09160
– volume: 10
  year: 2023
  ident: e_1_2_8_9_1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301323
– volume: 34
  year: 2022
  ident: e_1_2_8_6_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201895
– volume: 370
  year: 2021
  ident: e_1_2_8_30_1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2021.115746
– volume: 548
  start-page: 318
  year: 2017
  ident: e_1_2_8_16_1
  publication-title: Nature
  doi: 10.1038/nature23307
– volume: 11
  start-page: 552
  year: 2010
  ident: e_1_2_8_35_1
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2852
– volume: 69
  start-page: 1830
  year: 2022
  ident: e_1_2_8_26_1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3152468
– volume: 43
  start-page: 631
  year: 2022
  ident: e_1_2_8_8_1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2022.3150034
– volume: 15
  year: 2020
  ident: e_1_2_8_19_1
  publication-title: PLoS One
– volume: 12
  start-page: 408
  year: 2021
  ident: e_1_2_8_3_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20692-1
– volume: 12
  start-page: 4234
  year: 2021
  ident: e_1_2_8_1_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24427-8
– volume: 33
  start-page: 1986
  year: 2021
  ident: e_1_2_8_20_1
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084955
– ident: e_1_2_8_46_1
– volume: 43
  start-page: 1231
  year: 2022
  ident: e_1_2_8_22_1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2022.3184671
– volume: 93
  year: 2019
  ident: e_1_2_8_29_1
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2019.104616
– volume: 35
  start-page: 249
  year: 2012
  ident: e_1_2_8_36_1
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150339
– volume: 33
  start-page: 6950
  year: 2013
  ident: e_1_2_8_41_1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0277-13.2013
– volume: 10
  year: 2018
  ident: e_1_2_8_31_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03726
– volume: 8
  year: 2013
  ident: e_1_2_8_18_1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062894
– volume: 13
  start-page: 1233
  year: 2015
  ident: e_1_2_8_39_1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.066
– volume: 3
  year: 2023
  ident: e_1_2_8_15_1
  publication-title: Neuromorph. Comput. Eng.
  doi: 10.1088/2634-4386/ad139b
– volume: 11
  start-page: 3399
  year: 2020
  ident: e_1_2_8_12_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17215-3
– volume: 14
  start-page: 3695
  year: 2023
  ident: e_1_2_8_11_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39430-4
– volume: 54
  start-page: 73
  year: 2019
  ident: e_1_2_8_4_1
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.09.001
– volume: 444
  start-page: 1069
  year: 2006
  ident: e_1_2_8_38_1
  publication-title: Nature
  doi: 10.1038/nature05347
– volume: 32
  year: 2022
  ident: e_1_2_8_32_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111996
– volume: 4
  year: 2022
  ident: e_1_2_8_13_1
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202200076
– volume: 15
  year: 2022
  ident: e_1_2_8_44_1
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.786694
SSID ssj0017734
Score 2.4814873
SecondaryResourceType online_first
Snippet Despite the success of Mott memristors in emulating neuronal dynamics, their use in modeling intrinsic neuronal plasticity (INP) remains rare. Here, a...
SourceID crossref
SourceType Index Database
Title Rivalling Dynamic Adaptation of Intrinsic Neuronal Plasticity in Dual‐Mode Mott Memristor Electronic Neuron for Spiking Control
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKsIEF4ine8gKJRRXIw81jWU0HDaAiNO1IIzaVHdtqBGSqytmwgj_gK_gwvoTrd4BZDGyi1rGdKvc099g5916EnsGSgIPfE0nF8zIhNacJFaRM6lZmsqVNnnEdjbx8Vx6fkjdns7PJ5MdItTQo9qL9cmFcyf9YFdrArjpK9h8sGyaFBvgM9oUjWBiOl7LxSQezmXjyhS0sP51zulOBBb7u1b7rwQ5Tk4NDE8_3wJa1kFqZeL_FQD8FuYMuiwb_caWmS_HZpBzYT49ilRw7hZElrnbdR6sXMDr3McGde02BdphunxFIsb0bQf3TUbND-6HbhquvoC1qDezD8O1A-9Bh7Z2sSSjZbe2OQjh9uB3ieT_BajvQ2GXpZ3C7HPlMb5_aiGj3YC4zrdEz5XXAb43bbHD5X67AppalXOp8A0D09AvQ6PT8i_4_fGFQKNpszvlGj9-E8VfQ1RyWI7pSxuIkpCnLqsqqF_xv9MlB0_zl79cfkZ8Ri1nfRDfc8gPPLZZuoYnob6Pro6SUd9C3gCrsUIUjqvC5xAFV2KMKR1ThrscaVT-_ftd4whpPOOAJRzy5wRjwhB2esMPTXXT66mh9eJy4Qh1JCw9wlbSSS6CpTdUwIKBpJokkQI1mNZWCaYYKX0nVNG1K67SmsIhmLSuyopSw2GWkLu6hg_68F_cRTttZlReScJZRQqigrKBVJlOmc_txkT9Az_0d3OxsPpbNxbZ6eOmej9C1CLnH6EDtB_EEqKZiT42dfwGbwH4h
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rivalling+Dynamic+Adaptation+of+Intrinsic+Neuronal+Plasticity+in+Dual%E2%80%90Mode+Mott+Memristor+Electronic+Neuron+for+Spiking+Control&rft.jtitle=Advanced+functional+materials&rft.au=Liao%2C+Zih%E2%80%90Siao&rft.au=Chen%2C+Kuan%E2%80%90Ting&rft.au=Shih%2C+Li%E2%80%90Chung&rft.au=Chen%2C+Shuai%E2%80%90Ming&rft.date=2025-07-25&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002%2Fadfm.202508585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202508585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon