Metamaterial‐Based Electromagnetically Induced Transparency
Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for the propagation of light through opaque media, analogous phenomena have recently been demonstrated in various engineering metamaterials, all...
Saved in:
Published in | Advanced functional materials |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
04.06.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for the propagation of light through opaque media, analogous phenomena have recently been demonstrated in various engineering metamaterials, allowing for experimental observations using incoherent light at room temperature, which greatly enriches the connotation of EIT, stimulates research enthusiasm for metamaterial‐based EIT (MBEIT). Timely summarizing the latest progress of MBEIT is crucial for promoting its vigorous development. Herein, a comprehensive and in‐depth summary of the research progress on four core aspects of MBEIT, namely physical mechanisms, classifications, tunable functions, and applications is provided. Mainstream physical mechanisms of MBEIT, including Lorentz coupled model theory, bound states in the continuum, and three energy‐level theory are briefly outlined. Classifications of MBEIT involve single‐band, dual‐band, multi‐band, and broadband are further summarized. The MBEIT having dynamically tuned properties employing diversified modulation strategies, such as electrical, optical, thermal, and mechanical, is emphasized. Interdisciplinary application achievements of MBEIT in the fields of medicine, biochemistry, fingerprinting, optical encryption, and ultrafast optics are reviewed. The challenges and some solutions for the future research on MBEIT are finally discussed. |
---|---|
AbstractList | Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for the propagation of light through opaque media, analogous phenomena have recently been demonstrated in various engineering metamaterials, allowing for experimental observations using incoherent light at room temperature, which greatly enriches the connotation of EIT, stimulates research enthusiasm for metamaterial‐based EIT (MBEIT). Timely summarizing the latest progress of MBEIT is crucial for promoting its vigorous development. Herein, a comprehensive and in‐depth summary of the research progress on four core aspects of MBEIT, namely physical mechanisms, classifications, tunable functions, and applications is provided. Mainstream physical mechanisms of MBEIT, including Lorentz coupled model theory, bound states in the continuum, and three energy‐level theory are briefly outlined. Classifications of MBEIT involve single‐band, dual‐band, multi‐band, and broadband are further summarized. The MBEIT having dynamically tuned properties employing diversified modulation strategies, such as electrical, optical, thermal, and mechanical, is emphasized. Interdisciplinary application achievements of MBEIT in the fields of medicine, biochemistry, fingerprinting, optical encryption, and ultrafast optics are reviewed. The challenges and some solutions for the future research on MBEIT are finally discussed. |
Author | Sun, Yongzheng Yang, Guofeng Huang, Zhiming Chen, Yuxuan Xiong, Han Wang, Ben‐Xin Zhou, Weijun |
Author_xml | – sequence: 1 givenname: Ben‐Xin orcidid: 0000-0003-0489-9861 surname: Wang fullname: Wang, Ben‐Xin organization: School of Science Jiangnan University Wuxi 214122 China, State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China – sequence: 2 givenname: Yongzheng surname: Sun fullname: Sun, Yongzheng organization: School of Science Jiangnan University Wuxi 214122 China – sequence: 3 givenname: Weijun surname: Zhou fullname: Zhou, Weijun organization: School of Science Jiangnan University Wuxi 214122 China – sequence: 4 givenname: Yuxuan surname: Chen fullname: Chen, Yuxuan organization: School of Science Jiangnan University Wuxi 214122 China – sequence: 5 givenname: Guofeng surname: Yang fullname: Yang, Guofeng organization: School of Science Jiangnan University Wuxi 214122 China – sequence: 6 givenname: Han surname: Xiong fullname: Xiong, Han organization: School of Electrical Engineering Chongqing University Chongqing 40044 China – sequence: 7 givenname: Zhiming surname: Huang fullname: Huang, Zhiming organization: State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China |
BookMark | eNo9j81Kw0AUhQepYFvduu4LJN47ycxkFi601FqouKngLlxnbiSSnzITF9n5CD6jT2KL0s05Bz448M3EpOs7FuIaIUUAeUO-alMJUkFxiDMxRY06yUAWk9PG1wsxi_EDAI3J8qm4feKBWho41NT8fH3fU2S_WDXshtC39N7xUDtqmnGx6fynO7BdoC7uKXDnxktxXlET-eq_5-LlYbVbPibb5_VmebdNHFo9JFpKowitMUrlRkqPVhXagzSac7IW34BlpdGgzwwTA1ljpQMPlkHZIpuL9O_XhT7GwFW5D3VLYSwRyqN8eZQvT_LZL_0oT1E |
Cites_doi | 10.1016/j.carbon.2021.06.037 10.1103/PhysRevB.80.153103 10.35848/1882-0786/ac79a0 10.1016/j.bios.2018.11.014 10.1002/mop.33626 10.1021/acsphotonics.7b01478 10.1002/adfm.201803380 10.1002/adfm.202312170 10.1038/nature12289 10.1038/nphoton.2012.262 10.1016/j.diamond.2022.108935 10.1364/OE.25.014089 10.1146/annurev-physchem-040215-112222 10.1364/OL.487655 10.1103/PhysRevLett.101.047401 10.1002/adma.202100836 10.1016/j.bios.2021.113336 10.1016/j.rinp.2020.103377 10.1126/sciadv.aar7353 10.1002/adom.201500620 10.1103/PhysRevApplied.18.024035 10.1088/2040-8978/15/7/075103 10.1063/1.4999320 10.1364/OME.9.001562 10.1038/nature05343 10.1002/lpor.202300233 10.1007/s00340-013-5470-x 10.1021/acsnano.5b01154 10.1088/2040-8986/ac3dda 10.1038/ncomms9969 10.1016/j.rinp.2021.104040 10.1080/10584587.2015.1036636 10.1016/j.talanta.2018.09.029 10.1080/02678292.2017.1404158 10.1016/j.physleta.2021.127556 10.1364/OPTICA.404754 10.1038/s41598-017-04692-8 10.1039/D3CP03072E 10.1109/TMTT.2012.2209455 10.1039/C8NR08813F 10.1016/j.foodchem.2016.05.059 10.1103/PhysRevB.97.155403 10.1016/j.bios.2012.10.095 10.1002/adma.202006054 10.1364/OE.482367 10.1002/lpor.202100393 10.1016/j.mser.2017.08.001 10.1002/adom.202200750 10.1103/PhysRevLett.96.123901 10.1109/JLT.2018.2804336 10.1364/PRJ.480671 10.1016/j.isci.2021.103708 10.1364/AO.54.003918 10.1109/ICMMT49418.2020.9387061 10.1039/C7NR05542K 10.1103/PhysRevLett.66.2593 10.1039/D4TC00455H 10.1021/ph500104k 10.1103/PhysRevB.109.245420 10.1002/adom.201800545 10.1063/1.4993428 10.1021/acsphotonics.2c00618 10.1016/j.carbon.2018.10.061 10.1364/OE.412061 10.1016/j.ijleo.2021.166784 10.1016/j.optcom.2018.03.037 10.1103/PhysRevLett.107.043901 10.1021/acsami.0c22862 10.1364/OE.26.005769 10.1364/OE.23.005147 10.1016/j.snb.2024.135628 10.1364/OE.463340 10.1002/pssr.201409524 10.1063/1.3525925 10.1007/s11468-019-00967-0 10.1021/acsnano.5b00723 10.1103/PhysRevB.92.115101 10.1109/JPHOT.2015.2412457 10.1364/OME.489428 10.1109/JSTQE.2013.2238217 10.1063/5.0022254 10.1103/PhysRevA.69.063804 10.1364/OE.22.012524 10.1021/acs.nanolett.7b02834 10.1038/srep13137 10.1103/PhysRevLett.106.107403 10.1002/adpr.202000009 10.1364/BOE.9.000373 10.1063/1.3696306 10.1364/OME.6.002607 10.1515/nanoph-2023-0010 10.1016/j.rinp.2019.102887 10.1088/2053-1591/abe102 10.1002/adom.202002001 10.3390/ma15207371 10.1063/1.4904227 10.1002/lpor.202100498 10.1364/OL.39.003539 10.1039/C5NR03094C 10.1209/0295-5075/125/34002 10.1016/j.optlastec.2018.02.034 10.1038/s41377-023-01232-0 10.1109/IRMMW-THz.2019.8874299 10.1016/j.surfin.2022.102423 10.1080/15421406.2014.917469 10.1002/smll.202006489 10.1103/PhysRevLett.121.033903 10.1364/OPTICA.6.000169 10.1038/nphys1480 10.1021/acsomega.0c06082 10.1364/PRJ.461787 10.1088/1361-6463/ab60ed 10.1016/j.optcom.2024.131112 10.1109/JSEN.2021.3085954 10.1016/j.carbon.2017.08.016 10.1063/1.2840160 10.1063/1.4819389 10.1016/j.optlastec.2023.110106 10.1088/2040-8978/16/12/125105 10.1126/sciadv.aax8821 10.1039/C6CP03731C 10.1364/OL.41.003821 10.1364/OE.23.027361 10.1126/science.aas9768 10.1063/1.3182857 10.1088/1361-6463/aa69b1 10.1016/j.rinp.2023.106276 10.1038/s41598-019-54414-5 10.3788/COL202018.092402 10.1039/C5EE02503F 10.1039/D3CP01475D 10.1016/j.carbon.2019.12.050 10.1007/s11468-019-01052-2 10.1364/OE.20.000042 10.1063/5.0196472 10.1016/j.rinp.2023.107102 10.1016/j.optcom.2022.129164 10.1021/acsnano.8b05514 10.1016/j.cej.2023.142347 10.1038/s41467-022-31877-1 10.1038/s41598-020-65418-x 10.1103/PhysRevLett.119.243901 10.1016/j.bios.2021.113241 10.1038/ncomms2285 10.1364/OE.23.000545 10.1088/2053-1591/ab0296 10.1002/adfm.202203680 10.3390/ma12060841 10.1063/1.4798244 10.1364/OME.9.000352 10.1109/JSEN.2023.3249743 10.1103/PhysRevLett.123.116104 10.1364/OE.26.002905 10.1002/lpor.201700309 10.7567/APEX.11.082203 10.1103/PhysRevLett.121.193903 10.1103/PhysRevLett.99.147401 10.1088/1361-6463/ac60cc 10.1016/j.optlaseng.2022.107127 10.1016/j.optcom.2018.04.021 10.1016/j.ijmecsci.2023.108775 10.1039/C8TA12206G 10.1088/1361-6463/aadb7f 10.1002/admt.202301911 10.1002/smll.202301165 10.1364/OE.17.016527 10.1039/D3NR05095E 10.1038/s41467-021-26406-5 10.1364/OL.43.004695 10.1021/acsami.5b09084 10.1021/acsphotonics.0c00003 10.1038/s41598-020-77922-1 10.1364/OE.24.030411 10.1088/1402-4896/aca1e5 10.3390/nano11092175 10.1103/PhysRevLett.103.147401 10.1063/1.4826630 10.1364/OE.482193 10.1515/nanoph-2019-0377 10.1039/D3CP05689A 10.1103/PhysRevB.59.12632 10.1364/OE.394416 10.1016/j.aca.2012.05.051 10.1016/j.optcom.2023.130005 10.1364/OE.22.021326 10.1038/srep02338 10.1039/D1NA00232E 10.1016/j.carbon.2023.03.062 10.1088/0957-4484/24/21/214003 10.1007/s11082-020-02344-2 10.1364/PRJ.7.000955 10.1016/j.bios.2020.112393 10.1016/j.optcom.2015.05.005 10.1063/1.881806 10.1088/0953-2048/26/7/074004 10.1063/1.5040734 10.1007/s12161-021-02176-0 10.1021/acs.nanolett.5c00426 10.1364/OME.7.003397 10.1364/OE.18.017187 10.1039/C7RA06770D 10.1103/PhysRevApplied.18.054050 10.1007/s11468-018-0831-2 10.1021/acsphotonics.9b00938 10.1021/ac503212q 10.1002/andp.202200175 10.1364/OME.465047 10.1016/j.optmat.2020.110060 10.3390/nano12244405 10.1364/JOSAA.413384 10.1038/natrevmats.2016.48 10.1103/PhysRevB.106.125411 10.1364/AOP.8.000618 10.1016/j.rinp.2024.107451 10.1016/j.optlastec.2024.110545 10.1364/OE.19.021652 10.1021/acs.nanolett.9b04404 10.1002/adom.201800141 10.1016/j.carbon.2021.07.069 10.1021/acs.nanolett.2c05021 10.7567/APEX.11.062001 10.1364/OE.380280 10.1021/acs.nanolett.3c04174 10.1515/nanoph-2021-0520 10.1063/1.4916189 10.1016/j.rinp.2022.105514 10.3390/nano11092343 10.1063/1.4976504 10.1039/C8NR03564D 10.1103/PhysRevLett.87.237401 10.1016/j.scib.2018.12.003 10.1016/j.tibtech.2016.04.008 10.1063/1.4935031 10.1088/2040-8986/ab70f2 10.1515/nanoph-2020-0582 10.1364/OL.40.002325 10.1103/PhysRevB.87.161110 10.1021/acsami.2c04414 10.1103/PhysRevLett.126.073001 10.1186/s43074-023-00108-1 10.1038/s41377-020-00386-5 10.1039/D0NR00457J 10.1038/srep11678 10.1016/j.diamond.2024.110939 10.1088/1402-4896/ac700f 10.1063/1.4886148 10.1002/adma.201704611 10.1038/s41467-018-04594-x 10.1038/nmat3431 10.1109/JSEN.2023.3239018 10.1038/srep05708 10.1002/adom.202200301 10.1021/acsnano.7b04698 10.1016/j.physleta.2024.129401 10.1117/1.AP.2.5.056004 10.1039/C9NR03178B 10.1038/ncomms6753 10.1063/1.4950863 10.1016/j.bios.2004.03.006 10.1039/C5NR07114C 10.1088/1402-4896/ac3a4b 10.1038/nature11231 10.1063/1.4969061 10.1364/OE.18.017504 10.1088/1555-6611/ac46cf 10.1038/nmat2495 10.1088/2053-1591/2/5/055801 10.1039/C5NR03060A 10.1088/1367-2630/ab9e8a 10.1002/adom.201901050 10.1103/PhysRevB.79.085111 10.1109/TMTT.2015.2393862 10.1103/PhysRevLett.123.253901 10.1002/lpor.202200564 10.1364/OE.25.005206 10.1002/adma.201004341 10.1016/j.talanta.2023.125481 10.1038/nmat2810 10.1039/D0NR00461H 10.1002/lpor.201600064 10.1007/s11468-022-01595-x 10.1109/JSEN.2018.2868873 10.1021/acs.jpclett.6b01308 10.1109/JSTQE.2022.3206066 10.1063/1.4794939 10.1038/srep40441 10.1016/j.nanoen.2019.104280 10.1126/science.1102896 10.1007/s11468-016-0451-7 10.1088/1361-6463/ac670f 10.1007/s11664-020-08692-9 10.1103/PhysRevB.93.235417 10.1021/nl902621d 10.1364/OE.457768 10.1364/OE.27.013884 10.1021/acsphotonics.4c01179 10.1021/acsphotonics.2c01461 10.1007/s11082-023-04573-7 10.1364/OE.438180 10.1016/j.optcom.2017.10.069 10.1103/PhysRevLett.64.1107 10.1063/1.4819854 10.1038/nature11458 10.1088/1361-6463/aa7e6b 10.1038/ncomms2153 10.1016/j.rinp.2023.106304 10.1364/OE.26.031589 10.1140/epjp/s13360-020-00950-3 10.1364/OE.382485 10.1364/PRJ.514140 10.1021/acsami.7b09889 10.1063/1.4833757 10.1038/s41467-021-24502-0 10.1002/adma.201605881 10.1364/JOSAB.29.002373 10.1039/D4CP00151F 10.1126/science.1221561 10.1016/j.optcom.2016.07.055 10.1038/nmat2546 10.1063/1.1996844 10.1038/s41598-021-98498-4 10.1364/AO.404381 10.3390/nano12213853 10.1364/OE.435998 10.1103/RevModPhys.77.633 10.1039/D2MH00787H 10.1002/admt.202000626 10.1515/nanoph-2016-0168 10.1186/s43074-024-00129-4 10.1109/TAP.2008.922174 10.1364/PRJ.6.000692 10.1021/nl501628x 10.1364/OE.500867 10.37188/lam.2021.019 10.1016/j.optcom.2022.128387 10.1007/s11468-021-01561-z 10.1039/D3CP02083E 10.1063/5.0009785 10.1063/5.0093664 10.1088/1361-6463/ac9912 10.1038/srep20801 10.1109/LPT.2019.2926138 10.1038/s41578-018-0076-x 10.1002/andp.202200425 10.1063/1.4795534 10.1021/acsnano.5b00497 10.1364/OPTICA.6.000996 10.1007/s00340-019-7242-8 10.1016/j.mattod.2019.08.002 10.1109/JSEN.2021.3074572 10.1364/OE.25.010484 10.1063/1.3653242 10.1515/nanoph-2022-0565 10.1021/jacs.5b05602 10.3390/nano11112876 10.1103/PhysRevLett.102.053901 10.1002/adom.201500676 10.1088/1361-6463/ac1a9f 10.1038/s41566-021-00860-5 10.1016/j.carbon.2017.10.035 10.1002/lpor.201800078 10.1364/PRJ.7.000994 10.1109/JLT.2020.3035041 10.1364/OE.446720 10.1515/nanoph-2020-0017 10.1088/1742-6596/1592/1/012024 10.1016/j.optmat.2020.109811 10.1364/OE.27.025196 10.1088/1361-6463/ad0aed 10.1515/nanoph-2022-0776 10.1063/1.4943974 10.3390/nano12203672 10.1002/adpr.202200356 10.1002/lpor.202000559 10.1002/lpor.201870043 10.1063/1.3695165 10.1364/OE.389231 10.1039/D2NR05820K 10.1109/JSEN.2021.3135938 10.1016/j.optcom.2019.05.038 10.1016/j.optcom.2017.09.013 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/adfm.202508025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202508025 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT |
ID | FETCH-LOGICAL-c196t-62275a1977554722d19586d0276e4a991b0e2f6171d37eae0a9792c0d09e05983 |
ISSN | 1616-301X |
IngestDate | Thu Aug 14 00:16:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c196t-62275a1977554722d19586d0276e4a991b0e2f6171d37eae0a9792c0d09e05983 |
ORCID | 0000-0003-0489-9861 |
ParticipantIDs | crossref_primary_10_1002_adfm_202508025 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-04 |
PublicationDateYYYYMMDD | 2025-06-04 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
References | e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_279_1 e_1_2_10_158_1 e_1_2_10_342_1 e_1_2_10_365_1 e_1_2_10_388_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_147_1 e_1_2_10_330_1 e_1_2_10_353_1 e_1_2_10_376_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_234_1 e_1_2_10_341_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_364_1 e_1_2_10_15_1 e_1_2_10_387_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_223_1 e_1_2_10_352_1 e_1_2_10_148_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_375_1 e_1_2_10_26_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_340_1 e_1_2_10_363_1 e_1_2_10_91_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_114_1 e_1_2_10_386_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 Xia S. (e_1_2_10_346_1) 2022; 106 e_1_2_10_351_1 e_1_2_10_374_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_27_1 e_1_2_10_103_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_385_1 e_1_2_10_362_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_17_1 e_1_2_10_309_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_350_1 e_1_2_10_396_1 e_1_2_10_373_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_252_1 e_1_2_10_275_1 e_1_2_10_298_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_177_1 e_1_2_10_2_1 e_1_2_10_300_1 e_1_2_10_369_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_287_1 e_1_2_10_32_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 Vaswani L. K. (e_1_2_10_232_1) 2023; 05 e_1_2_10_334_1 e_1_2_10_357_1 e_1_2_10_311_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_299_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_276_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_322_1 e_1_2_10_368_1 e_1_2_10_3_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_345_1 e_1_2_10_242_1 e_1_2_10_288_1 e_1_2_10_33_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_333_1 e_1_2_10_379_1 e_1_2_10_310_1 e_1_2_10_68_1 e_1_2_10_356_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_254_1 e_1_2_10_277_1 e_1_2_10_110_1 Hu Y. (e_1_2_10_34_1) 2020; 14 e_1_2_10_179_1 e_1_2_10_321_1 e_1_2_10_344_1 e_1_2_10_367_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_220_1 e_1_2_10_289_1 e_1_2_10_11_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_332_1 e_1_2_10_378_1 e_1_2_10_122_1 e_1_2_10_24_1 Li T. (e_1_2_10_87_1) 2024; 10 e_1_2_10_278_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_1_1 e_1_2_10_320_1 e_1_2_10_343_1 e_1_2_10_389_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_366_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_59_1 Andrey A. B. (e_1_2_10_126_1) 2019; 1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_354_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_377_1 e_1_2_10_271_1 e_1_2_10_339_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_294_1 e_1_2_10_207_1 e_1_2_10_380_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_304_1 e_1_2_10_327_1 e_1_2_10_173_1 e_1_2_10_196_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_283_1 e_1_2_10_219_1 e_1_2_10_391_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_338_1 e_1_2_10_162_1 e_1_2_10_315_1 e_1_2_10_185_1 e_1_2_10_272_1 e_1_2_10_41_1 e_1_2_10_295_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 Zhu L. (e_1_2_10_324_1) 2023; 62 e_1_2_10_349_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_98_1 e_1_2_10_326_1 e_1_2_10_7_1 e_1_2_10_303_1 e_1_2_10_261_1 e_1_2_10_284_1 e_1_2_10_390_1 e_1_2_10_337_1 e_1_2_10_64_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_314_1 e_1_2_10_250_1 e_1_2_10_273_1 e_1_2_10_42_1 e_1_2_10_296_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_348_1 e_1_2_10_53_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_302_1 e_1_2_10_325_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_285_1 Zhang W. (e_1_2_10_331_1) 2020; 59 e_1_2_10_336_1 e_1_2_10_359_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_313_1 e_1_2_10_274_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_297_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_301_1 e_1_2_10_347_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_263_1 Huang W. (e_1_2_10_397_1) 2021; 54 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_286_1 e_1_2_10_188_1 e_1_2_10_312_1 e_1_2_10_335_1 e_1_2_10_358_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_290_1 e_1_2_10_361_1 e_1_2_10_384_1 Hu Y. (e_1_2_10_156_1) 2022; 14 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_139_1 e_1_2_10_18_1 Chiang Y.‐J. (e_1_2_10_215_1) 2011; 99 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_308_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 Shen D. (e_1_2_10_131_1) 2021; 13 e_1_2_10_372_1 e_1_2_10_395_1 Wu X. (e_1_2_10_355_1) 2021 Han S. (e_1_2_10_10_1) 2019; 31 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_319_1 e_1_2_10_291_1 e_1_2_10_238_1 e_1_2_10_360_1 e_1_2_10_383_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_19_1 Yang Q. (e_1_2_10_141_1) 2020; 12 e_1_2_10_307_1 e_1_2_10_204_1 e_1_2_10_280_1 e_1_2_10_227_1 e_1_2_10_371_1 e_1_2_10_394_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_318_1 e_1_2_10_239_1 e_1_2_10_292_1 e_1_2_10_216_1 e_1_2_10_382_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 Yang L. (e_1_2_10_323_1) 2023 e_1_2_10_8_1 e_1_2_10_306_1 e_1_2_10_329_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_281_1 e_1_2_10_393_1 e_1_2_10_370_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_317_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_293_1 e_1_2_10_229_1 e_1_2_10_381_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_305_1 e_1_2_10_195_1 e_1_2_10_9_1 e_1_2_10_328_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_282_1 e_1_2_10_218_1 e_1_2_10_392_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_316_1 e_1_2_10_184_1 |
References_xml | – ident: e_1_2_10_74_1 doi: 10.1016/j.carbon.2021.06.037 – ident: e_1_2_10_28_1 doi: 10.1103/PhysRevB.80.153103 – ident: e_1_2_10_202_1 doi: 10.35848/1882-0786/ac79a0 – ident: e_1_2_10_6_1 doi: 10.1016/j.bios.2018.11.014 – volume: 31 start-page: 1901 year: 2019 ident: e_1_2_10_10_1 publication-title: Adv. Mater. – ident: e_1_2_10_286_1 doi: 10.1002/mop.33626 – volume: 10 start-page: 0559 year: 2024 ident: e_1_2_10_87_1 publication-title: Mater. Today Nano – ident: e_1_2_10_149_1 doi: 10.1021/acsphotonics.7b01478 – ident: e_1_2_10_327_1 doi: 10.1002/adfm.201803380 – ident: e_1_2_10_8_1 doi: 10.1002/adfm.202312170 – ident: e_1_2_10_125_1 doi: 10.1038/nature12289 – ident: e_1_2_10_262_1 doi: 10.1038/nphoton.2012.262 – ident: e_1_2_10_175_1 doi: 10.1016/j.diamond.2022.108935 – ident: e_1_2_10_357_1 doi: 10.1364/OE.25.014089 – ident: e_1_2_10_245_1 doi: 10.1146/annurev-physchem-040215-112222 – ident: e_1_2_10_174_1 doi: 10.1364/OL.487655 – ident: e_1_2_10_12_1 doi: 10.1103/PhysRevLett.101.047401 – ident: e_1_2_10_142_1 doi: 10.1002/adma.202100836 – ident: e_1_2_10_180_1 doi: 10.1016/j.bios.2021.113336 – volume: 14 start-page: 1 year: 2022 ident: e_1_2_10_156_1 publication-title: IEEE Photonics J – ident: e_1_2_10_59_1 doi: 10.1016/j.rinp.2020.103377 – ident: e_1_2_10_254_1 doi: 10.1126/sciadv.aar7353 – ident: e_1_2_10_38_1 doi: 10.1002/adom.201500620 – ident: e_1_2_10_177_1 doi: 10.1103/PhysRevApplied.18.024035 – ident: e_1_2_10_206_1 doi: 10.1088/2040-8978/15/7/075103 – ident: e_1_2_10_209_1 doi: 10.1063/1.4999320 – ident: e_1_2_10_287_1 doi: 10.1364/OME.9.001562 – ident: e_1_2_10_25_1 doi: 10.1038/nature05343 – ident: e_1_2_10_7_1 doi: 10.1002/lpor.202300233 – ident: e_1_2_10_216_1 doi: 10.1007/s00340-013-5470-x – ident: e_1_2_10_249_1 doi: 10.1021/acsnano.5b01154 – ident: e_1_2_10_310_1 doi: 10.1088/2040-8986/ac3dda – ident: e_1_2_10_83_1 doi: 10.1038/ncomms9969 – ident: e_1_2_10_89_1 doi: 10.1016/j.rinp.2021.104040 – ident: e_1_2_10_347_1 doi: 10.1080/10584587.2015.1036636 – ident: e_1_2_10_381_1 doi: 10.1016/j.talanta.2018.09.029 – ident: e_1_2_10_292_1 doi: 10.1080/02678292.2017.1404158 – ident: e_1_2_10_188_1 doi: 10.1016/j.physleta.2021.127556 – ident: e_1_2_10_165_1 doi: 10.1364/OPTICA.404754 – ident: e_1_2_10_313_1 doi: 10.1038/s41598-017-04692-8 – ident: e_1_2_10_183_1 doi: 10.1039/D3CP03072E – ident: e_1_2_10_109_1 doi: 10.1109/TMTT.2012.2209455 – ident: e_1_2_10_239_1 doi: 10.1039/C8NR08813F – ident: e_1_2_10_84_1 doi: 10.1016/j.foodchem.2016.05.059 – ident: e_1_2_10_30_1 doi: 10.1103/PhysRevB.97.155403 – ident: e_1_2_10_92_1 doi: 10.1016/j.bios.2012.10.095 – ident: e_1_2_10_370_1 doi: 10.1002/adma.202006054 – ident: e_1_2_10_145_1 doi: 10.1364/OE.482367 – ident: e_1_2_10_68_1 doi: 10.1002/lpor.202100393 – ident: e_1_2_10_304_1 doi: 10.1016/j.mser.2017.08.001 – ident: e_1_2_10_294_1 doi: 10.1002/adom.202200750 – ident: e_1_2_10_23_1 doi: 10.1103/PhysRevLett.96.123901 – ident: e_1_2_10_386_1 doi: 10.1109/JLT.2018.2804336 – ident: e_1_2_10_56_1 doi: 10.1364/PRJ.480671 – volume: 59 year: 2020 ident: e_1_2_10_331_1 publication-title: Opt. Eng. – ident: e_1_2_10_80_1 doi: 10.1016/j.isci.2021.103708 – ident: e_1_2_10_330_1 doi: 10.1364/AO.54.003918 – ident: e_1_2_10_197_1 doi: 10.1109/ICMMT49418.2020.9387061 – ident: e_1_2_10_252_1 doi: 10.1039/C7NR05542K – ident: e_1_2_10_2_1 doi: 10.1103/PhysRevLett.66.2593 – ident: e_1_2_10_181_1 doi: 10.1039/D4TC00455H – ident: e_1_2_10_44_1 doi: 10.1021/ph500104k – ident: e_1_2_10_18_1 doi: 10.1103/PhysRevB.109.245420 – ident: e_1_2_10_153_1 doi: 10.1002/adom.201800545 – ident: e_1_2_10_55_1 doi: 10.1063/1.4993428 – ident: e_1_2_10_160_1 doi: 10.1021/acsphotonics.2c00618 – ident: e_1_2_10_66_1 doi: 10.1016/j.carbon.2018.10.061 – ident: e_1_2_10_201_1 doi: 10.1364/OE.412061 – ident: e_1_2_10_167_1 doi: 10.1016/j.ijleo.2021.166784 – ident: e_1_2_10_106_1 doi: 10.1016/j.optcom.2018.03.037 – ident: e_1_2_10_42_1 doi: 10.1103/PhysRevLett.107.043901 – ident: e_1_2_10_76_1 doi: 10.1021/acsami.0c22862 – ident: e_1_2_10_299_1 doi: 10.1364/OE.26.005769 – ident: e_1_2_10_267_1 doi: 10.1364/OE.23.005147 – ident: e_1_2_10_360_1 doi: 10.1016/j.snb.2024.135628 – ident: e_1_2_10_172_1 doi: 10.1364/OE.463340 – ident: e_1_2_10_293_1 doi: 10.1002/pssr.201409524 – ident: e_1_2_10_226_1 doi: 10.1063/1.3525925 – ident: e_1_2_10_285_1 doi: 10.1007/s11468-019-00967-0 – ident: e_1_2_10_329_1 doi: 10.1021/acsnano.5b00723 – ident: e_1_2_10_283_1 doi: 10.1103/PhysRevB.92.115101 – ident: e_1_2_10_113_1 doi: 10.1109/JPHOT.2015.2412457 – ident: e_1_2_10_207_1 doi: 10.1364/OME.489428 – ident: e_1_2_10_341_1 doi: 10.1109/JSTQE.2013.2238217 – ident: e_1_2_10_221_1 doi: 10.1063/5.0022254 – ident: e_1_2_10_24_1 doi: 10.1103/PhysRevA.69.063804 – ident: e_1_2_10_265_1 doi: 10.1364/OE.22.012524 – ident: e_1_2_10_241_1 doi: 10.1021/acs.nanolett.7b02834 – ident: e_1_2_10_297_1 doi: 10.1038/srep13137 – ident: e_1_2_10_212_1 doi: 10.1103/PhysRevLett.106.107403 – ident: e_1_2_10_77_1 doi: 10.1002/adpr.202000009 – ident: e_1_2_10_372_1 doi: 10.1364/BOE.9.000373 – ident: e_1_2_10_32_1 doi: 10.1063/1.3696306 – ident: e_1_2_10_203_1 doi: 10.1364/OME.6.002607 – ident: e_1_2_10_179_1 doi: 10.1515/nanoph-2023-0010 – ident: e_1_2_10_39_1 doi: 10.1016/j.rinp.2019.102887 – ident: e_1_2_10_276_1 doi: 10.1088/2053-1591/abe102 – ident: e_1_2_10_121_1 doi: 10.1002/adom.202002001 – ident: e_1_2_10_352_1 doi: 10.3390/ma15207371 – ident: e_1_2_10_22_1 doi: 10.1063/1.4904227 – ident: e_1_2_10_137_1 doi: 10.1002/lpor.202100498 – ident: e_1_2_10_189_1 doi: 10.1364/OL.39.003539 – ident: e_1_2_10_57_1 doi: 10.1039/C5NR03094C – ident: e_1_2_10_356_1 doi: 10.1209/0295-5075/125/34002 – ident: e_1_2_10_278_1 doi: 10.1016/j.optlastec.2018.02.034 – ident: e_1_2_10_67_1 doi: 10.1038/s41377-023-01232-0 – ident: e_1_2_10_190_1 doi: 10.1109/IRMMW-THz.2019.8874299 – ident: e_1_2_10_116_1 doi: 10.1016/j.surfin.2022.102423 – ident: e_1_2_10_288_1 doi: 10.1080/15421406.2014.917469 – ident: e_1_2_10_75_1 doi: 10.1002/smll.202006489 – ident: e_1_2_10_138_1 doi: 10.1103/PhysRevLett.121.033903 – ident: e_1_2_10_159_1 doi: 10.1364/OPTICA.6.000169 – ident: e_1_2_10_13_1 doi: 10.1038/nphys1480 – ident: e_1_2_10_27_1 doi: 10.1021/acsomega.0c06082 – ident: e_1_2_10_82_1 doi: 10.1364/PRJ.461787 – ident: e_1_2_10_238_1 doi: 10.1088/1361-6463/ab60ed – ident: e_1_2_10_171_1 doi: 10.1016/j.optcom.2024.131112 – ident: e_1_2_10_361_1 doi: 10.1109/JSEN.2021.3085954 – ident: e_1_2_10_65_1 doi: 10.1016/j.carbon.2017.08.016 – ident: e_1_2_10_11_1 doi: 10.1063/1.2840160 – ident: e_1_2_10_41_1 doi: 10.1063/1.4819389 – ident: e_1_2_10_383_1 doi: 10.1016/j.optlastec.2023.110106 – ident: e_1_2_10_223_1 doi: 10.1088/2040-8978/16/12/125105 – ident: e_1_2_10_255_1 doi: 10.1126/sciadv.aax8821 – ident: e_1_2_10_268_1 doi: 10.1039/C6CP03731C – ident: e_1_2_10_253_1 doi: 10.1364/OL.41.003821 – ident: e_1_2_10_54_1 doi: 10.1364/OE.23.027361 – ident: e_1_2_10_122_1 doi: 10.1126/science.aas9768 – volume: 54 year: 2021 ident: e_1_2_10_397_1 publication-title: J. Appl. Phys. – ident: e_1_2_10_337_1 doi: 10.1063/1.3182857 – ident: e_1_2_10_269_1 doi: 10.1088/1361-6463/aa69b1 – ident: e_1_2_10_163_1 doi: 10.1016/j.rinp.2023.106276 – ident: e_1_2_10_169_1 doi: 10.1038/s41598-019-54414-5 – ident: e_1_2_10_115_1 doi: 10.3788/COL202018.092402 – ident: e_1_2_10_246_1 doi: 10.1039/C5EE02503F – ident: e_1_2_10_69_1 doi: 10.1039/D3CP01475D – ident: e_1_2_10_110_1 doi: 10.1016/j.carbon.2019.12.050 – ident: e_1_2_10_191_1 doi: 10.1007/s11468-019-01052-2 – ident: e_1_2_10_332_1 doi: 10.1364/OE.20.000042 – ident: e_1_2_10_86_1 doi: 10.1063/5.0196472 – ident: e_1_2_10_314_1 doi: 10.1016/j.rinp.2023.107102 – ident: e_1_2_10_88_1 doi: 10.1016/j.optcom.2022.129164 – volume: 13 start-page: 1 year: 2021 ident: e_1_2_10_131_1 publication-title: IEEE Photonics J – ident: e_1_2_10_243_1 doi: 10.1021/acsnano.8b05514 – ident: e_1_2_10_365_1 doi: 10.1016/j.cej.2023.142347 – ident: e_1_2_10_128_1 doi: 10.1038/s41467-022-31877-1 – ident: e_1_2_10_200_1 doi: 10.1038/s41598-020-65418-x – ident: e_1_2_10_158_1 doi: 10.1103/PhysRevLett.119.243901 – ident: e_1_2_10_21_1 doi: 10.1016/j.bios.2021.113241 – ident: e_1_2_10_342_1 doi: 10.1038/ncomms2285 – ident: e_1_2_10_205_1 doi: 10.1364/OE.23.000545 – ident: e_1_2_10_208_1 doi: 10.1088/2053-1591/ab0296 – ident: e_1_2_10_36_1 doi: 10.1002/adfm.202203680 – ident: e_1_2_10_198_1 doi: 10.3390/ma12060841 – ident: e_1_2_10_71_1 doi: 10.1063/1.4798244 – ident: e_1_2_10_260_1 doi: 10.1364/OME.9.000352 – ident: e_1_2_10_78_1 doi: 10.1109/JSEN.2023.3249743 – volume: 1 year: 2019 ident: e_1_2_10_126_1 publication-title: Adv. Photonics – ident: e_1_2_10_130_1 doi: 10.1103/PhysRevLett.123.116104 – ident: e_1_2_10_150_1 doi: 10.1364/OE.26.002905 – ident: e_1_2_10_385_1 doi: 10.1002/lpor.201700309 – ident: e_1_2_10_322_1 doi: 10.7567/APEX.11.082203 – ident: e_1_2_10_147_1 doi: 10.1103/PhysRevLett.121.193903 – ident: e_1_2_10_99_1 doi: 10.1103/PhysRevLett.99.147401 – ident: e_1_2_10_79_1 doi: 10.1088/1361-6463/ac60cc – ident: e_1_2_10_364_1 doi: 10.1016/j.optlaseng.2022.107127 – ident: e_1_2_10_281_1 doi: 10.1016/j.optcom.2018.04.021 – ident: e_1_2_10_393_1 doi: 10.1016/j.ijmecsci.2023.108775 – ident: e_1_2_10_244_1 doi: 10.1039/C8TA12206G – ident: e_1_2_10_105_1 doi: 10.1088/1361-6463/aadb7f – ident: e_1_2_10_392_1 doi: 10.1002/admt.202301911 – ident: e_1_2_10_94_1 doi: 10.1002/smll.202301165 – ident: e_1_2_10_214_1 doi: 10.1364/OE.17.016527 – ident: e_1_2_10_50_1 doi: 10.1039/D3NR05095E – ident: e_1_2_10_135_1 doi: 10.1038/s41467-021-26406-5 – ident: e_1_2_10_64_1 doi: 10.1364/OL.43.004695 – ident: e_1_2_10_248_1 doi: 10.1021/acsami.5b09084 – ident: e_1_2_10_151_1 doi: 10.1021/acsphotonics.0c00003 – ident: e_1_2_10_234_1 doi: 10.1038/s41598-020-77922-1 – ident: e_1_2_10_45_1 doi: 10.1364/OE.24.030411 – ident: e_1_2_10_336_1 doi: 10.1088/1402-4896/aca1e5 – ident: e_1_2_10_358_1 doi: 10.3390/nano11092175 – ident: e_1_2_10_344_1 doi: 10.1103/PhysRevLett.103.147401 – ident: e_1_2_10_53_1 doi: 10.1063/1.4826630 – ident: e_1_2_10_388_1 doi: 10.1364/OE.482193 – ident: e_1_2_10_257_1 doi: 10.1515/nanoph-2019-0377 – ident: e_1_2_10_391_1 doi: 10.1039/D3CP05689A – ident: e_1_2_10_290_1 doi: 10.1103/PhysRevB.59.12632 – ident: e_1_2_10_152_1 doi: 10.1364/OE.394416 – ident: e_1_2_10_379_1 doi: 10.1016/j.aca.2012.05.051 – ident: e_1_2_10_382_1 doi: 10.1016/j.optcom.2023.130005 – ident: e_1_2_10_339_1 doi: 10.1364/OE.22.021326 – ident: e_1_2_10_368_1 doi: 10.1038/srep02338 – ident: e_1_2_10_95_1 doi: 10.1039/D1NA00232E – ident: e_1_2_10_98_1 doi: 10.1016/j.carbon.2023.03.062 – ident: e_1_2_10_219_1 doi: 10.1088/0957-4484/24/21/214003 – ident: e_1_2_10_62_1 doi: 10.1007/s11082-020-02344-2 – ident: e_1_2_10_63_1 doi: 10.1364/PRJ.7.000955 – ident: e_1_2_10_375_1 doi: 10.1016/j.bios.2020.112393 – ident: e_1_2_10_236_1 doi: 10.1016/j.optcom.2015.05.005 – ident: e_1_2_10_1_1 doi: 10.1063/1.881806 – ident: e_1_2_10_43_1 doi: 10.1088/0953-2048/26/7/074004 – ident: e_1_2_10_193_1 doi: 10.1063/1.5040734 – ident: e_1_2_10_362_1 doi: 10.1007/s12161-021-02176-0 – ident: e_1_2_10_173_1 doi: 10.1021/acs.nanolett.5c00426 – ident: e_1_2_10_282_1 doi: 10.1364/OME.7.003397 – ident: e_1_2_10_178_1 doi: 10.1364/OE.18.017187 – ident: e_1_2_10_187_1 doi: 10.1039/C7RA06770D – ident: e_1_2_10_394_1 doi: 10.1103/PhysRevApplied.18.054050 – ident: e_1_2_10_194_1 doi: 10.1007/s11468-018-0831-2 – ident: e_1_2_10_225_1 doi: 10.1021/acsphotonics.9b00938 – ident: e_1_2_10_380_1 doi: 10.1021/ac503212q – ident: e_1_2_10_144_1 doi: 10.1002/andp.202200175 – ident: e_1_2_10_353_1 doi: 10.1364/OME.465047 – ident: e_1_2_10_326_1 doi: 10.1016/j.optmat.2020.110060 – ident: e_1_2_10_210_1 doi: 10.3390/nano12244405 – ident: e_1_2_10_309_1 doi: 10.1364/JOSAA.413384 – ident: e_1_2_10_100_1 doi: 10.1038/natrevmats.2016.48 – ident: e_1_2_10_123_1 doi: 10.1103/PhysRevB.106.125411 – ident: e_1_2_10_305_1 doi: 10.1364/AOP.8.000618 – ident: e_1_2_10_103_1 doi: 10.1016/j.rinp.2024.107451 – ident: e_1_2_10_49_1 doi: 10.1016/j.optlastec.2024.110545 – ident: e_1_2_10_29_1 doi: 10.1364/OE.19.021652 – ident: e_1_2_10_9_1 doi: 10.1021/acs.nanolett.9b04404 – ident: e_1_2_10_70_1 doi: 10.1002/adom.201800141 – ident: e_1_2_10_20_1 doi: 10.1016/j.carbon.2021.07.069 – ident: e_1_2_10_154_1 doi: 10.1021/acs.nanolett.2c05021 – ident: e_1_2_10_224_1 doi: 10.7567/APEX.11.062001 – ident: e_1_2_10_139_1 doi: 10.1364/OE.380280 – ident: e_1_2_10_384_1 doi: 10.1021/acs.nanolett.3c04174 – ident: e_1_2_10_85_1 doi: 10.1515/nanoph-2021-0520 – ident: e_1_2_10_112_1 doi: 10.1063/1.4916189 – ident: e_1_2_10_60_1 doi: 10.1016/j.rinp.2022.105514 – ident: e_1_2_10_164_1 doi: 10.3390/nano11092343 – ident: e_1_2_10_40_1 doi: 10.1063/1.4976504 – ident: e_1_2_10_97_1 doi: 10.1039/C8NR03564D – ident: e_1_2_10_320_1 doi: 10.1103/PhysRevLett.87.237401 – ident: e_1_2_10_157_1 doi: 10.1016/j.scib.2018.12.003 – ident: e_1_2_10_378_1 doi: 10.1016/j.tibtech.2016.04.008 – ident: e_1_2_10_231_1 doi: 10.1063/1.4935031 – ident: e_1_2_10_90_1 doi: 10.1088/2040-8986/ab70f2 – ident: e_1_2_10_143_1 doi: 10.1515/nanoph-2020-0582 – ident: e_1_2_10_273_1 doi: 10.1364/OL.40.002325 – ident: e_1_2_10_229_1 doi: 10.1103/PhysRevB.87.161110 – ident: e_1_2_10_58_1 doi: 10.1021/acsami.2c04414 – ident: e_1_2_10_129_1 doi: 10.1103/PhysRevLett.126.073001 – ident: e_1_2_10_72_1 doi: 10.1186/s43074-023-00108-1 – ident: e_1_2_10_127_1 doi: 10.1038/s41377-020-00386-5 – ident: e_1_2_10_315_1 doi: 10.1039/D0NR00457J – ident: e_1_2_10_348_1 doi: 10.1038/srep11678 – ident: e_1_2_10_51_1 doi: 10.1016/j.diamond.2024.110939 – ident: e_1_2_10_211_1 doi: 10.1088/1402-4896/ac700f – ident: e_1_2_10_300_1 doi: 10.1063/1.4886148 – ident: e_1_2_10_242_1 doi: 10.1002/adma.201704611 – ident: e_1_2_10_369_1 doi: 10.1038/s41467-018-04594-x – ident: e_1_2_10_26_1 doi: 10.1038/nmat3431 – ident: e_1_2_10_256_1 doi: 10.1109/JSEN.2023.3239018 – ident: e_1_2_10_340_1 doi: 10.1038/srep05708 – ident: e_1_2_10_162_1 doi: 10.1002/adom.202200301 – ident: e_1_2_10_182_1 doi: 10.1021/acsnano.7b04698 – ident: e_1_2_10_52_1 doi: 10.1016/j.physleta.2024.129401 – ident: e_1_2_10_46_1 doi: 10.1117/1.AP.2.5.056004 – ident: e_1_2_10_373_1 doi: 10.1039/C9NR03178B – ident: e_1_2_10_16_1 doi: 10.1038/ncomms6753 – volume: 12 start-page: 1 year: 2020 ident: e_1_2_10_141_1 publication-title: IEEE Photonics J – ident: e_1_2_10_217_1 doi: 10.1063/1.4950863 – ident: e_1_2_10_359_1 doi: 10.1016/j.bios.2004.03.006 – ident: e_1_2_10_31_1 doi: 10.1039/C5NR07114C – ident: e_1_2_10_218_1 doi: 10.1088/1402-4896/ac3a4b – ident: e_1_2_10_15_1 doi: 10.1038/nature11231 – ident: e_1_2_10_233_1 doi: 10.1063/1.4969061 – volume: 106 start-page: 5401 year: 2022 ident: e_1_2_10_346_1 publication-title: Phys. Rev. B – ident: e_1_2_10_333_1 doi: 10.1364/OE.18.017504 – ident: e_1_2_10_124_1 doi: 10.1088/1555-6611/ac46cf – ident: e_1_2_10_17_1 doi: 10.1038/nmat2495 – ident: e_1_2_10_213_1 doi: 10.1088/2053-1591/2/5/055801 – ident: e_1_2_10_266_1 doi: 10.1039/C5NR03060A – ident: e_1_2_10_204_1 doi: 10.1088/1367-2630/ab9e8a – ident: e_1_2_10_237_1 doi: 10.1002/adom.201901050 – ident: e_1_2_10_33_1 doi: 10.1103/PhysRevB.79.085111 – ident: e_1_2_10_302_1 doi: 10.1109/TMTT.2015.2393862 – ident: e_1_2_10_140_1 doi: 10.1103/PhysRevLett.123.253901 – ident: e_1_2_10_155_1 doi: 10.1002/lpor.202200564 – ident: e_1_2_10_308_1 doi: 10.1364/OE.25.005206 – ident: e_1_2_10_343_1 doi: 10.1002/adma.201004341 – ident: e_1_2_10_367_1 doi: 10.1016/j.talanta.2023.125481 – ident: e_1_2_10_120_1 doi: 10.1038/nmat2810 – ident: e_1_2_10_192_1 doi: 10.1039/D0NR00461H – ident: e_1_2_10_376_1 doi: 10.1002/lpor.201600064 – ident: e_1_2_10_284_1 doi: 10.1007/s11468-022-01595-x – ident: e_1_2_10_303_1 doi: 10.1109/JSEN.2018.2868873 – ident: e_1_2_10_247_1 doi: 10.1021/acs.jpclett.6b01308 – ident: e_1_2_10_117_1 doi: 10.1109/JSTQE.2022.3206066 – ident: e_1_2_10_295_1 doi: 10.1063/1.4794939 – ident: e_1_2_10_301_1 doi: 10.1038/srep40441 – ident: e_1_2_10_258_1 doi: 10.1016/j.nanoen.2019.104280 – ident: e_1_2_10_261_1 doi: 10.1126/science.1102896 – ident: e_1_2_10_351_1 doi: 10.1007/s11468-016-0451-7 – ident: e_1_2_10_396_1 doi: 10.1088/1361-6463/ac670f – volume: 99 start-page: 1909 year: 2011 ident: e_1_2_10_215_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_10_312_1 doi: 10.1007/s11664-020-08692-9 – ident: e_1_2_10_280_1 doi: 10.1103/PhysRevB.93.235417 – ident: e_1_2_10_37_1 doi: 10.1021/nl902621d – ident: e_1_2_10_107_1 doi: 10.1364/OE.457768 – ident: e_1_2_10_196_1 doi: 10.1364/OE.27.013884 – ident: e_1_2_10_387_1 doi: 10.1021/acsphotonics.4c01179 – ident: e_1_2_10_161_1 doi: 10.1021/acsphotonics.2c01461 – ident: e_1_2_10_345_1 doi: 10.1007/s11082-023-04573-7 – year: 2023 ident: e_1_2_10_323_1 publication-title: Earth and Space: From Infrared to Terahertz (ESIT 2022) – ident: e_1_2_10_134_1 doi: 10.1364/OE.438180 – ident: e_1_2_10_270_1 doi: 10.1016/j.optcom.2017.10.069 – ident: e_1_2_10_4_1 doi: 10.1103/PhysRevLett.64.1107 – ident: e_1_2_10_230_1 doi: 10.1063/1.4819854 – ident: e_1_2_10_263_1 doi: 10.1038/nature11458 – ident: e_1_2_10_19_1 doi: 10.1088/1361-6463/aa7e6b – ident: e_1_2_10_5_1 doi: 10.1038/ncomms2153 – ident: e_1_2_10_104_1 doi: 10.1016/j.rinp.2023.106304 – ident: e_1_2_10_374_1 doi: 10.1364/OE.26.031589 – ident: e_1_2_10_354_1 doi: 10.1140/epjp/s13360-020-00950-3 – ident: e_1_2_10_272_1 doi: 10.1364/OE.382485 – ident: e_1_2_10_93_1 doi: 10.1364/PRJ.514140 – ident: e_1_2_10_307_1 doi: 10.1021/acsami.7b09889 – ident: e_1_2_10_264_1 doi: 10.1063/1.4833757 – ident: e_1_2_10_133_1 doi: 10.1038/s41467-021-24502-0 – ident: e_1_2_10_228_1 doi: 10.1002/adma.201605881 – ident: e_1_2_10_321_1 doi: 10.1364/JOSAB.29.002373 – ident: e_1_2_10_350_1 doi: 10.1039/D4CP00151F – ident: e_1_2_10_240_1 doi: 10.1126/science.1221561 – ident: e_1_2_10_298_1 doi: 10.1016/j.optcom.2016.07.055 – ident: e_1_2_10_14_1 doi: 10.1038/nmat2546 – ident: e_1_2_10_318_1 doi: 10.1063/1.1996844 – ident: e_1_2_10_170_1 doi: 10.1038/s41598-021-98498-4 – ident: e_1_2_10_199_1 doi: 10.1364/AO.404381 – ident: e_1_2_10_168_1 doi: 10.3390/nano12213853 – ident: e_1_2_10_259_1 doi: 10.1364/OE.435998 – ident: e_1_2_10_3_1 doi: 10.1103/RevModPhys.77.633 – ident: e_1_2_10_186_1 doi: 10.1039/D2MH00787H – ident: e_1_2_10_316_1 – year: 2021 ident: e_1_2_10_355_1 publication-title: AOPC 2021: Infrared Device and Infrared Technology – ident: e_1_2_10_148_1 doi: 10.1002/admt.202000626 – ident: e_1_2_10_96_1 doi: 10.1515/nanoph-2016-0168 – ident: e_1_2_10_73_1 doi: 10.1186/s43074-024-00129-4 – volume: 62 start-page: 7102 year: 2023 ident: e_1_2_10_324_1 publication-title: Opt. Eng. – ident: e_1_2_10_296_1 doi: 10.1109/TAP.2008.922174 – ident: e_1_2_10_81_1 doi: 10.1364/PRJ.6.000692 – ident: e_1_2_10_48_1 doi: 10.1021/nl501628x – ident: e_1_2_10_184_1 doi: 10.1364/OE.500867 – ident: e_1_2_10_35_1 doi: 10.37188/lam.2021.019 – ident: e_1_2_10_220_1 doi: 10.1016/j.optcom.2022.128387 – ident: e_1_2_10_185_1 doi: 10.1007/s11468-021-01561-z – ident: e_1_2_10_389_1 doi: 10.1039/D3CP02083E – ident: e_1_2_10_61_1 doi: 10.1063/5.0009785 – ident: e_1_2_10_349_1 doi: 10.1063/5.0093664 – ident: e_1_2_10_334_1 doi: 10.1088/1361-6463/ac9912 – ident: e_1_2_10_195_1 doi: 10.1038/srep20801 – ident: e_1_2_10_311_1 doi: 10.1109/LPT.2019.2926138 – ident: e_1_2_10_328_1 doi: 10.1038/s41578-018-0076-x – ident: e_1_2_10_222_1 doi: 10.1002/andp.202200425 – ident: e_1_2_10_289_1 doi: 10.1063/1.4795534 – ident: e_1_2_10_306_1 doi: 10.1021/acsnano.5b00497 – ident: e_1_2_10_47_1 doi: 10.1364/OPTICA.6.000996 – ident: e_1_2_10_274_1 doi: 10.1007/s00340-019-7242-8 – ident: e_1_2_10_377_1 doi: 10.1016/j.mattod.2019.08.002 – ident: e_1_2_10_176_1 doi: 10.1109/JSEN.2021.3074572 – ident: e_1_2_10_166_1 doi: 10.1364/OE.25.010484 – ident: e_1_2_10_319_1 doi: 10.1063/1.3653242 – ident: e_1_2_10_366_1 doi: 10.1515/nanoph-2022-0565 – ident: e_1_2_10_250_1 doi: 10.1021/jacs.5b05602 – ident: e_1_2_10_335_1 doi: 10.3390/nano11112876 – ident: e_1_2_10_108_1 doi: 10.1103/PhysRevLett.102.053901 – ident: e_1_2_10_91_1 doi: 10.1002/adom.201500676 – ident: e_1_2_10_118_1 doi: 10.1088/1361-6463/ac1a9f – volume: 05 start-page: 206 year: 2023 ident: e_1_2_10_232_1 publication-title: Mater. Today Proc – ident: e_1_2_10_132_1 doi: 10.1038/s41566-021-00860-5 – ident: e_1_2_10_277_1 doi: 10.1016/j.carbon.2017.10.035 – ident: e_1_2_10_371_1 doi: 10.1002/lpor.201800078 – ident: e_1_2_10_235_1 doi: 10.1364/PRJ.7.000994 – ident: e_1_2_10_271_1 doi: 10.1109/JLT.2020.3035041 – ident: e_1_2_10_101_1 doi: 10.1364/OE.446720 – ident: e_1_2_10_227_1 doi: 10.1515/nanoph-2020-0017 – ident: e_1_2_10_317_1 doi: 10.1088/1742-6596/1592/1/012024 – volume: 14 year: 2020 ident: e_1_2_10_34_1 publication-title: Laser & Photonics Rev – ident: e_1_2_10_325_1 doi: 10.1016/j.optmat.2020.109811 – ident: e_1_2_10_390_1 doi: 10.1364/OE.27.025196 – ident: e_1_2_10_119_1 doi: 10.1088/1361-6463/ad0aed – ident: e_1_2_10_102_1 doi: 10.1515/nanoph-2022-0776 – ident: e_1_2_10_338_1 doi: 10.1063/1.4943974 – ident: e_1_2_10_275_1 doi: 10.3390/nano12203672 – ident: e_1_2_10_111_1 doi: 10.1002/adpr.202200356 – ident: e_1_2_10_136_1 doi: 10.1002/lpor.202000559 – ident: e_1_2_10_251_1 doi: 10.1002/lpor.201870043 – ident: e_1_2_10_291_1 doi: 10.1063/1.3695165 – ident: e_1_2_10_395_1 doi: 10.1364/OE.389231 – ident: e_1_2_10_146_1 doi: 10.1039/D2NR05820K – ident: e_1_2_10_363_1 doi: 10.1109/JSEN.2021.3135938 – ident: e_1_2_10_114_1 doi: 10.1016/j.optcom.2019.05.038 – ident: e_1_2_10_279_1 doi: 10.1016/j.optcom.2017.09.013 |
SSID | ssj0017734 |
Score | 2.4776974 |
SecondaryResourceType | review_article online_first |
Snippet | Electromagnetically induced transparency (EIT) is a quantum interference effect that occurs in atomic physics systems, creating a sharp transparency window for... |
SourceID | crossref |
SourceType | Index Database |
Title | Metamaterial‐Based Electromagnetically Induced Transparency |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWMWuHJA4oIDjxlmOBYoqJDiwiHKqbMcpIEgRSiTgxCfwjXwJ4yUhhR4KlyiynDjJs2aenZk3CG3HHuHEl9QVmFHXZ0K63CPSjUOJuUgC8Ig62uIs6Fz5J13aLUvc2-ySnO-Jt5F5Jf9BFdoAV5Ul-wdkq5tCA5wDvnAEhOE4FsanMmfAOPVQVdTCAfilZLdtyts8sn5m0hQfXndVmQ71u98ImqssMDH0U7dVxgMoZ2f3CMvbV9T72m4wH4C9Kofs3lVT7KLQZuxmkPXfbqV1i3pjelDoeD55d19UvQ9tbshN8VLYaWp3IAjVkVJ-zWgGnoqf06VvwKfU20zi9y8zbWRfWZIqLQAgYRE22c_Detg__FQVPWiUlklPXd-rrp9EUwSWCqqKxdF5JSHmhaGJLCifsRTuxGR_ePwaMakxjMs5NGuXBk7L4DyPJmS2gGZqgpGLaAjxz_cPjbUzAmvHYu3UsV5CV8fty8OOawtguAIMY-4GhISUeUDRgfTBqyVKGShIMAkD6TNg9hxLkgIH9ZJmKJnELA5jInCCYwm0OWouo0Y2yOQKcoAIchZRmsZp0-cR5UECC2GfSpH6ERPRKtop3773ZHROeqO_89rYPdfR9Pd02UCN_LmQm0Dhcr6lMfoCQaxERw |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metamaterial%E2%80%90Based+Electromagnetically+Induced+Transparency&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Ben%E2%80%90Xin&rft.au=Sun%2C+Yongzheng&rft.au=Zhou%2C+Weijun&rft.au=Chen%2C+Yuxuan&rft.date=2025-06-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002%2Fadfm.202508025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202508025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |