Metamaterial‐Based Electromagnetically Induced Transparency

Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for the propagation of light through opaque media, analogous phenomena have recently been demonstrated in various engineering metamaterials, all...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials
Main Authors Wang, Ben‐Xin, Sun, Yongzheng, Zhou, Weijun, Chen, Yuxuan, Yang, Guofeng, Xiong, Han, Huang, Zhiming
Format Journal Article
LanguageEnglish
Published 04.06.2025
Online AccessGet full text

Cover

Loading…
Abstract Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for the propagation of light through opaque media, analogous phenomena have recently been demonstrated in various engineering metamaterials, allowing for experimental observations using incoherent light at room temperature, which greatly enriches the connotation of EIT, stimulates research enthusiasm for metamaterial‐based EIT (MBEIT). Timely summarizing the latest progress of MBEIT is crucial for promoting its vigorous development. Herein, a comprehensive and in‐depth summary of the research progress on four core aspects of MBEIT, namely physical mechanisms, classifications, tunable functions, and applications is provided. Mainstream physical mechanisms of MBEIT, including Lorentz coupled model theory, bound states in the continuum, and three energy‐level theory are briefly outlined. Classifications of MBEIT involve single‐band, dual‐band, multi‐band, and broadband are further summarized. The MBEIT having dynamically tuned properties employing diversified modulation strategies, such as electrical, optical, thermal, and mechanical, is emphasized. Interdisciplinary application achievements of MBEIT in the fields of medicine, biochemistry, fingerprinting, optical encryption, and ultrafast optics are reviewed. The challenges and some solutions for the future research on MBEIT are finally discussed.
AbstractList Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for the propagation of light through opaque media, analogous phenomena have recently been demonstrated in various engineering metamaterials, allowing for experimental observations using incoherent light at room temperature, which greatly enriches the connotation of EIT, stimulates research enthusiasm for metamaterial‐based EIT (MBEIT). Timely summarizing the latest progress of MBEIT is crucial for promoting its vigorous development. Herein, a comprehensive and in‐depth summary of the research progress on four core aspects of MBEIT, namely physical mechanisms, classifications, tunable functions, and applications is provided. Mainstream physical mechanisms of MBEIT, including Lorentz coupled model theory, bound states in the continuum, and three energy‐level theory are briefly outlined. Classifications of MBEIT involve single‐band, dual‐band, multi‐band, and broadband are further summarized. The MBEIT having dynamically tuned properties employing diversified modulation strategies, such as electrical, optical, thermal, and mechanical, is emphasized. Interdisciplinary application achievements of MBEIT in the fields of medicine, biochemistry, fingerprinting, optical encryption, and ultrafast optics are reviewed. The challenges and some solutions for the future research on MBEIT are finally discussed.
Author Sun, Yongzheng
Yang, Guofeng
Huang, Zhiming
Chen, Yuxuan
Xiong, Han
Wang, Ben‐Xin
Zhou, Weijun
Author_xml – sequence: 1
  givenname: Ben‐Xin
  orcidid: 0000-0003-0489-9861
  surname: Wang
  fullname: Wang, Ben‐Xin
  organization: School of Science Jiangnan University Wuxi 214122 China, State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China
– sequence: 2
  givenname: Yongzheng
  surname: Sun
  fullname: Sun, Yongzheng
  organization: School of Science Jiangnan University Wuxi 214122 China
– sequence: 3
  givenname: Weijun
  surname: Zhou
  fullname: Zhou, Weijun
  organization: School of Science Jiangnan University Wuxi 214122 China
– sequence: 4
  givenname: Yuxuan
  surname: Chen
  fullname: Chen, Yuxuan
  organization: School of Science Jiangnan University Wuxi 214122 China
– sequence: 5
  givenname: Guofeng
  surname: Yang
  fullname: Yang, Guofeng
  organization: School of Science Jiangnan University Wuxi 214122 China
– sequence: 6
  givenname: Han
  surname: Xiong
  fullname: Xiong, Han
  organization: School of Electrical Engineering Chongqing University Chongqing 40044 China
– sequence: 7
  givenname: Zhiming
  surname: Huang
  fullname: Huang, Zhiming
  organization: State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China
BookMark eNo9j81Kw0AUhQepYFvduu4LJN47ycxkFi601FqouKngLlxnbiSSnzITF9n5CD6jT2KL0s05Bz448M3EpOs7FuIaIUUAeUO-alMJUkFxiDMxRY06yUAWk9PG1wsxi_EDAI3J8qm4feKBWho41NT8fH3fU2S_WDXshtC39N7xUDtqmnGx6fynO7BdoC7uKXDnxktxXlET-eq_5-LlYbVbPibb5_VmebdNHFo9JFpKowitMUrlRkqPVhXagzSac7IW34BlpdGgzwwTA1ljpQMPlkHZIpuL9O_XhT7GwFW5D3VLYSwRyqN8eZQvT_LZL_0oT1E
Cites_doi 10.1016/j.carbon.2021.06.037
10.1103/PhysRevB.80.153103
10.35848/1882-0786/ac79a0
10.1016/j.bios.2018.11.014
10.1002/mop.33626
10.1021/acsphotonics.7b01478
10.1002/adfm.201803380
10.1002/adfm.202312170
10.1038/nature12289
10.1038/nphoton.2012.262
10.1016/j.diamond.2022.108935
10.1364/OE.25.014089
10.1146/annurev-physchem-040215-112222
10.1364/OL.487655
10.1103/PhysRevLett.101.047401
10.1002/adma.202100836
10.1016/j.bios.2021.113336
10.1016/j.rinp.2020.103377
10.1126/sciadv.aar7353
10.1002/adom.201500620
10.1103/PhysRevApplied.18.024035
10.1088/2040-8978/15/7/075103
10.1063/1.4999320
10.1364/OME.9.001562
10.1038/nature05343
10.1002/lpor.202300233
10.1007/s00340-013-5470-x
10.1021/acsnano.5b01154
10.1088/2040-8986/ac3dda
10.1038/ncomms9969
10.1016/j.rinp.2021.104040
10.1080/10584587.2015.1036636
10.1016/j.talanta.2018.09.029
10.1080/02678292.2017.1404158
10.1016/j.physleta.2021.127556
10.1364/OPTICA.404754
10.1038/s41598-017-04692-8
10.1039/D3CP03072E
10.1109/TMTT.2012.2209455
10.1039/C8NR08813F
10.1016/j.foodchem.2016.05.059
10.1103/PhysRevB.97.155403
10.1016/j.bios.2012.10.095
10.1002/adma.202006054
10.1364/OE.482367
10.1002/lpor.202100393
10.1016/j.mser.2017.08.001
10.1002/adom.202200750
10.1103/PhysRevLett.96.123901
10.1109/JLT.2018.2804336
10.1364/PRJ.480671
10.1016/j.isci.2021.103708
10.1364/AO.54.003918
10.1109/ICMMT49418.2020.9387061
10.1039/C7NR05542K
10.1103/PhysRevLett.66.2593
10.1039/D4TC00455H
10.1021/ph500104k
10.1103/PhysRevB.109.245420
10.1002/adom.201800545
10.1063/1.4993428
10.1021/acsphotonics.2c00618
10.1016/j.carbon.2018.10.061
10.1364/OE.412061
10.1016/j.ijleo.2021.166784
10.1016/j.optcom.2018.03.037
10.1103/PhysRevLett.107.043901
10.1021/acsami.0c22862
10.1364/OE.26.005769
10.1364/OE.23.005147
10.1016/j.snb.2024.135628
10.1364/OE.463340
10.1002/pssr.201409524
10.1063/1.3525925
10.1007/s11468-019-00967-0
10.1021/acsnano.5b00723
10.1103/PhysRevB.92.115101
10.1109/JPHOT.2015.2412457
10.1364/OME.489428
10.1109/JSTQE.2013.2238217
10.1063/5.0022254
10.1103/PhysRevA.69.063804
10.1364/OE.22.012524
10.1021/acs.nanolett.7b02834
10.1038/srep13137
10.1103/PhysRevLett.106.107403
10.1002/adpr.202000009
10.1364/BOE.9.000373
10.1063/1.3696306
10.1364/OME.6.002607
10.1515/nanoph-2023-0010
10.1016/j.rinp.2019.102887
10.1088/2053-1591/abe102
10.1002/adom.202002001
10.3390/ma15207371
10.1063/1.4904227
10.1002/lpor.202100498
10.1364/OL.39.003539
10.1039/C5NR03094C
10.1209/0295-5075/125/34002
10.1016/j.optlastec.2018.02.034
10.1038/s41377-023-01232-0
10.1109/IRMMW-THz.2019.8874299
10.1016/j.surfin.2022.102423
10.1080/15421406.2014.917469
10.1002/smll.202006489
10.1103/PhysRevLett.121.033903
10.1364/OPTICA.6.000169
10.1038/nphys1480
10.1021/acsomega.0c06082
10.1364/PRJ.461787
10.1088/1361-6463/ab60ed
10.1016/j.optcom.2024.131112
10.1109/JSEN.2021.3085954
10.1016/j.carbon.2017.08.016
10.1063/1.2840160
10.1063/1.4819389
10.1016/j.optlastec.2023.110106
10.1088/2040-8978/16/12/125105
10.1126/sciadv.aax8821
10.1039/C6CP03731C
10.1364/OL.41.003821
10.1364/OE.23.027361
10.1126/science.aas9768
10.1063/1.3182857
10.1088/1361-6463/aa69b1
10.1016/j.rinp.2023.106276
10.1038/s41598-019-54414-5
10.3788/COL202018.092402
10.1039/C5EE02503F
10.1039/D3CP01475D
10.1016/j.carbon.2019.12.050
10.1007/s11468-019-01052-2
10.1364/OE.20.000042
10.1063/5.0196472
10.1016/j.rinp.2023.107102
10.1016/j.optcom.2022.129164
10.1021/acsnano.8b05514
10.1016/j.cej.2023.142347
10.1038/s41467-022-31877-1
10.1038/s41598-020-65418-x
10.1103/PhysRevLett.119.243901
10.1016/j.bios.2021.113241
10.1038/ncomms2285
10.1364/OE.23.000545
10.1088/2053-1591/ab0296
10.1002/adfm.202203680
10.3390/ma12060841
10.1063/1.4798244
10.1364/OME.9.000352
10.1109/JSEN.2023.3249743
10.1103/PhysRevLett.123.116104
10.1364/OE.26.002905
10.1002/lpor.201700309
10.7567/APEX.11.082203
10.1103/PhysRevLett.121.193903
10.1103/PhysRevLett.99.147401
10.1088/1361-6463/ac60cc
10.1016/j.optlaseng.2022.107127
10.1016/j.optcom.2018.04.021
10.1016/j.ijmecsci.2023.108775
10.1039/C8TA12206G
10.1088/1361-6463/aadb7f
10.1002/admt.202301911
10.1002/smll.202301165
10.1364/OE.17.016527
10.1039/D3NR05095E
10.1038/s41467-021-26406-5
10.1364/OL.43.004695
10.1021/acsami.5b09084
10.1021/acsphotonics.0c00003
10.1038/s41598-020-77922-1
10.1364/OE.24.030411
10.1088/1402-4896/aca1e5
10.3390/nano11092175
10.1103/PhysRevLett.103.147401
10.1063/1.4826630
10.1364/OE.482193
10.1515/nanoph-2019-0377
10.1039/D3CP05689A
10.1103/PhysRevB.59.12632
10.1364/OE.394416
10.1016/j.aca.2012.05.051
10.1016/j.optcom.2023.130005
10.1364/OE.22.021326
10.1038/srep02338
10.1039/D1NA00232E
10.1016/j.carbon.2023.03.062
10.1088/0957-4484/24/21/214003
10.1007/s11082-020-02344-2
10.1364/PRJ.7.000955
10.1016/j.bios.2020.112393
10.1016/j.optcom.2015.05.005
10.1063/1.881806
10.1088/0953-2048/26/7/074004
10.1063/1.5040734
10.1007/s12161-021-02176-0
10.1021/acs.nanolett.5c00426
10.1364/OME.7.003397
10.1364/OE.18.017187
10.1039/C7RA06770D
10.1103/PhysRevApplied.18.054050
10.1007/s11468-018-0831-2
10.1021/acsphotonics.9b00938
10.1021/ac503212q
10.1002/andp.202200175
10.1364/OME.465047
10.1016/j.optmat.2020.110060
10.3390/nano12244405
10.1364/JOSAA.413384
10.1038/natrevmats.2016.48
10.1103/PhysRevB.106.125411
10.1364/AOP.8.000618
10.1016/j.rinp.2024.107451
10.1016/j.optlastec.2024.110545
10.1364/OE.19.021652
10.1021/acs.nanolett.9b04404
10.1002/adom.201800141
10.1016/j.carbon.2021.07.069
10.1021/acs.nanolett.2c05021
10.7567/APEX.11.062001
10.1364/OE.380280
10.1021/acs.nanolett.3c04174
10.1515/nanoph-2021-0520
10.1063/1.4916189
10.1016/j.rinp.2022.105514
10.3390/nano11092343
10.1063/1.4976504
10.1039/C8NR03564D
10.1103/PhysRevLett.87.237401
10.1016/j.scib.2018.12.003
10.1016/j.tibtech.2016.04.008
10.1063/1.4935031
10.1088/2040-8986/ab70f2
10.1515/nanoph-2020-0582
10.1364/OL.40.002325
10.1103/PhysRevB.87.161110
10.1021/acsami.2c04414
10.1103/PhysRevLett.126.073001
10.1186/s43074-023-00108-1
10.1038/s41377-020-00386-5
10.1039/D0NR00457J
10.1038/srep11678
10.1016/j.diamond.2024.110939
10.1088/1402-4896/ac700f
10.1063/1.4886148
10.1002/adma.201704611
10.1038/s41467-018-04594-x
10.1038/nmat3431
10.1109/JSEN.2023.3239018
10.1038/srep05708
10.1002/adom.202200301
10.1021/acsnano.7b04698
10.1016/j.physleta.2024.129401
10.1117/1.AP.2.5.056004
10.1039/C9NR03178B
10.1038/ncomms6753
10.1063/1.4950863
10.1016/j.bios.2004.03.006
10.1039/C5NR07114C
10.1088/1402-4896/ac3a4b
10.1038/nature11231
10.1063/1.4969061
10.1364/OE.18.017504
10.1088/1555-6611/ac46cf
10.1038/nmat2495
10.1088/2053-1591/2/5/055801
10.1039/C5NR03060A
10.1088/1367-2630/ab9e8a
10.1002/adom.201901050
10.1103/PhysRevB.79.085111
10.1109/TMTT.2015.2393862
10.1103/PhysRevLett.123.253901
10.1002/lpor.202200564
10.1364/OE.25.005206
10.1002/adma.201004341
10.1016/j.talanta.2023.125481
10.1038/nmat2810
10.1039/D0NR00461H
10.1002/lpor.201600064
10.1007/s11468-022-01595-x
10.1109/JSEN.2018.2868873
10.1021/acs.jpclett.6b01308
10.1109/JSTQE.2022.3206066
10.1063/1.4794939
10.1038/srep40441
10.1016/j.nanoen.2019.104280
10.1126/science.1102896
10.1007/s11468-016-0451-7
10.1088/1361-6463/ac670f
10.1007/s11664-020-08692-9
10.1103/PhysRevB.93.235417
10.1021/nl902621d
10.1364/OE.457768
10.1364/OE.27.013884
10.1021/acsphotonics.4c01179
10.1021/acsphotonics.2c01461
10.1007/s11082-023-04573-7
10.1364/OE.438180
10.1016/j.optcom.2017.10.069
10.1103/PhysRevLett.64.1107
10.1063/1.4819854
10.1038/nature11458
10.1088/1361-6463/aa7e6b
10.1038/ncomms2153
10.1016/j.rinp.2023.106304
10.1364/OE.26.031589
10.1140/epjp/s13360-020-00950-3
10.1364/OE.382485
10.1364/PRJ.514140
10.1021/acsami.7b09889
10.1063/1.4833757
10.1038/s41467-021-24502-0
10.1002/adma.201605881
10.1364/JOSAB.29.002373
10.1039/D4CP00151F
10.1126/science.1221561
10.1016/j.optcom.2016.07.055
10.1038/nmat2546
10.1063/1.1996844
10.1038/s41598-021-98498-4
10.1364/AO.404381
10.3390/nano12213853
10.1364/OE.435998
10.1103/RevModPhys.77.633
10.1039/D2MH00787H
10.1002/admt.202000626
10.1515/nanoph-2016-0168
10.1186/s43074-024-00129-4
10.1109/TAP.2008.922174
10.1364/PRJ.6.000692
10.1021/nl501628x
10.1364/OE.500867
10.37188/lam.2021.019
10.1016/j.optcom.2022.128387
10.1007/s11468-021-01561-z
10.1039/D3CP02083E
10.1063/5.0009785
10.1063/5.0093664
10.1088/1361-6463/ac9912
10.1038/srep20801
10.1109/LPT.2019.2926138
10.1038/s41578-018-0076-x
10.1002/andp.202200425
10.1063/1.4795534
10.1021/acsnano.5b00497
10.1364/OPTICA.6.000996
10.1007/s00340-019-7242-8
10.1016/j.mattod.2019.08.002
10.1109/JSEN.2021.3074572
10.1364/OE.25.010484
10.1063/1.3653242
10.1515/nanoph-2022-0565
10.1021/jacs.5b05602
10.3390/nano11112876
10.1103/PhysRevLett.102.053901
10.1002/adom.201500676
10.1088/1361-6463/ac1a9f
10.1038/s41566-021-00860-5
10.1016/j.carbon.2017.10.035
10.1002/lpor.201800078
10.1364/PRJ.7.000994
10.1109/JLT.2020.3035041
10.1364/OE.446720
10.1515/nanoph-2020-0017
10.1088/1742-6596/1592/1/012024
10.1016/j.optmat.2020.109811
10.1364/OE.27.025196
10.1088/1361-6463/ad0aed
10.1515/nanoph-2022-0776
10.1063/1.4943974
10.3390/nano12203672
10.1002/adpr.202200356
10.1002/lpor.202000559
10.1002/lpor.201870043
10.1063/1.3695165
10.1364/OE.389231
10.1039/D2NR05820K
10.1109/JSEN.2021.3135938
10.1016/j.optcom.2019.05.038
10.1016/j.optcom.2017.09.013
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.202508025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202508025
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-c196t-62275a1977554722d19586d0276e4a991b0e2f6171d37eae0a9792c0d09e05983
ISSN 1616-301X
IngestDate Thu Aug 14 00:16:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c196t-62275a1977554722d19586d0276e4a991b0e2f6171d37eae0a9792c0d09e05983
ORCID 0000-0003-0489-9861
ParticipantIDs crossref_primary_10_1002_adfm_202508025
PublicationCentury 2000
PublicationDate 2025-06-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-04
  day: 04
PublicationDecade 2020
PublicationTitle Advanced functional materials
PublicationYear 2025
References e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_279_1
e_1_2_10_158_1
e_1_2_10_342_1
e_1_2_10_365_1
e_1_2_10_388_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_147_1
e_1_2_10_330_1
e_1_2_10_353_1
e_1_2_10_376_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
e_1_2_10_341_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_38_1
e_1_2_10_364_1
e_1_2_10_15_1
e_1_2_10_387_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_223_1
e_1_2_10_352_1
e_1_2_10_148_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_375_1
e_1_2_10_26_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_340_1
e_1_2_10_363_1
e_1_2_10_91_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_114_1
e_1_2_10_386_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
Xia S. (e_1_2_10_346_1) 2022; 106
e_1_2_10_351_1
e_1_2_10_374_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_27_1
e_1_2_10_103_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_385_1
e_1_2_10_362_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_17_1
e_1_2_10_309_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_350_1
e_1_2_10_396_1
e_1_2_10_373_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_298_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_177_1
e_1_2_10_2_1
e_1_2_10_300_1
e_1_2_10_369_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_287_1
e_1_2_10_32_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
Vaswani L. K. (e_1_2_10_232_1) 2023; 05
e_1_2_10_334_1
e_1_2_10_357_1
e_1_2_10_311_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_299_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_276_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_322_1
e_1_2_10_368_1
e_1_2_10_3_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_345_1
e_1_2_10_242_1
e_1_2_10_288_1
e_1_2_10_33_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_333_1
e_1_2_10_379_1
e_1_2_10_310_1
e_1_2_10_68_1
e_1_2_10_356_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_110_1
Hu Y. (e_1_2_10_34_1) 2020; 14
e_1_2_10_179_1
e_1_2_10_321_1
e_1_2_10_344_1
e_1_2_10_367_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_220_1
e_1_2_10_289_1
e_1_2_10_11_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_332_1
e_1_2_10_378_1
e_1_2_10_122_1
e_1_2_10_24_1
Li T. (e_1_2_10_87_1) 2024; 10
e_1_2_10_278_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_1_1
e_1_2_10_320_1
e_1_2_10_343_1
e_1_2_10_389_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_366_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_59_1
Andrey A. B. (e_1_2_10_126_1) 2019; 1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_354_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_377_1
e_1_2_10_271_1
e_1_2_10_339_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_294_1
e_1_2_10_207_1
e_1_2_10_380_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_304_1
e_1_2_10_327_1
e_1_2_10_173_1
e_1_2_10_196_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_283_1
e_1_2_10_219_1
e_1_2_10_391_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_338_1
e_1_2_10_162_1
e_1_2_10_315_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
e_1_2_10_295_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
Zhu L. (e_1_2_10_324_1) 2023; 62
e_1_2_10_349_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_98_1
e_1_2_10_326_1
e_1_2_10_7_1
e_1_2_10_303_1
e_1_2_10_261_1
e_1_2_10_284_1
e_1_2_10_390_1
e_1_2_10_337_1
e_1_2_10_64_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_314_1
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_296_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_348_1
e_1_2_10_53_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_302_1
e_1_2_10_325_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_285_1
Zhang W. (e_1_2_10_331_1) 2020; 59
e_1_2_10_336_1
e_1_2_10_359_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_313_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_297_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_301_1
e_1_2_10_347_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_263_1
Huang W. (e_1_2_10_397_1) 2021; 54
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_286_1
e_1_2_10_188_1
e_1_2_10_312_1
e_1_2_10_335_1
e_1_2_10_358_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_290_1
e_1_2_10_361_1
e_1_2_10_384_1
Hu Y. (e_1_2_10_156_1) 2022; 14
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_139_1
e_1_2_10_18_1
Chiang Y.‐J. (e_1_2_10_215_1) 2011; 99
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_308_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
Shen D. (e_1_2_10_131_1) 2021; 13
e_1_2_10_372_1
e_1_2_10_395_1
Wu X. (e_1_2_10_355_1) 2021
Han S. (e_1_2_10_10_1) 2019; 31
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_319_1
e_1_2_10_291_1
e_1_2_10_238_1
e_1_2_10_360_1
e_1_2_10_383_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_19_1
Yang Q. (e_1_2_10_141_1) 2020; 12
e_1_2_10_307_1
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_227_1
e_1_2_10_371_1
e_1_2_10_394_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_318_1
e_1_2_10_239_1
e_1_2_10_292_1
e_1_2_10_216_1
e_1_2_10_382_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
Yang L. (e_1_2_10_323_1) 2023
e_1_2_10_8_1
e_1_2_10_306_1
e_1_2_10_329_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
e_1_2_10_393_1
e_1_2_10_370_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_317_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_293_1
e_1_2_10_229_1
e_1_2_10_381_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_305_1
e_1_2_10_195_1
e_1_2_10_9_1
e_1_2_10_328_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_282_1
e_1_2_10_218_1
e_1_2_10_392_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_316_1
e_1_2_10_184_1
References_xml – ident: e_1_2_10_74_1
  doi: 10.1016/j.carbon.2021.06.037
– ident: e_1_2_10_28_1
  doi: 10.1103/PhysRevB.80.153103
– ident: e_1_2_10_202_1
  doi: 10.35848/1882-0786/ac79a0
– ident: e_1_2_10_6_1
  doi: 10.1016/j.bios.2018.11.014
– volume: 31
  start-page: 1901
  year: 2019
  ident: e_1_2_10_10_1
  publication-title: Adv. Mater.
– ident: e_1_2_10_286_1
  doi: 10.1002/mop.33626
– volume: 10
  start-page: 0559
  year: 2024
  ident: e_1_2_10_87_1
  publication-title: Mater. Today Nano
– ident: e_1_2_10_149_1
  doi: 10.1021/acsphotonics.7b01478
– ident: e_1_2_10_327_1
  doi: 10.1002/adfm.201803380
– ident: e_1_2_10_8_1
  doi: 10.1002/adfm.202312170
– ident: e_1_2_10_125_1
  doi: 10.1038/nature12289
– ident: e_1_2_10_262_1
  doi: 10.1038/nphoton.2012.262
– ident: e_1_2_10_175_1
  doi: 10.1016/j.diamond.2022.108935
– ident: e_1_2_10_357_1
  doi: 10.1364/OE.25.014089
– ident: e_1_2_10_245_1
  doi: 10.1146/annurev-physchem-040215-112222
– ident: e_1_2_10_174_1
  doi: 10.1364/OL.487655
– ident: e_1_2_10_12_1
  doi: 10.1103/PhysRevLett.101.047401
– ident: e_1_2_10_142_1
  doi: 10.1002/adma.202100836
– ident: e_1_2_10_180_1
  doi: 10.1016/j.bios.2021.113336
– volume: 14
  start-page: 1
  year: 2022
  ident: e_1_2_10_156_1
  publication-title: IEEE Photonics J
– ident: e_1_2_10_59_1
  doi: 10.1016/j.rinp.2020.103377
– ident: e_1_2_10_254_1
  doi: 10.1126/sciadv.aar7353
– ident: e_1_2_10_38_1
  doi: 10.1002/adom.201500620
– ident: e_1_2_10_177_1
  doi: 10.1103/PhysRevApplied.18.024035
– ident: e_1_2_10_206_1
  doi: 10.1088/2040-8978/15/7/075103
– ident: e_1_2_10_209_1
  doi: 10.1063/1.4999320
– ident: e_1_2_10_287_1
  doi: 10.1364/OME.9.001562
– ident: e_1_2_10_25_1
  doi: 10.1038/nature05343
– ident: e_1_2_10_7_1
  doi: 10.1002/lpor.202300233
– ident: e_1_2_10_216_1
  doi: 10.1007/s00340-013-5470-x
– ident: e_1_2_10_249_1
  doi: 10.1021/acsnano.5b01154
– ident: e_1_2_10_310_1
  doi: 10.1088/2040-8986/ac3dda
– ident: e_1_2_10_83_1
  doi: 10.1038/ncomms9969
– ident: e_1_2_10_89_1
  doi: 10.1016/j.rinp.2021.104040
– ident: e_1_2_10_347_1
  doi: 10.1080/10584587.2015.1036636
– ident: e_1_2_10_381_1
  doi: 10.1016/j.talanta.2018.09.029
– ident: e_1_2_10_292_1
  doi: 10.1080/02678292.2017.1404158
– ident: e_1_2_10_188_1
  doi: 10.1016/j.physleta.2021.127556
– ident: e_1_2_10_165_1
  doi: 10.1364/OPTICA.404754
– ident: e_1_2_10_313_1
  doi: 10.1038/s41598-017-04692-8
– ident: e_1_2_10_183_1
  doi: 10.1039/D3CP03072E
– ident: e_1_2_10_109_1
  doi: 10.1109/TMTT.2012.2209455
– ident: e_1_2_10_239_1
  doi: 10.1039/C8NR08813F
– ident: e_1_2_10_84_1
  doi: 10.1016/j.foodchem.2016.05.059
– ident: e_1_2_10_30_1
  doi: 10.1103/PhysRevB.97.155403
– ident: e_1_2_10_92_1
  doi: 10.1016/j.bios.2012.10.095
– ident: e_1_2_10_370_1
  doi: 10.1002/adma.202006054
– ident: e_1_2_10_145_1
  doi: 10.1364/OE.482367
– ident: e_1_2_10_68_1
  doi: 10.1002/lpor.202100393
– ident: e_1_2_10_304_1
  doi: 10.1016/j.mser.2017.08.001
– ident: e_1_2_10_294_1
  doi: 10.1002/adom.202200750
– ident: e_1_2_10_23_1
  doi: 10.1103/PhysRevLett.96.123901
– ident: e_1_2_10_386_1
  doi: 10.1109/JLT.2018.2804336
– ident: e_1_2_10_56_1
  doi: 10.1364/PRJ.480671
– volume: 59
  year: 2020
  ident: e_1_2_10_331_1
  publication-title: Opt. Eng.
– ident: e_1_2_10_80_1
  doi: 10.1016/j.isci.2021.103708
– ident: e_1_2_10_330_1
  doi: 10.1364/AO.54.003918
– ident: e_1_2_10_197_1
  doi: 10.1109/ICMMT49418.2020.9387061
– ident: e_1_2_10_252_1
  doi: 10.1039/C7NR05542K
– ident: e_1_2_10_2_1
  doi: 10.1103/PhysRevLett.66.2593
– ident: e_1_2_10_181_1
  doi: 10.1039/D4TC00455H
– ident: e_1_2_10_44_1
  doi: 10.1021/ph500104k
– ident: e_1_2_10_18_1
  doi: 10.1103/PhysRevB.109.245420
– ident: e_1_2_10_153_1
  doi: 10.1002/adom.201800545
– ident: e_1_2_10_55_1
  doi: 10.1063/1.4993428
– ident: e_1_2_10_160_1
  doi: 10.1021/acsphotonics.2c00618
– ident: e_1_2_10_66_1
  doi: 10.1016/j.carbon.2018.10.061
– ident: e_1_2_10_201_1
  doi: 10.1364/OE.412061
– ident: e_1_2_10_167_1
  doi: 10.1016/j.ijleo.2021.166784
– ident: e_1_2_10_106_1
  doi: 10.1016/j.optcom.2018.03.037
– ident: e_1_2_10_42_1
  doi: 10.1103/PhysRevLett.107.043901
– ident: e_1_2_10_76_1
  doi: 10.1021/acsami.0c22862
– ident: e_1_2_10_299_1
  doi: 10.1364/OE.26.005769
– ident: e_1_2_10_267_1
  doi: 10.1364/OE.23.005147
– ident: e_1_2_10_360_1
  doi: 10.1016/j.snb.2024.135628
– ident: e_1_2_10_172_1
  doi: 10.1364/OE.463340
– ident: e_1_2_10_293_1
  doi: 10.1002/pssr.201409524
– ident: e_1_2_10_226_1
  doi: 10.1063/1.3525925
– ident: e_1_2_10_285_1
  doi: 10.1007/s11468-019-00967-0
– ident: e_1_2_10_329_1
  doi: 10.1021/acsnano.5b00723
– ident: e_1_2_10_283_1
  doi: 10.1103/PhysRevB.92.115101
– ident: e_1_2_10_113_1
  doi: 10.1109/JPHOT.2015.2412457
– ident: e_1_2_10_207_1
  doi: 10.1364/OME.489428
– ident: e_1_2_10_341_1
  doi: 10.1109/JSTQE.2013.2238217
– ident: e_1_2_10_221_1
  doi: 10.1063/5.0022254
– ident: e_1_2_10_24_1
  doi: 10.1103/PhysRevA.69.063804
– ident: e_1_2_10_265_1
  doi: 10.1364/OE.22.012524
– ident: e_1_2_10_241_1
  doi: 10.1021/acs.nanolett.7b02834
– ident: e_1_2_10_297_1
  doi: 10.1038/srep13137
– ident: e_1_2_10_212_1
  doi: 10.1103/PhysRevLett.106.107403
– ident: e_1_2_10_77_1
  doi: 10.1002/adpr.202000009
– ident: e_1_2_10_372_1
  doi: 10.1364/BOE.9.000373
– ident: e_1_2_10_32_1
  doi: 10.1063/1.3696306
– ident: e_1_2_10_203_1
  doi: 10.1364/OME.6.002607
– ident: e_1_2_10_179_1
  doi: 10.1515/nanoph-2023-0010
– ident: e_1_2_10_39_1
  doi: 10.1016/j.rinp.2019.102887
– ident: e_1_2_10_276_1
  doi: 10.1088/2053-1591/abe102
– ident: e_1_2_10_121_1
  doi: 10.1002/adom.202002001
– ident: e_1_2_10_352_1
  doi: 10.3390/ma15207371
– ident: e_1_2_10_22_1
  doi: 10.1063/1.4904227
– ident: e_1_2_10_137_1
  doi: 10.1002/lpor.202100498
– ident: e_1_2_10_189_1
  doi: 10.1364/OL.39.003539
– ident: e_1_2_10_57_1
  doi: 10.1039/C5NR03094C
– ident: e_1_2_10_356_1
  doi: 10.1209/0295-5075/125/34002
– ident: e_1_2_10_278_1
  doi: 10.1016/j.optlastec.2018.02.034
– ident: e_1_2_10_67_1
  doi: 10.1038/s41377-023-01232-0
– ident: e_1_2_10_190_1
  doi: 10.1109/IRMMW-THz.2019.8874299
– ident: e_1_2_10_116_1
  doi: 10.1016/j.surfin.2022.102423
– ident: e_1_2_10_288_1
  doi: 10.1080/15421406.2014.917469
– ident: e_1_2_10_75_1
  doi: 10.1002/smll.202006489
– ident: e_1_2_10_138_1
  doi: 10.1103/PhysRevLett.121.033903
– ident: e_1_2_10_159_1
  doi: 10.1364/OPTICA.6.000169
– ident: e_1_2_10_13_1
  doi: 10.1038/nphys1480
– ident: e_1_2_10_27_1
  doi: 10.1021/acsomega.0c06082
– ident: e_1_2_10_82_1
  doi: 10.1364/PRJ.461787
– ident: e_1_2_10_238_1
  doi: 10.1088/1361-6463/ab60ed
– ident: e_1_2_10_171_1
  doi: 10.1016/j.optcom.2024.131112
– ident: e_1_2_10_361_1
  doi: 10.1109/JSEN.2021.3085954
– ident: e_1_2_10_65_1
  doi: 10.1016/j.carbon.2017.08.016
– ident: e_1_2_10_11_1
  doi: 10.1063/1.2840160
– ident: e_1_2_10_41_1
  doi: 10.1063/1.4819389
– ident: e_1_2_10_383_1
  doi: 10.1016/j.optlastec.2023.110106
– ident: e_1_2_10_223_1
  doi: 10.1088/2040-8978/16/12/125105
– ident: e_1_2_10_255_1
  doi: 10.1126/sciadv.aax8821
– ident: e_1_2_10_268_1
  doi: 10.1039/C6CP03731C
– ident: e_1_2_10_253_1
  doi: 10.1364/OL.41.003821
– ident: e_1_2_10_54_1
  doi: 10.1364/OE.23.027361
– ident: e_1_2_10_122_1
  doi: 10.1126/science.aas9768
– volume: 54
  year: 2021
  ident: e_1_2_10_397_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_10_337_1
  doi: 10.1063/1.3182857
– ident: e_1_2_10_269_1
  doi: 10.1088/1361-6463/aa69b1
– ident: e_1_2_10_163_1
  doi: 10.1016/j.rinp.2023.106276
– ident: e_1_2_10_169_1
  doi: 10.1038/s41598-019-54414-5
– ident: e_1_2_10_115_1
  doi: 10.3788/COL202018.092402
– ident: e_1_2_10_246_1
  doi: 10.1039/C5EE02503F
– ident: e_1_2_10_69_1
  doi: 10.1039/D3CP01475D
– ident: e_1_2_10_110_1
  doi: 10.1016/j.carbon.2019.12.050
– ident: e_1_2_10_191_1
  doi: 10.1007/s11468-019-01052-2
– ident: e_1_2_10_332_1
  doi: 10.1364/OE.20.000042
– ident: e_1_2_10_86_1
  doi: 10.1063/5.0196472
– ident: e_1_2_10_314_1
  doi: 10.1016/j.rinp.2023.107102
– ident: e_1_2_10_88_1
  doi: 10.1016/j.optcom.2022.129164
– volume: 13
  start-page: 1
  year: 2021
  ident: e_1_2_10_131_1
  publication-title: IEEE Photonics J
– ident: e_1_2_10_243_1
  doi: 10.1021/acsnano.8b05514
– ident: e_1_2_10_365_1
  doi: 10.1016/j.cej.2023.142347
– ident: e_1_2_10_128_1
  doi: 10.1038/s41467-022-31877-1
– ident: e_1_2_10_200_1
  doi: 10.1038/s41598-020-65418-x
– ident: e_1_2_10_158_1
  doi: 10.1103/PhysRevLett.119.243901
– ident: e_1_2_10_21_1
  doi: 10.1016/j.bios.2021.113241
– ident: e_1_2_10_342_1
  doi: 10.1038/ncomms2285
– ident: e_1_2_10_205_1
  doi: 10.1364/OE.23.000545
– ident: e_1_2_10_208_1
  doi: 10.1088/2053-1591/ab0296
– ident: e_1_2_10_36_1
  doi: 10.1002/adfm.202203680
– ident: e_1_2_10_198_1
  doi: 10.3390/ma12060841
– ident: e_1_2_10_71_1
  doi: 10.1063/1.4798244
– ident: e_1_2_10_260_1
  doi: 10.1364/OME.9.000352
– ident: e_1_2_10_78_1
  doi: 10.1109/JSEN.2023.3249743
– volume: 1
  year: 2019
  ident: e_1_2_10_126_1
  publication-title: Adv. Photonics
– ident: e_1_2_10_130_1
  doi: 10.1103/PhysRevLett.123.116104
– ident: e_1_2_10_150_1
  doi: 10.1364/OE.26.002905
– ident: e_1_2_10_385_1
  doi: 10.1002/lpor.201700309
– ident: e_1_2_10_322_1
  doi: 10.7567/APEX.11.082203
– ident: e_1_2_10_147_1
  doi: 10.1103/PhysRevLett.121.193903
– ident: e_1_2_10_99_1
  doi: 10.1103/PhysRevLett.99.147401
– ident: e_1_2_10_79_1
  doi: 10.1088/1361-6463/ac60cc
– ident: e_1_2_10_364_1
  doi: 10.1016/j.optlaseng.2022.107127
– ident: e_1_2_10_281_1
  doi: 10.1016/j.optcom.2018.04.021
– ident: e_1_2_10_393_1
  doi: 10.1016/j.ijmecsci.2023.108775
– ident: e_1_2_10_244_1
  doi: 10.1039/C8TA12206G
– ident: e_1_2_10_105_1
  doi: 10.1088/1361-6463/aadb7f
– ident: e_1_2_10_392_1
  doi: 10.1002/admt.202301911
– ident: e_1_2_10_94_1
  doi: 10.1002/smll.202301165
– ident: e_1_2_10_214_1
  doi: 10.1364/OE.17.016527
– ident: e_1_2_10_50_1
  doi: 10.1039/D3NR05095E
– ident: e_1_2_10_135_1
  doi: 10.1038/s41467-021-26406-5
– ident: e_1_2_10_64_1
  doi: 10.1364/OL.43.004695
– ident: e_1_2_10_248_1
  doi: 10.1021/acsami.5b09084
– ident: e_1_2_10_151_1
  doi: 10.1021/acsphotonics.0c00003
– ident: e_1_2_10_234_1
  doi: 10.1038/s41598-020-77922-1
– ident: e_1_2_10_45_1
  doi: 10.1364/OE.24.030411
– ident: e_1_2_10_336_1
  doi: 10.1088/1402-4896/aca1e5
– ident: e_1_2_10_358_1
  doi: 10.3390/nano11092175
– ident: e_1_2_10_344_1
  doi: 10.1103/PhysRevLett.103.147401
– ident: e_1_2_10_53_1
  doi: 10.1063/1.4826630
– ident: e_1_2_10_388_1
  doi: 10.1364/OE.482193
– ident: e_1_2_10_257_1
  doi: 10.1515/nanoph-2019-0377
– ident: e_1_2_10_391_1
  doi: 10.1039/D3CP05689A
– ident: e_1_2_10_290_1
  doi: 10.1103/PhysRevB.59.12632
– ident: e_1_2_10_152_1
  doi: 10.1364/OE.394416
– ident: e_1_2_10_379_1
  doi: 10.1016/j.aca.2012.05.051
– ident: e_1_2_10_382_1
  doi: 10.1016/j.optcom.2023.130005
– ident: e_1_2_10_339_1
  doi: 10.1364/OE.22.021326
– ident: e_1_2_10_368_1
  doi: 10.1038/srep02338
– ident: e_1_2_10_95_1
  doi: 10.1039/D1NA00232E
– ident: e_1_2_10_98_1
  doi: 10.1016/j.carbon.2023.03.062
– ident: e_1_2_10_219_1
  doi: 10.1088/0957-4484/24/21/214003
– ident: e_1_2_10_62_1
  doi: 10.1007/s11082-020-02344-2
– ident: e_1_2_10_63_1
  doi: 10.1364/PRJ.7.000955
– ident: e_1_2_10_375_1
  doi: 10.1016/j.bios.2020.112393
– ident: e_1_2_10_236_1
  doi: 10.1016/j.optcom.2015.05.005
– ident: e_1_2_10_1_1
  doi: 10.1063/1.881806
– ident: e_1_2_10_43_1
  doi: 10.1088/0953-2048/26/7/074004
– ident: e_1_2_10_193_1
  doi: 10.1063/1.5040734
– ident: e_1_2_10_362_1
  doi: 10.1007/s12161-021-02176-0
– ident: e_1_2_10_173_1
  doi: 10.1021/acs.nanolett.5c00426
– ident: e_1_2_10_282_1
  doi: 10.1364/OME.7.003397
– ident: e_1_2_10_178_1
  doi: 10.1364/OE.18.017187
– ident: e_1_2_10_187_1
  doi: 10.1039/C7RA06770D
– ident: e_1_2_10_394_1
  doi: 10.1103/PhysRevApplied.18.054050
– ident: e_1_2_10_194_1
  doi: 10.1007/s11468-018-0831-2
– ident: e_1_2_10_225_1
  doi: 10.1021/acsphotonics.9b00938
– ident: e_1_2_10_380_1
  doi: 10.1021/ac503212q
– ident: e_1_2_10_144_1
  doi: 10.1002/andp.202200175
– ident: e_1_2_10_353_1
  doi: 10.1364/OME.465047
– ident: e_1_2_10_326_1
  doi: 10.1016/j.optmat.2020.110060
– ident: e_1_2_10_210_1
  doi: 10.3390/nano12244405
– ident: e_1_2_10_309_1
  doi: 10.1364/JOSAA.413384
– ident: e_1_2_10_100_1
  doi: 10.1038/natrevmats.2016.48
– ident: e_1_2_10_123_1
  doi: 10.1103/PhysRevB.106.125411
– ident: e_1_2_10_305_1
  doi: 10.1364/AOP.8.000618
– ident: e_1_2_10_103_1
  doi: 10.1016/j.rinp.2024.107451
– ident: e_1_2_10_49_1
  doi: 10.1016/j.optlastec.2024.110545
– ident: e_1_2_10_29_1
  doi: 10.1364/OE.19.021652
– ident: e_1_2_10_9_1
  doi: 10.1021/acs.nanolett.9b04404
– ident: e_1_2_10_70_1
  doi: 10.1002/adom.201800141
– ident: e_1_2_10_20_1
  doi: 10.1016/j.carbon.2021.07.069
– ident: e_1_2_10_154_1
  doi: 10.1021/acs.nanolett.2c05021
– ident: e_1_2_10_224_1
  doi: 10.7567/APEX.11.062001
– ident: e_1_2_10_139_1
  doi: 10.1364/OE.380280
– ident: e_1_2_10_384_1
  doi: 10.1021/acs.nanolett.3c04174
– ident: e_1_2_10_85_1
  doi: 10.1515/nanoph-2021-0520
– ident: e_1_2_10_112_1
  doi: 10.1063/1.4916189
– ident: e_1_2_10_60_1
  doi: 10.1016/j.rinp.2022.105514
– ident: e_1_2_10_164_1
  doi: 10.3390/nano11092343
– ident: e_1_2_10_40_1
  doi: 10.1063/1.4976504
– ident: e_1_2_10_97_1
  doi: 10.1039/C8NR03564D
– ident: e_1_2_10_320_1
  doi: 10.1103/PhysRevLett.87.237401
– ident: e_1_2_10_157_1
  doi: 10.1016/j.scib.2018.12.003
– ident: e_1_2_10_378_1
  doi: 10.1016/j.tibtech.2016.04.008
– ident: e_1_2_10_231_1
  doi: 10.1063/1.4935031
– ident: e_1_2_10_90_1
  doi: 10.1088/2040-8986/ab70f2
– ident: e_1_2_10_143_1
  doi: 10.1515/nanoph-2020-0582
– ident: e_1_2_10_273_1
  doi: 10.1364/OL.40.002325
– ident: e_1_2_10_229_1
  doi: 10.1103/PhysRevB.87.161110
– ident: e_1_2_10_58_1
  doi: 10.1021/acsami.2c04414
– ident: e_1_2_10_129_1
  doi: 10.1103/PhysRevLett.126.073001
– ident: e_1_2_10_72_1
  doi: 10.1186/s43074-023-00108-1
– ident: e_1_2_10_127_1
  doi: 10.1038/s41377-020-00386-5
– ident: e_1_2_10_315_1
  doi: 10.1039/D0NR00457J
– ident: e_1_2_10_348_1
  doi: 10.1038/srep11678
– ident: e_1_2_10_51_1
  doi: 10.1016/j.diamond.2024.110939
– ident: e_1_2_10_211_1
  doi: 10.1088/1402-4896/ac700f
– ident: e_1_2_10_300_1
  doi: 10.1063/1.4886148
– ident: e_1_2_10_242_1
  doi: 10.1002/adma.201704611
– ident: e_1_2_10_369_1
  doi: 10.1038/s41467-018-04594-x
– ident: e_1_2_10_26_1
  doi: 10.1038/nmat3431
– ident: e_1_2_10_256_1
  doi: 10.1109/JSEN.2023.3239018
– ident: e_1_2_10_340_1
  doi: 10.1038/srep05708
– ident: e_1_2_10_162_1
  doi: 10.1002/adom.202200301
– ident: e_1_2_10_182_1
  doi: 10.1021/acsnano.7b04698
– ident: e_1_2_10_52_1
  doi: 10.1016/j.physleta.2024.129401
– ident: e_1_2_10_46_1
  doi: 10.1117/1.AP.2.5.056004
– ident: e_1_2_10_373_1
  doi: 10.1039/C9NR03178B
– ident: e_1_2_10_16_1
  doi: 10.1038/ncomms6753
– volume: 12
  start-page: 1
  year: 2020
  ident: e_1_2_10_141_1
  publication-title: IEEE Photonics J
– ident: e_1_2_10_217_1
  doi: 10.1063/1.4950863
– ident: e_1_2_10_359_1
  doi: 10.1016/j.bios.2004.03.006
– ident: e_1_2_10_31_1
  doi: 10.1039/C5NR07114C
– ident: e_1_2_10_218_1
  doi: 10.1088/1402-4896/ac3a4b
– ident: e_1_2_10_15_1
  doi: 10.1038/nature11231
– ident: e_1_2_10_233_1
  doi: 10.1063/1.4969061
– volume: 106
  start-page: 5401
  year: 2022
  ident: e_1_2_10_346_1
  publication-title: Phys. Rev. B
– ident: e_1_2_10_333_1
  doi: 10.1364/OE.18.017504
– ident: e_1_2_10_124_1
  doi: 10.1088/1555-6611/ac46cf
– ident: e_1_2_10_17_1
  doi: 10.1038/nmat2495
– ident: e_1_2_10_213_1
  doi: 10.1088/2053-1591/2/5/055801
– ident: e_1_2_10_266_1
  doi: 10.1039/C5NR03060A
– ident: e_1_2_10_204_1
  doi: 10.1088/1367-2630/ab9e8a
– ident: e_1_2_10_237_1
  doi: 10.1002/adom.201901050
– ident: e_1_2_10_33_1
  doi: 10.1103/PhysRevB.79.085111
– ident: e_1_2_10_302_1
  doi: 10.1109/TMTT.2015.2393862
– ident: e_1_2_10_140_1
  doi: 10.1103/PhysRevLett.123.253901
– ident: e_1_2_10_155_1
  doi: 10.1002/lpor.202200564
– ident: e_1_2_10_308_1
  doi: 10.1364/OE.25.005206
– ident: e_1_2_10_343_1
  doi: 10.1002/adma.201004341
– ident: e_1_2_10_367_1
  doi: 10.1016/j.talanta.2023.125481
– ident: e_1_2_10_120_1
  doi: 10.1038/nmat2810
– ident: e_1_2_10_192_1
  doi: 10.1039/D0NR00461H
– ident: e_1_2_10_376_1
  doi: 10.1002/lpor.201600064
– ident: e_1_2_10_284_1
  doi: 10.1007/s11468-022-01595-x
– ident: e_1_2_10_303_1
  doi: 10.1109/JSEN.2018.2868873
– ident: e_1_2_10_247_1
  doi: 10.1021/acs.jpclett.6b01308
– ident: e_1_2_10_117_1
  doi: 10.1109/JSTQE.2022.3206066
– ident: e_1_2_10_295_1
  doi: 10.1063/1.4794939
– ident: e_1_2_10_301_1
  doi: 10.1038/srep40441
– ident: e_1_2_10_258_1
  doi: 10.1016/j.nanoen.2019.104280
– ident: e_1_2_10_261_1
  doi: 10.1126/science.1102896
– ident: e_1_2_10_351_1
  doi: 10.1007/s11468-016-0451-7
– ident: e_1_2_10_396_1
  doi: 10.1088/1361-6463/ac670f
– volume: 99
  start-page: 1909
  year: 2011
  ident: e_1_2_10_215_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_10_312_1
  doi: 10.1007/s11664-020-08692-9
– ident: e_1_2_10_280_1
  doi: 10.1103/PhysRevB.93.235417
– ident: e_1_2_10_37_1
  doi: 10.1021/nl902621d
– ident: e_1_2_10_107_1
  doi: 10.1364/OE.457768
– ident: e_1_2_10_196_1
  doi: 10.1364/OE.27.013884
– ident: e_1_2_10_387_1
  doi: 10.1021/acsphotonics.4c01179
– ident: e_1_2_10_161_1
  doi: 10.1021/acsphotonics.2c01461
– ident: e_1_2_10_345_1
  doi: 10.1007/s11082-023-04573-7
– year: 2023
  ident: e_1_2_10_323_1
  publication-title: Earth and Space: From Infrared to Terahertz (ESIT 2022)
– ident: e_1_2_10_134_1
  doi: 10.1364/OE.438180
– ident: e_1_2_10_270_1
  doi: 10.1016/j.optcom.2017.10.069
– ident: e_1_2_10_4_1
  doi: 10.1103/PhysRevLett.64.1107
– ident: e_1_2_10_230_1
  doi: 10.1063/1.4819854
– ident: e_1_2_10_263_1
  doi: 10.1038/nature11458
– ident: e_1_2_10_19_1
  doi: 10.1088/1361-6463/aa7e6b
– ident: e_1_2_10_5_1
  doi: 10.1038/ncomms2153
– ident: e_1_2_10_104_1
  doi: 10.1016/j.rinp.2023.106304
– ident: e_1_2_10_374_1
  doi: 10.1364/OE.26.031589
– ident: e_1_2_10_354_1
  doi: 10.1140/epjp/s13360-020-00950-3
– ident: e_1_2_10_272_1
  doi: 10.1364/OE.382485
– ident: e_1_2_10_93_1
  doi: 10.1364/PRJ.514140
– ident: e_1_2_10_307_1
  doi: 10.1021/acsami.7b09889
– ident: e_1_2_10_264_1
  doi: 10.1063/1.4833757
– ident: e_1_2_10_133_1
  doi: 10.1038/s41467-021-24502-0
– ident: e_1_2_10_228_1
  doi: 10.1002/adma.201605881
– ident: e_1_2_10_321_1
  doi: 10.1364/JOSAB.29.002373
– ident: e_1_2_10_350_1
  doi: 10.1039/D4CP00151F
– ident: e_1_2_10_240_1
  doi: 10.1126/science.1221561
– ident: e_1_2_10_298_1
  doi: 10.1016/j.optcom.2016.07.055
– ident: e_1_2_10_14_1
  doi: 10.1038/nmat2546
– ident: e_1_2_10_318_1
  doi: 10.1063/1.1996844
– ident: e_1_2_10_170_1
  doi: 10.1038/s41598-021-98498-4
– ident: e_1_2_10_199_1
  doi: 10.1364/AO.404381
– ident: e_1_2_10_168_1
  doi: 10.3390/nano12213853
– ident: e_1_2_10_259_1
  doi: 10.1364/OE.435998
– ident: e_1_2_10_3_1
  doi: 10.1103/RevModPhys.77.633
– ident: e_1_2_10_186_1
  doi: 10.1039/D2MH00787H
– ident: e_1_2_10_316_1
– year: 2021
  ident: e_1_2_10_355_1
  publication-title: AOPC 2021: Infrared Device and Infrared Technology
– ident: e_1_2_10_148_1
  doi: 10.1002/admt.202000626
– ident: e_1_2_10_96_1
  doi: 10.1515/nanoph-2016-0168
– ident: e_1_2_10_73_1
  doi: 10.1186/s43074-024-00129-4
– volume: 62
  start-page: 7102
  year: 2023
  ident: e_1_2_10_324_1
  publication-title: Opt. Eng.
– ident: e_1_2_10_296_1
  doi: 10.1109/TAP.2008.922174
– ident: e_1_2_10_81_1
  doi: 10.1364/PRJ.6.000692
– ident: e_1_2_10_48_1
  doi: 10.1021/nl501628x
– ident: e_1_2_10_184_1
  doi: 10.1364/OE.500867
– ident: e_1_2_10_35_1
  doi: 10.37188/lam.2021.019
– ident: e_1_2_10_220_1
  doi: 10.1016/j.optcom.2022.128387
– ident: e_1_2_10_185_1
  doi: 10.1007/s11468-021-01561-z
– ident: e_1_2_10_389_1
  doi: 10.1039/D3CP02083E
– ident: e_1_2_10_61_1
  doi: 10.1063/5.0009785
– ident: e_1_2_10_349_1
  doi: 10.1063/5.0093664
– ident: e_1_2_10_334_1
  doi: 10.1088/1361-6463/ac9912
– ident: e_1_2_10_195_1
  doi: 10.1038/srep20801
– ident: e_1_2_10_311_1
  doi: 10.1109/LPT.2019.2926138
– ident: e_1_2_10_328_1
  doi: 10.1038/s41578-018-0076-x
– ident: e_1_2_10_222_1
  doi: 10.1002/andp.202200425
– ident: e_1_2_10_289_1
  doi: 10.1063/1.4795534
– ident: e_1_2_10_306_1
  doi: 10.1021/acsnano.5b00497
– ident: e_1_2_10_47_1
  doi: 10.1364/OPTICA.6.000996
– ident: e_1_2_10_274_1
  doi: 10.1007/s00340-019-7242-8
– ident: e_1_2_10_377_1
  doi: 10.1016/j.mattod.2019.08.002
– ident: e_1_2_10_176_1
  doi: 10.1109/JSEN.2021.3074572
– ident: e_1_2_10_166_1
  doi: 10.1364/OE.25.010484
– ident: e_1_2_10_319_1
  doi: 10.1063/1.3653242
– ident: e_1_2_10_366_1
  doi: 10.1515/nanoph-2022-0565
– ident: e_1_2_10_250_1
  doi: 10.1021/jacs.5b05602
– ident: e_1_2_10_335_1
  doi: 10.3390/nano11112876
– ident: e_1_2_10_108_1
  doi: 10.1103/PhysRevLett.102.053901
– ident: e_1_2_10_91_1
  doi: 10.1002/adom.201500676
– ident: e_1_2_10_118_1
  doi: 10.1088/1361-6463/ac1a9f
– volume: 05
  start-page: 206
  year: 2023
  ident: e_1_2_10_232_1
  publication-title: Mater. Today Proc
– ident: e_1_2_10_132_1
  doi: 10.1038/s41566-021-00860-5
– ident: e_1_2_10_277_1
  doi: 10.1016/j.carbon.2017.10.035
– ident: e_1_2_10_371_1
  doi: 10.1002/lpor.201800078
– ident: e_1_2_10_235_1
  doi: 10.1364/PRJ.7.000994
– ident: e_1_2_10_271_1
  doi: 10.1109/JLT.2020.3035041
– ident: e_1_2_10_101_1
  doi: 10.1364/OE.446720
– ident: e_1_2_10_227_1
  doi: 10.1515/nanoph-2020-0017
– ident: e_1_2_10_317_1
  doi: 10.1088/1742-6596/1592/1/012024
– volume: 14
  year: 2020
  ident: e_1_2_10_34_1
  publication-title: Laser & Photonics Rev
– ident: e_1_2_10_325_1
  doi: 10.1016/j.optmat.2020.109811
– ident: e_1_2_10_390_1
  doi: 10.1364/OE.27.025196
– ident: e_1_2_10_119_1
  doi: 10.1088/1361-6463/ad0aed
– ident: e_1_2_10_102_1
  doi: 10.1515/nanoph-2022-0776
– ident: e_1_2_10_338_1
  doi: 10.1063/1.4943974
– ident: e_1_2_10_275_1
  doi: 10.3390/nano12203672
– ident: e_1_2_10_111_1
  doi: 10.1002/adpr.202200356
– ident: e_1_2_10_136_1
  doi: 10.1002/lpor.202000559
– ident: e_1_2_10_251_1
  doi: 10.1002/lpor.201870043
– ident: e_1_2_10_291_1
  doi: 10.1063/1.3695165
– ident: e_1_2_10_395_1
  doi: 10.1364/OE.389231
– ident: e_1_2_10_146_1
  doi: 10.1039/D2NR05820K
– ident: e_1_2_10_363_1
  doi: 10.1109/JSEN.2021.3135938
– ident: e_1_2_10_114_1
  doi: 10.1016/j.optcom.2019.05.038
– ident: e_1_2_10_279_1
  doi: 10.1016/j.optcom.2017.09.013
SSID ssj0017734
Score 2.4776974
SecondaryResourceType review_article
online_first
Snippet Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for...
SourceID crossref
SourceType Index Database
Title Metamaterial‐Based Electromagnetically Induced Transparency
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWMWuHJA4oIDjxlmOBYoqJDiwiHKqbMcpIEgRSiTgxCfwjXwJ4yUhhR4KlyiynDjJs2aenZk3CG3HHuHEl9QVmFHXZ0K63CPSjUOJuUgC8Ig62uIs6Fz5J13aLUvc2-ySnO-Jt5F5Jf9BFdoAV5Ul-wdkq5tCA5wDvnAEhOE4FsanMmfAOPVQVdTCAfilZLdtyts8sn5m0hQfXndVmQ71u98ImqssMDH0U7dVxgMoZ2f3CMvbV9T72m4wH4C9Kofs3lVT7KLQZuxmkPXfbqV1i3pjelDoeD55d19UvQ9tbshN8VLYaWp3IAjVkVJ-zWgGnoqf06VvwKfU20zi9y8zbWRfWZIqLQAgYRE22c_Detg__FQVPWiUlklPXd-rrp9EUwSWCqqKxdF5JSHmhaGJLCifsRTuxGR_ePwaMakxjMs5NGuXBk7L4DyPJmS2gGZqgpGLaAjxz_cPjbUzAmvHYu3UsV5CV8fty8OOawtguAIMY-4GhISUeUDRgfTBqyVKGShIMAkD6TNg9hxLkgIH9ZJmKJnELA5jInCCYwm0OWouo0Y2yOQKcoAIchZRmsZp0-cR5UECC2GfSpH6ERPRKtop3773ZHROeqO_89rYPdfR9Pd02UCN_LmQm0Dhcr6lMfoCQaxERw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metamaterial%E2%80%90Based+Electromagnetically+Induced+Transparency&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Ben%E2%80%90Xin&rft.au=Sun%2C+Yongzheng&rft.au=Zhou%2C+Weijun&rft.au=Chen%2C+Yuxuan&rft.date=2025-06-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002%2Fadfm.202508025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202508025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon