Climate change and Vibrio : Environmental determinants for predictive risk assessment
Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to humans and animals. Shifts in conditions favorable for microbial growth have expanded the geographic range of many pathogens, contributing to...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 122; no. 33; p. e2420423122 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to humans and animals. Shifts in conditions favorable for microbial growth have expanded the geographic range of many pathogens, contributing to the emergence and reemergence of infectious diseases. Waterborne diseases pose severe risks in regions where adverse climate conditions intersect with population vulnerabilities, especially inadequate water, sanitation, and hygiene infrastructure. Since many waterborne pathogens play crucial roles in the environment, such as in carbon and nitrogen cycling, their eradication is not possible. However, predictive intelligence models that identify environmental heuristics conducive to the growth of pathogenic strains, integrating microbiological, sociological, and weather data, can offer anticipatory decision-making capabilities, reducing infection risks. Here, the objective was to analyze data from studies since the 1960s to identify environmental determinants driving the occurrence and distribution of pathogenic Vibrio spp ., enabling predictive modeling of the effects of climate change on cholera and noncholera vibriosis. The proliferation of Vibrio spp. in aquatic ecosystems has been linked to climate change and, concomitantly, with increased environmental disease transmission, notably cholera in Southeast Asia and parts of Africa and noncholera vibriosis in Northern Europe and along the Eastern seaboard of North America. Global predictive risk models for Vibrio cholerae have contributed to reduction in case fatality rates when coupled with individual and large-scale intervention early in outbreaks. These models, when appropriately modified, hold the potential to predict disease caused by all clinically relevant Vibrio spp . and other waterborne pathogens. |
---|---|
AbstractList | Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to humans and animals. Shifts in conditions favorable for microbial growth have expanded the geographic range of many pathogens, contributing to the emergence and reemergence of infectious diseases. Waterborne diseases pose severe risks in regions where adverse climate conditions intersect with population vulnerabilities, especially inadequate water, sanitation, and hygiene infrastructure. Since many waterborne pathogens play crucial roles in the environment, such as in carbon and nitrogen cycling, their eradication is not possible. However, predictive intelligence models that identify environmental heuristics conducive to the growth of pathogenic strains, integrating microbiological, sociological, and weather data, can offer anticipatory decision-making capabilities, reducing infection risks. Here, the objective was to analyze data from studies since the 1960s to identify environmental determinants driving the occurrence and distribution of pathogenic
., enabling predictive modeling of the effects of climate change on cholera and noncholera vibriosis. The proliferation of
in aquatic ecosystems has been linked to climate change and, concomitantly, with increased environmental disease transmission, notably cholera in Southeast Asia and parts of Africa and noncholera vibriosis in Northern Europe and along the Eastern seaboard of North America. Global predictive risk models for
have contributed to reduction in case fatality rates when coupled with individual and large-scale intervention early in outbreaks. These models, when appropriately modified, hold the potential to predict disease caused by all clinically relevant
. and other waterborne pathogens. Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to humans and animals. Shifts in conditions favorable for microbial growth have expanded the geographic range of many pathogens, contributing to the emergence and reemergence of infectious diseases. Waterborne diseases pose severe risks in regions where adverse climate conditions intersect with population vulnerabilities, especially inadequate water, sanitation, and hygiene infrastructure. Since many waterborne pathogens play crucial roles in the environment, such as in carbon and nitrogen cycling, their eradication is not possible. However, predictive intelligence models that identify environmental heuristics conducive to the growth of pathogenic strains, integrating microbiological, sociological, and weather data, can offer anticipatory decision-making capabilities, reducing infection risks. Here, the objective was to analyze data from studies since the 1960s to identify environmental determinants driving the occurrence and distribution of pathogenic Vibrio spp ., enabling predictive modeling of the effects of climate change on cholera and noncholera vibriosis. The proliferation of Vibrio spp. in aquatic ecosystems has been linked to climate change and, concomitantly, with increased environmental disease transmission, notably cholera in Southeast Asia and parts of Africa and noncholera vibriosis in Northern Europe and along the Eastern seaboard of North America. Global predictive risk models for Vibrio cholerae have contributed to reduction in case fatality rates when coupled with individual and large-scale intervention early in outbreaks. These models, when appropriately modified, hold the potential to predict disease caused by all clinically relevant Vibrio spp . and other waterborne pathogens. Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to humans and animals. Shifts in conditions favorable for microbial growth have expanded the geographic range of many pathogens, contributing to the emergence and reemergence of infectious diseases. Waterborne diseases pose severe risks in regions where adverse climate conditions intersect with population vulnerabilities, especially inadequate water, sanitation, and hygiene infrastructure. Since many waterborne pathogens play crucial roles in the environment, such as in carbon and nitrogen cycling, their eradication is not possible. However, predictive intelligence models that identify environmental heuristics conducive to the growth of pathogenic strains, integrating microbiological, sociological, and weather data, can offer anticipatory decision-making capabilities, reducing infection risks. Here, the objective was to analyze data from studies since the 1960s to identify environmental determinants driving the occurrence and distribution of pathogenic Vibrio spp., enabling predictive modeling of the effects of climate change on cholera and noncholera vibriosis. The proliferation of Vibrio spp. in aquatic ecosystems has been linked to climate change and, concomitantly, with increased environmental disease transmission, notably cholera in Southeast Asia and parts of Africa and noncholera vibriosis in Northern Europe and along the Eastern seaboard of North America. Global predictive risk models for Vibrio cholerae have contributed to reduction in case fatality rates when coupled with individual and large-scale intervention early in outbreaks. These models, when appropriately modified, hold the potential to predict disease caused by all clinically relevant Vibrio spp. and other waterborne pathogens.Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to humans and animals. Shifts in conditions favorable for microbial growth have expanded the geographic range of many pathogens, contributing to the emergence and reemergence of infectious diseases. Waterborne diseases pose severe risks in regions where adverse climate conditions intersect with population vulnerabilities, especially inadequate water, sanitation, and hygiene infrastructure. Since many waterborne pathogens play crucial roles in the environment, such as in carbon and nitrogen cycling, their eradication is not possible. However, predictive intelligence models that identify environmental heuristics conducive to the growth of pathogenic strains, integrating microbiological, sociological, and weather data, can offer anticipatory decision-making capabilities, reducing infection risks. Here, the objective was to analyze data from studies since the 1960s to identify environmental determinants driving the occurrence and distribution of pathogenic Vibrio spp., enabling predictive modeling of the effects of climate change on cholera and noncholera vibriosis. The proliferation of Vibrio spp. in aquatic ecosystems has been linked to climate change and, concomitantly, with increased environmental disease transmission, notably cholera in Southeast Asia and parts of Africa and noncholera vibriosis in Northern Europe and along the Eastern seaboard of North America. Global predictive risk models for Vibrio cholerae have contributed to reduction in case fatality rates when coupled with individual and large-scale intervention early in outbreaks. These models, when appropriately modified, hold the potential to predict disease caused by all clinically relevant Vibrio spp. and other waterborne pathogens. |
Author | Jutla, Antarpreet S. Brumfield, Kyle D. Usmani, Moiz Long, Daniel M. Huq, Anwar Lupari, Henry A. Colwell, Rita R. Pope, Robert K. |
Author_xml | – sequence: 1 givenname: Kyle D. orcidid: 0000-0002-3234-3337 surname: Brumfield fullname: Brumfield, Kyle D. – sequence: 2 givenname: Moiz surname: Usmani fullname: Usmani, Moiz – sequence: 3 givenname: Daniel M. surname: Long fullname: Long, Daniel M. – sequence: 4 givenname: Henry A. surname: Lupari fullname: Lupari, Henry A. – sequence: 5 givenname: Robert K. surname: Pope fullname: Pope, Robert K. – sequence: 6 givenname: Antarpreet S. surname: Jutla fullname: Jutla, Antarpreet S. – sequence: 7 givenname: Anwar surname: Huq fullname: Huq, Anwar – sequence: 8 givenname: Rita R. orcidid: 0000-0001-5432-1502 surname: Colwell fullname: Colwell, Rita R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40789031$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtLxDAUBeAgI844unYnATdu6tw82qbuZPAFght1W5L0VqNtWpN2wH9vB1_g6m4-Lodz9snMdx4JOWJwxiAXq97reMYlB8kF43yHLBgULMlkATOyAOB5oiSXc7If4ysAFKmCPTKXkKsCBFuQx3XjWj0gtS_aPyPVvqJPzgTX0XN66TcudL5FP-iGVjhgaJ3Xfoi07gLtA1bODm6DNLj4RnWMGONWH5DdWjcRD7_vkjxeXT6sb5K7--vb9cVdYlmRDUlui9QoriurpVbcGJCFliC0FCmatLZGcMNzmQtUmUGJRlmj8xQqZtIsrcSSnH797UP3PmIcytZFi02jPXZjLAUXKmeZYmqiJ__oazcGP6WblBRZITmDSR1_q9G0WJV9mNoJH-VPYRNYfQEbuhgD1r-EQbmdpNxOUv5NIj4BpJN-kQ |
Cites_doi | 10.1371/journal.pone.0137828 10.1073/pnas.97.4.1438 10.1038/s41598-022-22946-y 10.1128/CMR.15.4.757-770.2002 10.1111/1462-2920.15040 10.1038/nrmicro.2015.13 10.1061/(ASCE)WR.1943-5452.0000929 10.1029/2022GH000681 10.1073/pnas.0237386100 10.4269/ajtmh.12-0721 10.1128/aem.52.5.1209-1211.1986 10.1073/pnas.0337468100 10.1111/1462-2920.15041 10.1007/978-94-009-6735-9_12 10.1007/s10499-023-01325-y 10.1073/pnas.1810138116 10.1371/journal.ppat.1012767 10.1073/pnas.1609157113 10.1007/PL00012151 10.1128/AEM.03540-14 10.1128/AEM.02894-07 10.1097/EDE.0b013e31815c09ea 10.1128/mBio.01425-17 10.1086/717177 10.1126/science.aad5901 10.1111/1462-2920.14967 10.4269/ajtmh.23-0077 10.1016/j.socscimed.2021.113716 10.1016/S2542-5196(21)00169-8 10.1073/pnas.0809654105 10.1128/aem.00307-23 10.3109/10408418209113506 10.1093/femsec/fiw072 10.1016/j.marpolbul.2021.112785 10.1080/01431161.2019.1577575 10.1093/cid/cis243 10.1128/aem.45.1.275-283.1983 10.1111/jam.12624 10.1038/s41558-022-01426-1 10.1371/journal.pone.0020275 10.1111/1462-2920.13955 10.1016/j.ecss.2023.108558 10.1016/j.fsi.2013.08.017 10.1080/20477724.2021.1981716 10.1016/S0140-6736(82)92340-6 10.1016/j.tim.2011.04.003 10.1128/spectrum.02631-22 10.1146/annurev.micro.54.1.641 10.1128/mbio.01476-23 10.1128/aem.44.5.1047-1058.1982 10.1126/science.164.3885.1286 10.1038/s41598-018-37129-x 10.1007/s11430-017-9229-x 10.3389/fmicb.2016.00567 10.2166/wh.2022.029 10.1007/BF00327795 10.1073/pnas.1207359109 10.1128/JCM.38.6.2156-2161.2000 10.1029/2023GH001005 10.3201/eid2812.220748 10.1128/JB.00795-17 10.3390/tropicalmed6030147 10.3201/eid2602.190362 10.1016/j.jip.2011.02.006 10.4269/ajtmh.14-0648 10.1016/j.foodres.2010.04.001 10.1111/j.1574-6976.2009.00200.x 10.1128/mbio.00529-23 10.1038/s41598-023-28247-2 10.4269/ajtmh.17-0048 10.1128/jb.113.1.24-32.1973 10.1128/JCM.38.2.578-585.2000 10.1016/j.envres.2023.117940 10.1111/1462-2920.15716 10.1111/j.1752-1688.2010.00448.x 10.1289/EHP2904 10.1126/science.274.5295.2025 10.4269/ajtmh.2008.78.823 10.1056/NEJMoa051594 10.1016/j.scitotenv.2025.179412 10.1128/AEM.01698-08 10.2471/BLT.11.092189 10.1111/j.1348-0421.1998.tb02357.x 10.1111/1758-2229.13135 10.1016/S0140-6736(11)60273-0 10.1016/j.tim.2016.09.008 10.1073/pnas.0408992102 10.3201/eid2811.212066 10.1128/aem.48.2.420-424.1984 10.1007/s00248-012-0168-x 10.1128/spectrum.02680-23 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences 2025 |
Copyright_xml | – notice: Copyright National Academy of Sciences 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1073/pnas.2420423122 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | 40789031 10_1073_pnas_2420423122 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NSF (NSF) grantid: OCE1839171 – fundername: HHS | NIH | National Institute of Environmental Health Sciences (DEHS) grantid: R01ES030317A – fundername: NSF (NSF) grantid: CBET1751854 – fundername: NASA | NASA Headquarters (NASA HQ) grantid: 80NSSC22K1044 – fundername: NSF (NSF) grantid: CCF1918749 – fundername: U.S. Department of Homeland Security (DHS) grantid: HSHQDC-15-C-00064 – fundername: NASA | NASA Headquarters (NASA HQ) grantid: 80NSSC20K0814 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 2FS 2WC 4.4 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR WH7 WOQ X7M XSW Y6R YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c196t-7c95b82adca4a82bb049a403a435eb5fcb32b27473e86be4eb8cba750d1b565d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Aug 12 16:32:18 EDT 2025 Tue Aug 26 23:11:00 EDT 2025 Thu Aug 28 04:49:30 EDT 2025 Thu Aug 14 00:17:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | environment risk prediction Vibrio climate change |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c196t-7c95b82adca4a82bb049a403a435eb5fcb32b27473e86be4eb8cba750d1b565d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3234-3337 0000-0001-5432-1502 |
PMID | 40789031 |
PQID | 3243694210 |
PQPubID | 42026 |
ParticipantIDs | proquest_miscellaneous_3238716818 proquest_journals_3243694210 pubmed_primary_40789031 crossref_primary_10_1073_pnas_2420423122 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-19 2025-Aug-19 20250819 |
PublicationDateYYYYMMDD | 2025-08-19 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2025 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 Colwell R. R. (e_1_3_4_89_2) 1977; 198 e_1_3_4_61_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_65_2 e_1_3_4_46_2 e_1_3_4_88_2 e_1_3_4_72_2 e_1_3_4_95_2 e_1_3_4_30_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_19_2 e_1_3_4_2_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_12_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_77_2 e_1_3_4_35_2 e_1_3_4_39_2 e_1_3_4_1_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_48_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_93_2 e_1_3_4_74_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_97_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_17_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_79_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_75_2 e_1_3_4_98_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_56_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_57_2 – ident: e_1_3_4_50_2 doi: 10.1371/journal.pone.0137828 – ident: e_1_3_4_47_2 doi: 10.1073/pnas.97.4.1438 – ident: e_1_3_4_56_2 – ident: e_1_3_4_54_2 doi: 10.1038/s41598-022-22946-y – ident: e_1_3_4_62_2 doi: 10.1128/CMR.15.4.757-770.2002 – ident: e_1_3_4_11_2 doi: 10.1111/1462-2920.15040 – ident: e_1_3_4_30_2 doi: 10.1038/nrmicro.2015.13 – ident: e_1_3_4_97_2 doi: 10.1061/(ASCE)WR.1943-5452.0000929 – ident: e_1_3_4_53_2 doi: 10.1029/2022GH000681 – ident: e_1_3_4_22_2 doi: 10.1073/pnas.0237386100 – ident: e_1_3_4_49_2 doi: 10.4269/ajtmh.12-0721 – ident: e_1_3_4_18_2 doi: 10.1128/aem.52.5.1209-1211.1986 – ident: e_1_3_4_66_2 doi: 10.1073/pnas.0337468100 – ident: e_1_3_4_76_2 doi: 10.1111/1462-2920.15041 – ident: e_1_3_4_93_2 doi: 10.1007/978-94-009-6735-9_12 – ident: e_1_3_4_41_2 doi: 10.1007/s10499-023-01325-y – ident: e_1_3_4_38_2 doi: 10.1073/pnas.1810138116 – ident: e_1_3_4_40_2 doi: 10.1371/journal.ppat.1012767 – ident: e_1_3_4_92_2 doi: 10.1073/pnas.1609157113 – ident: e_1_3_4_35_2 doi: 10.1007/PL00012151 – ident: e_1_3_4_34_2 doi: 10.1128/AEM.03540-14 – ident: e_1_3_4_19_2 doi: 10.1128/AEM.02894-07 – ident: e_1_3_4_84_2 doi: 10.1097/EDE.0b013e31815c09ea – ident: e_1_3_4_72_2 doi: 10.1128/mBio.01425-17 – ident: e_1_3_4_24_2 doi: 10.1086/717177 – ident: e_1_3_4_65_2 doi: 10.1126/science.aad5901 – ident: e_1_3_4_8_2 doi: 10.1111/1462-2920.14967 – ident: e_1_3_4_16_2 doi: 10.4269/ajtmh.23-0077 – ident: e_1_3_4_46_2 doi: 10.1016/j.socscimed.2021.113716 – ident: e_1_3_4_83_2 doi: 10.1016/S2542-5196(21)00169-8 – ident: e_1_3_4_88_2 doi: 10.1073/pnas.0809654105 – ident: e_1_3_4_12_2 doi: 10.1128/aem.00307-23 – ident: e_1_3_4_94_2 doi: 10.3109/10408418209113506 – ident: e_1_3_4_21_2 doi: 10.1093/femsec/fiw072 – ident: e_1_3_4_42_2 doi: 10.1016/j.marpolbul.2021.112785 – ident: e_1_3_4_52_2 doi: 10.1080/01431161.2019.1577575 – ident: e_1_3_4_59_2 doi: 10.1093/cid/cis243 – ident: e_1_3_4_3_2 doi: 10.1128/aem.45.1.275-283.1983 – ident: e_1_3_4_45_2 – ident: e_1_3_4_91_2 doi: 10.1111/jam.12624 – ident: e_1_3_4_1_2 doi: 10.1038/s41558-022-01426-1 – ident: e_1_3_4_32_2 doi: 10.1371/journal.pone.0020275 – ident: e_1_3_4_58_2 doi: 10.1111/1462-2920.13955 – ident: e_1_3_4_14_2 doi: 10.1016/j.ecss.2023.108558 – ident: e_1_3_4_33_2 doi: 10.1016/j.fsi.2013.08.017 – ident: e_1_3_4_63_2 doi: 10.1080/20477724.2021.1981716 – ident: e_1_3_4_86_2 doi: 10.1016/S0140-6736(82)92340-6 – ident: e_1_3_4_25_2 doi: 10.1016/j.tim.2011.04.003 – ident: e_1_3_4_27_2 doi: 10.1128/spectrum.02631-22 – ident: e_1_3_4_31_2 doi: 10.1146/annurev.micro.54.1.641 – ident: e_1_3_4_5_2 doi: 10.1128/mbio.01476-23 – ident: e_1_3_4_78_2 doi: 10.1128/aem.44.5.1047-1058.1982 – ident: e_1_3_4_68_2 doi: 10.1126/science.164.3885.1286 – volume: 198 start-page: 394 year: 1977 ident: e_1_3_4_89_2 article-title: Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: Occurrence and distribution in Chesapeake Bay publication-title: Science – ident: e_1_3_4_95_2 doi: 10.1038/s41598-018-37129-x – ident: e_1_3_4_17_2 doi: 10.1007/s11430-017-9229-x – ident: e_1_3_4_71_2 doi: 10.3389/fmicb.2016.00567 – ident: e_1_3_4_29_2 doi: 10.2166/wh.2022.029 – ident: e_1_3_4_37_2 doi: 10.1007/BF00327795 – ident: e_1_3_4_79_2 – ident: e_1_3_4_77_2 doi: 10.1073/pnas.1207359109 – ident: e_1_3_4_70_2 doi: 10.1128/JCM.38.6.2156-2161.2000 – ident: e_1_3_4_13_2 doi: 10.1029/2023GH001005 – ident: e_1_3_4_43_2 doi: 10.3201/eid2812.220748 – ident: e_1_3_4_26_2 doi: 10.1128/JB.00795-17 – ident: e_1_3_4_80_2 – ident: e_1_3_4_61_2 doi: 10.3390/tropicalmed6030147 – ident: e_1_3_4_73_2 doi: 10.3201/eid2602.190362 – ident: e_1_3_4_44_2 doi: 10.1016/j.jip.2011.02.006 – ident: e_1_3_4_87_2 doi: 10.4269/ajtmh.14-0648 – ident: e_1_3_4_90_2 doi: 10.1016/j.foodres.2010.04.001 – ident: e_1_3_4_36_2 doi: 10.1111/j.1574-6976.2009.00200.x – ident: e_1_3_4_55_2 doi: 10.1128/mbio.00529-23 – ident: e_1_3_4_10_2 doi: 10.1038/s41598-023-28247-2 – ident: e_1_3_4_51_2 doi: 10.4269/ajtmh.17-0048 – ident: e_1_3_4_20_2 doi: 10.1128/jb.113.1.24-32.1973 – ident: e_1_3_4_69_2 doi: 10.1128/JCM.38.2.578-585.2000 – ident: e_1_3_4_60_2 doi: 10.1016/j.envres.2023.117940 – ident: e_1_3_4_2_2 doi: 10.1111/1462-2920.15716 – ident: e_1_3_4_48_2 doi: 10.1111/j.1752-1688.2010.00448.x – ident: e_1_3_4_98_2 doi: 10.1289/EHP2904 – ident: e_1_3_4_6_2 doi: 10.1126/science.274.5295.2025 – ident: e_1_3_4_85_2 doi: 10.4269/ajtmh.2008.78.823 – ident: e_1_3_4_82_2 doi: 10.1056/NEJMoa051594 – ident: e_1_3_4_64_2 doi: 10.1016/j.scitotenv.2025.179412 – ident: e_1_3_4_75_2 doi: 10.1128/AEM.01698-08 – ident: e_1_3_4_15_2 doi: 10.2471/BLT.11.092189 – ident: e_1_3_4_28_2 doi: 10.1111/j.1348-0421.1998.tb02357.x – ident: e_1_3_4_9_2 doi: 10.1111/1758-2229.13135 – ident: e_1_3_4_96_2 doi: 10.1016/S0140-6736(11)60273-0 – ident: e_1_3_4_7_2 doi: 10.1016/j.tim.2016.09.008 – ident: e_1_3_4_39_2 doi: 10.1073/pnas.0408992102 – ident: e_1_3_4_81_2 – ident: e_1_3_4_67_2 doi: 10.3201/eid2811.212066 – ident: e_1_3_4_4_2 doi: 10.1128/aem.48.2.420-424.1984 – ident: e_1_3_4_23_2 doi: 10.1007/s00248-012-0168-x – ident: e_1_3_4_74_2 doi: 10.1128/spectrum.02680-23 |
SSID | ssj0009580 |
Score | 2.4852867 |
Snippet | Climate change significantly impacts the incidence and abundance of microorganisms, including those essential for environmental cycles and those pathogenic to... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e2420423122 |
SubjectTerms | Animals Aquatic ecosystems Bacteria Carbon cycle Cholera Cholera - epidemiology Cholera - microbiology Cholera - transmission Climate Change Climate effects Climate prediction Climatic conditions Decision making Disease control Disease transmission Ecosystem Environmental diseases Health risks Humans Hygiene Infectious diseases Meteorological data Microorganisms Nitrogen cycle Pathogens Prediction models Risk Assessment Sanitation Vibrio Vibrio - pathogenicity Vibrio Infections - epidemiology Vibrio Infections - microbiology Vibrio Infections - transmission Vibriosis Water Microbiology Waterborne diseases |
Title | Climate change and Vibrio : Environmental determinants for predictive risk assessment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40789031 https://www.proquest.com/docview/3243694210 https://www.proquest.com/docview/3238716818 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay7rLLsO6Zrhs0YIcOgbPakl-7FUXaYsuyHpwhN0OyaaBA6xZxcmgP--0jLfmRtgPaXYxAUZRA_EKR1EeSsc8qdHOItXCyrFCOLHKBelCB4-scB8JIQU6Jwj9nwclcfl_4i8HgTz-7ZKXH2c29eSX_I1UcQ7lSluwjJNsuigP4GuWLT5QwPh8k48PzMzQ4wWbv1vcAv4nCTwuPJl0KG13E9GkvRC28WtIVTU0cqunlqi3R2bdXT9vzrWrYBLMmfHjQJaNYDVGNnNHprNfaeLm-aHtg_7g-h45fPK8uTDcp1CpnNy0tyBKETeJ7F6mdrqlZojkmy-W1DcDaYIXnU_TVqkSjX9E8cQJpOoSO4Z6xRil7Xg99QvR0LKBVQWweO-XOGYBKixoXl6oab87crLY9-5UezafTNJkskifsqYduBnXAOF64vaLNkalmYX9gUxoqFF9vLb9p1fzDValNluQFe259DX5ggLPNBlC-ZNuNrPieLTn-5RVLLJK4QRJHJHGDpG98A0e8jyOOOOIdjjjhiHc4es3mR5Pk8MSx_TacDPXwygmz2NeRp_JMSRV5WqP3qOS-UGhSg_aLTAtPUxRDQBRokKCjTCs0OXNXo1-Qizdsq7ws4R3jUEDkykJSeUUZKKVFGAdU67EIRVQU8ZDtNfuVXpmyKmlNhwhFSlubdls7ZLvNfqb2v1el6AaIIJaeuz9kn9q3UTPSdZcq4XJNcwRFA9AiHbK3Rg7td9HtdYzn2c4DPv2ePeugvMu2Vss1fEBLdKU_1nD5C10ui00 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+change+and+Vibrio%3A+Environmental+determinants+for+predictive+risk+assessment&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Brumfield%2C+Kyle+D&rft.au=Usmani%2C+Moiz&rft.au=Long%2C+Daniel+M&rft.au=Lupari%2C+Henry+A&rft.date=2025-08-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=122&rft.issue=33&rft.spage=e2420423122&rft_id=info:doi/10.1073%2Fpnas.2420423122&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |