Strengthening and Deformation Mechanisms of Polycrystalline Platinum Based on Molecular Dynamics

Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing and microelectronic devices. However, its mechanical properties at the nanoscale, especially the plastic deformation mechanism, still leave muc...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b)
Main Authors Liu, Xin, Wei, Jinghui, Qiang, Wanzhi, Yue, Xiaodong, Yu, Huiping
Format Journal Article
LanguageEnglish
Published 13.05.2025
Online AccessGet full text

Cover

Loading…
Abstract Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing and microelectronic devices. However, its mechanical properties at the nanoscale, especially the plastic deformation mechanism, still leave much to be explored. In this article, the tensile deformation behavior of polycrystalline platinum is investigated using a molecular dynamics approach, and the effects of strain rate and twinning on the strength and deformation mechanism of polycrystalline platinum are studied. The results show that an increase in strain rate increases the strength of the material; the plastic deformation mechanism of polycrystalline platinum is mainly dominated by dislocation slip and phase transition, accompanied by a small amount of twin generation. The role of twin boundaries is similar to that of ordinary grain boundaries, which hinders the movement of dislocations and thus affects the strength of platinum by refining the grains, and similar to the positive‐reversed Hall–Petch relationship, the existence of a critical twin thickness makes the strength of platinum reach its maximum. Moreover, it is found that Shockley dislocations are the main type of dislocations in polycrystalline platinum and play a dominant role in the plastic deformation of platinum.
AbstractList Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing and microelectronic devices. However, its mechanical properties at the nanoscale, especially the plastic deformation mechanism, still leave much to be explored. In this article, the tensile deformation behavior of polycrystalline platinum is investigated using a molecular dynamics approach, and the effects of strain rate and twinning on the strength and deformation mechanism of polycrystalline platinum are studied. The results show that an increase in strain rate increases the strength of the material; the plastic deformation mechanism of polycrystalline platinum is mainly dominated by dislocation slip and phase transition, accompanied by a small amount of twin generation. The role of twin boundaries is similar to that of ordinary grain boundaries, which hinders the movement of dislocations and thus affects the strength of platinum by refining the grains, and similar to the positive‐reversed Hall–Petch relationship, the existence of a critical twin thickness makes the strength of platinum reach its maximum. Moreover, it is found that Shockley dislocations are the main type of dislocations in polycrystalline platinum and play a dominant role in the plastic deformation of platinum.
Author Qiang, Wanzhi
Yu, Huiping
Liu, Xin
Yue, Xiaodong
Wei, Jinghui
Author_xml – sequence: 1
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: School of Mechanical and Energy Engineering Beijing University of Technology Beijing 100124 P. R. China
– sequence: 2
  givenname: Jinghui
  surname: Wei
  fullname: Wei, Jinghui
  organization: Beijing Vacuum Electronics Research Institute Beijing 100015 P. R. China
– sequence: 3
  givenname: Wanzhi
  surname: Qiang
  fullname: Qiang, Wanzhi
  organization: School of Mathematics, Statistics and Mechanics Beijing University of Technology Beijing 100124 P. R. China
– sequence: 4
  givenname: Xiaodong
  surname: Yue
  fullname: Yue, Xiaodong
  organization: Beijing Vacuum Electronics Research Institute Beijing 100015 P. R. China
– sequence: 5
  givenname: Huiping
  orcidid: 0000-0001-5286-2196
  surname: Yu
  fullname: Yu, Huiping
  organization: School of Mathematics, Statistics and Mechanics Beijing University of Technology Beijing 100124 P. R. China
BookMark eNo9kMtOwzAQRS1UJEphy9o_kDJjN028hJaXVEQlYB3GjtMGOXZlp4v8PalAbOZqro7u4lyyiQ_eMnaDMEcAcXtISc8FiBwASzxjU8wFZlLlOGFTkAVkqApxwS5T-gaAAiVO2dd7H63f9XvrW7_j5Gu-tk2IHfVt8PzVmj35NnWJh4ZvgxtMHFJPzrXe8q0bKX_s-D0lW_MTH5w1R0eRrwdPXWvSFTtvyCV7_Zcz9vn48LF6zjZvTy-ru01mUC37zGitBShRlKVYQq5Ktag1jR8JWkg5drjAmlSDmlStlBoxU9B4NUG-JDlj899dE0NK0TbVIbYdxaFCqE5-qpOf6t-P_AE-81wL
Cites_doi 10.1007/s10867-023-09630-6
10.1088/0965-0393/17/5/055009
10.1038/s41467-020-14876-y
10.1016/j.actamat.2020.04.047
10.1103/PhysRevB.33.7983
10.1016/j.jcomc.2025.100572
10.1016/j.commatsci.2017.11.008
10.1016/j.mechmat.2015.01.017
10.1016/j.jmrt.2024.10.159
10.1016/j.msea.2010.03.076
10.1016/j.physleta.2018.10.053
10.1063/5.0088607
10.1088/0256-307X/26/3/036103
10.1039/D4RA07238C
10.1126/science.1167641
10.1016/j.commatsci.2017.09.055
10.1016/j.jmrt.2024.09.173
10.1016/j.matdes.2023.111963
10.1039/C7CE01502J
10.1073/pnas.2310500120
10.1038/srep06981
10.1016/j.msea.2024.147376
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/pssb.202500181
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
ExternalDocumentID 10_1002_pssb_202500181
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
AUFTA
AZBYB
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BY8
CITATION
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
G.N
GNP
GYQRN
H.T
H.X
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c196t-cbbb209278826059894dba788a2a433260141da9f1ba9d999826c7a826ba056a3
ISSN 0370-1972
IngestDate Sun Jul 06 05:07:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c196t-cbbb209278826059894dba788a2a433260141da9f1ba9d999826c7a826ba056a3
ORCID 0000-0001-5286-2196
ParticipantIDs crossref_primary_10_1002_pssb_202500181
PublicationCentury 2000
PublicationDate 2025-05-13
PublicationDateYYYYMMDD 2025-05-13
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-13
  day: 13
PublicationDecade 2020
PublicationTitle physica status solidi (b)
PublicationYear 2025
References e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Koh S. J. A. (e_1_2_8_4_1) 2005; 72
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Ding B. (e_1_2_8_21_1) 2021; 130
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
Sun X. Y. (e_1_2_8_12_1) 2013; 113
e_1_2_8_11_1
References_xml – ident: e_1_2_8_14_1
  doi: 10.1007/s10867-023-09630-6
– ident: e_1_2_8_9_1
  doi: 10.1088/0965-0393/17/5/055009
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-020-14876-y
– volume: 72
  start-page: 085414
  year: 2005
  ident: e_1_2_8_4_1
  publication-title: Mater. Phys.
– ident: e_1_2_8_26_1
  doi: 10.1016/j.actamat.2020.04.047
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevB.33.7983
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jcomc.2025.100572
– ident: e_1_2_8_11_1
  doi: 10.1016/j.commatsci.2017.11.008
– ident: e_1_2_8_17_1
  doi: 10.1016/j.mechmat.2015.01.017
– volume: 130
  year: 2021
  ident: e_1_2_8_21_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jmrt.2024.10.159
– ident: e_1_2_8_18_1
  doi: 10.1016/j.msea.2010.03.076
– ident: e_1_2_8_5_1
  doi: 10.1016/j.physleta.2018.10.053
– ident: e_1_2_8_22_1
  doi: 10.1063/5.0088607
– ident: e_1_2_8_15_1
  doi: 10.1088/0256-307X/26/3/036103
– ident: e_1_2_8_23_1
  doi: 10.1039/D4RA07238C
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1167641
– volume: 113
  year: 2013
  ident: e_1_2_8_12_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_8_7_1
  doi: 10.1016/j.commatsci.2017.09.055
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jmrt.2024.09.173
– ident: e_1_2_8_24_1
  doi: 10.1016/j.matdes.2023.111963
– ident: e_1_2_8_13_1
  doi: 10.1039/C7CE01502J
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.2310500120
– ident: e_1_2_8_25_1
  doi: 10.1038/srep06981
– ident: e_1_2_8_2_1
  doi: 10.1016/j.msea.2024.147376
SSID ssj0007131
ssj0047196
Score 2.4335845
SecondaryResourceType online_first
Snippet Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing...
SourceID crossref
SourceType Index Database
Title Strengthening and Deformation Mechanisms of Polycrystalline Platinum Based on Molecular Dynamics
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uCF7EFXdyEDwM1TadrUdXRBwRURxP40uTOgUdxbaH8df7XtO0dTmol9AJSUn7vunb32NsB1mW7LaoyidA5DQVXoH2fKfjt1HaBc-VeVZa77J9dts877f6VbvUPLsklXvh-495Jf-hKs4hXSlL9g-ULW-KE3iN9MURKYzjr2hMLuXRI9UvsKmGx7rMRmz0NGX1xsmzDXQbh29jFAafcsnyioLgKAz-EPmYIp9Bz3bKbRybNvVJXXI1JhAg20OaJQ18sFjFJJ_KmjHhIs6IZv24hNydzsMFzvGAwywuzaxxYaa-Q9F0WE7fZ9psB1SWC5ZaWCREi5zpJqHUZmJ1XIfamRkeU3xYhef4gSku--2zbcrAviaJ3KMbUqdAr2JQ1in_hW-V0YSm8rIY0P5BuX-STQtUHXI1-7oqKYZKeRkDhIw5MM7s4sC2qqcr9j8fpia11MSPm3k2V-gN_MCAYIFN6NEim8njd8NkiT18ggJHKPAaFHgFBf4S8S9Q4BYKPIcCp_UWCtxCYZndnp7cHJ05RfMMJ8SHSp1QSincQHRQhUKVlersKwn4CwRQzbo2RfgqCCJPQqBQTcBlYQdwlIBCMfgrbGr0MtKrjDfBF64PXkQu91D5XZAKhZ9Ie4HS-GdeY7v25QxeTY2Uwc80Wf_1yg02W0Frk02lb5neQvEvlds5PT8AOiJZaA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strengthening+and+Deformation+Mechanisms+of+Polycrystalline+Platinum+Based+on+Molecular+Dynamics&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Liu%2C+Xin&rft.au=Wei%2C+Jinghui&rft.au=Qiang%2C+Wanzhi&rft.au=Yue%2C+Xiaodong&rft.date=2025-05-13&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002%2Fpssb.202500181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssb_202500181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon