Strengthening and Deformation Mechanisms of Polycrystalline Platinum Based on Molecular Dynamics
Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing and microelectronic devices. However, its mechanical properties at the nanoscale, especially the plastic deformation mechanism, still leave muc...
Saved in:
Published in | physica status solidi (b) |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
13.05.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing and microelectronic devices. However, its mechanical properties at the nanoscale, especially the plastic deformation mechanism, still leave much to be explored. In this article, the tensile deformation behavior of polycrystalline platinum is investigated using a molecular dynamics approach, and the effects of strain rate and twinning on the strength and deformation mechanism of polycrystalline platinum are studied. The results show that an increase in strain rate increases the strength of the material; the plastic deformation mechanism of polycrystalline platinum is mainly dominated by dislocation slip and phase transition, accompanied by a small amount of twin generation. The role of twin boundaries is similar to that of ordinary grain boundaries, which hinders the movement of dislocations and thus affects the strength of platinum by refining the grains, and similar to the positive‐reversed Hall–Petch relationship, the existence of a critical twin thickness makes the strength of platinum reach its maximum. Moreover, it is found that Shockley dislocations are the main type of dislocations in polycrystalline platinum and play a dominant role in the plastic deformation of platinum. |
---|---|
AbstractList | Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing and microelectronic devices. However, its mechanical properties at the nanoscale, especially the plastic deformation mechanism, still leave much to be explored. In this article, the tensile deformation behavior of polycrystalline platinum is investigated using a molecular dynamics approach, and the effects of strain rate and twinning on the strength and deformation mechanism of polycrystalline platinum are studied. The results show that an increase in strain rate increases the strength of the material; the plastic deformation mechanism of polycrystalline platinum is mainly dominated by dislocation slip and phase transition, accompanied by a small amount of twin generation. The role of twin boundaries is similar to that of ordinary grain boundaries, which hinders the movement of dislocations and thus affects the strength of platinum by refining the grains, and similar to the positive‐reversed Hall–Petch relationship, the existence of a critical twin thickness makes the strength of platinum reach its maximum. Moreover, it is found that Shockley dislocations are the main type of dislocations in polycrystalline platinum and play a dominant role in the plastic deformation of platinum. |
Author | Qiang, Wanzhi Yu, Huiping Liu, Xin Yue, Xiaodong Wei, Jinghui |
Author_xml | – sequence: 1 givenname: Xin surname: Liu fullname: Liu, Xin organization: School of Mechanical and Energy Engineering Beijing University of Technology Beijing 100124 P. R. China – sequence: 2 givenname: Jinghui surname: Wei fullname: Wei, Jinghui organization: Beijing Vacuum Electronics Research Institute Beijing 100015 P. R. China – sequence: 3 givenname: Wanzhi surname: Qiang fullname: Qiang, Wanzhi organization: School of Mathematics, Statistics and Mechanics Beijing University of Technology Beijing 100124 P. R. China – sequence: 4 givenname: Xiaodong surname: Yue fullname: Yue, Xiaodong organization: Beijing Vacuum Electronics Research Institute Beijing 100015 P. R. China – sequence: 5 givenname: Huiping orcidid: 0000-0001-5286-2196 surname: Yu fullname: Yu, Huiping organization: School of Mathematics, Statistics and Mechanics Beijing University of Technology Beijing 100124 P. R. China |
BookMark | eNo9kMtOwzAQRS1UJEphy9o_kDJjN028hJaXVEQlYB3GjtMGOXZlp4v8PalAbOZqro7u4lyyiQ_eMnaDMEcAcXtISc8FiBwASzxjU8wFZlLlOGFTkAVkqApxwS5T-gaAAiVO2dd7H63f9XvrW7_j5Gu-tk2IHfVt8PzVmj35NnWJh4ZvgxtMHFJPzrXe8q0bKX_s-D0lW_MTH5w1R0eRrwdPXWvSFTtvyCV7_Zcz9vn48LF6zjZvTy-ru01mUC37zGitBShRlKVYQq5Ktag1jR8JWkg5drjAmlSDmlStlBoxU9B4NUG-JDlj899dE0NK0TbVIbYdxaFCqE5-qpOf6t-P_AE-81wL |
Cites_doi | 10.1007/s10867-023-09630-6 10.1088/0965-0393/17/5/055009 10.1038/s41467-020-14876-y 10.1016/j.actamat.2020.04.047 10.1103/PhysRevB.33.7983 10.1016/j.jcomc.2025.100572 10.1016/j.commatsci.2017.11.008 10.1016/j.mechmat.2015.01.017 10.1016/j.jmrt.2024.10.159 10.1016/j.msea.2010.03.076 10.1016/j.physleta.2018.10.053 10.1063/5.0088607 10.1088/0256-307X/26/3/036103 10.1039/D4RA07238C 10.1126/science.1167641 10.1016/j.commatsci.2017.09.055 10.1016/j.jmrt.2024.09.173 10.1016/j.matdes.2023.111963 10.1039/C7CE01502J 10.1073/pnas.2310500120 10.1038/srep06981 10.1016/j.msea.2024.147376 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/pssb.202500181 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3951 |
ExternalDocumentID | 10_1002_pssb_202500181 |
GroupedDBID | .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB AUFTA AZBYB AZVAB BAFTC BHBCM BMNLL BMXJE BNHUX BROTX BY8 CITATION D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 G.N GNP GYQRN H.T H.X HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT |
ID | FETCH-LOGICAL-c196t-cbbb209278826059894dba788a2a433260141da9f1ba9d999826c7a826ba056a3 |
ISSN | 0370-1972 |
IngestDate | Sun Jul 06 05:07:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c196t-cbbb209278826059894dba788a2a433260141da9f1ba9d999826c7a826ba056a3 |
ORCID | 0000-0001-5286-2196 |
ParticipantIDs | crossref_primary_10_1002_pssb_202500181 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-13 |
PublicationDateYYYYMMDD | 2025-05-13 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | physica status solidi (b) |
PublicationYear | 2025 |
References | e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 Koh S. J. A. (e_1_2_8_4_1) 2005; 72 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Ding B. (e_1_2_8_21_1) 2021; 130 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 Sun X. Y. (e_1_2_8_12_1) 2013; 113 e_1_2_8_11_1 |
References_xml | – ident: e_1_2_8_14_1 doi: 10.1007/s10867-023-09630-6 – ident: e_1_2_8_9_1 doi: 10.1088/0965-0393/17/5/055009 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-020-14876-y – volume: 72 start-page: 085414 year: 2005 ident: e_1_2_8_4_1 publication-title: Mater. Phys. – ident: e_1_2_8_26_1 doi: 10.1016/j.actamat.2020.04.047 – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevB.33.7983 – ident: e_1_2_8_6_1 doi: 10.1016/j.jcomc.2025.100572 – ident: e_1_2_8_11_1 doi: 10.1016/j.commatsci.2017.11.008 – ident: e_1_2_8_17_1 doi: 10.1016/j.mechmat.2015.01.017 – volume: 130 year: 2021 ident: e_1_2_8_21_1 publication-title: J. Appl. Phys. – ident: e_1_2_8_8_1 doi: 10.1016/j.jmrt.2024.10.159 – ident: e_1_2_8_18_1 doi: 10.1016/j.msea.2010.03.076 – ident: e_1_2_8_5_1 doi: 10.1016/j.physleta.2018.10.053 – ident: e_1_2_8_22_1 doi: 10.1063/5.0088607 – ident: e_1_2_8_15_1 doi: 10.1088/0256-307X/26/3/036103 – ident: e_1_2_8_23_1 doi: 10.1039/D4RA07238C – ident: e_1_2_8_19_1 doi: 10.1126/science.1167641 – volume: 113 year: 2013 ident: e_1_2_8_12_1 publication-title: J. Appl. Phys. – ident: e_1_2_8_7_1 doi: 10.1016/j.commatsci.2017.09.055 – ident: e_1_2_8_3_1 doi: 10.1016/j.jmrt.2024.09.173 – ident: e_1_2_8_24_1 doi: 10.1016/j.matdes.2023.111963 – ident: e_1_2_8_13_1 doi: 10.1039/C7CE01502J – ident: e_1_2_8_16_1 doi: 10.1073/pnas.2310500120 – ident: e_1_2_8_25_1 doi: 10.1038/srep06981 – ident: e_1_2_8_2_1 doi: 10.1016/j.msea.2024.147376 |
SSID | ssj0007131 ssj0047196 |
Score | 2.4335845 |
SecondaryResourceType | online_first |
Snippet | Platinum is a noble metal with excellent electrical, optical, magnetic, and thermal properties and has far‐reaching applications in high‐temperature sensing... |
SourceID | crossref |
SourceType | Index Database |
Title | Strengthening and Deformation Mechanisms of Polycrystalline Platinum Based on Molecular Dynamics |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uCF7EFXdyEDwM1TadrUdXRBwRURxP40uTOgUdxbaH8df7XtO0dTmol9AJSUn7vunb32NsB1mW7LaoyidA5DQVXoH2fKfjt1HaBc-VeVZa77J9dts877f6VbvUPLsklXvh-495Jf-hKs4hXSlL9g-ULW-KE3iN9MURKYzjr2hMLuXRI9UvsKmGx7rMRmz0NGX1xsmzDXQbh29jFAafcsnyioLgKAz-EPmYIp9Bz3bKbRybNvVJXXI1JhAg20OaJQ18sFjFJJ_KmjHhIs6IZv24hNydzsMFzvGAwywuzaxxYaa-Q9F0WE7fZ9psB1SWC5ZaWCREi5zpJqHUZmJ1XIfamRkeU3xYhef4gSku--2zbcrAviaJ3KMbUqdAr2JQ1in_hW-V0YSm8rIY0P5BuX-STQtUHXI1-7oqKYZKeRkDhIw5MM7s4sC2qqcr9j8fpia11MSPm3k2V-gN_MCAYIFN6NEim8njd8NkiT18ggJHKPAaFHgFBf4S8S9Q4BYKPIcCp_UWCtxCYZndnp7cHJ05RfMMJ8SHSp1QSincQHRQhUKVlersKwn4CwRQzbo2RfgqCCJPQqBQTcBlYQdwlIBCMfgrbGr0MtKrjDfBF64PXkQu91D5XZAKhZ9Ie4HS-GdeY7v25QxeTY2Uwc80Wf_1yg02W0Frk02lb5neQvEvlds5PT8AOiJZaA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strengthening+and+Deformation+Mechanisms+of+Polycrystalline+Platinum+Based+on+Molecular+Dynamics&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Liu%2C+Xin&rft.au=Wei%2C+Jinghui&rft.au=Qiang%2C+Wanzhi&rft.au=Yue%2C+Xiaodong&rft.date=2025-05-13&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002%2Fpssb.202500181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssb_202500181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon |