Injectable Peptide Liquid Crystal Hydrogel with Hierarchical Microstructure Directs Myoblast Alignment and Potentiates Muscle Functional Recovery

A highly hierarchical microstructure with aligned myofibers is a hallmark of native skeletal muscle. To treat volumetric muscle loss (VML), the development of tissue scaffolds that replicate the hierarchically aligned microstructures of the native muscle environment is both promising and challenging...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials
Main Authors Huang, Rong, Cai, Chuang, Cheng, Wei‐Wei, Cheng, Yin‐Jia, Liu, Wen‐Long, Ma, Yi‐Han, Zhang, Ai‐Qing, Qin, Si‐Yong
Format Journal Article
LanguageEnglish
Published 06.07.2025
Online AccessGet full text

Cover

Loading…
Abstract A highly hierarchical microstructure with aligned myofibers is a hallmark of native skeletal muscle. To treat volumetric muscle loss (VML), the development of tissue scaffolds that replicate the hierarchically aligned microstructures of the native muscle environment is both promising and challenging. Moreover, effective scaffolds should possess tunable components that enable specific functional modulations. This study proposes an injectable, self‐assembling peptide liquid crystal (LC) hydrogel with hierarchical fiber alignment to support skeletal muscle regeneration. To emulate the physicochemical functions of skeletal muscle, Ti 3 C 2 T x MXene is incorporated as an exogenous component to enhance the mechanical strength, anti‐inflammatory activity, and electrical conductivity of the LC hydrogel. The resulting Ti 3 C 2 T x /LC peptide hydrogel effectively guides myoblast alignment and promotes myogenic differentiation and angiogenesis. Compared to its unaligned non‐liquid crystal (NLC) hydrogel counterpart, the aligned Ti 3 C 2 T x /LC hydrogel with a hierarchical microstructure significantly enhances new muscle tissue formation and functional recovery in a Sprague–Dawley (SD) rat model of VML. This study offers a robust and practical strategy for fabricating aligned hydrogel scaffolds with substantial potential in muscle tissue engineering and regenerative medicine.
AbstractList A highly hierarchical microstructure with aligned myofibers is a hallmark of native skeletal muscle. To treat volumetric muscle loss (VML), the development of tissue scaffolds that replicate the hierarchically aligned microstructures of the native muscle environment is both promising and challenging. Moreover, effective scaffolds should possess tunable components that enable specific functional modulations. This study proposes an injectable, self‐assembling peptide liquid crystal (LC) hydrogel with hierarchical fiber alignment to support skeletal muscle regeneration. To emulate the physicochemical functions of skeletal muscle, Ti 3 C 2 T x MXene is incorporated as an exogenous component to enhance the mechanical strength, anti‐inflammatory activity, and electrical conductivity of the LC hydrogel. The resulting Ti 3 C 2 T x /LC peptide hydrogel effectively guides myoblast alignment and promotes myogenic differentiation and angiogenesis. Compared to its unaligned non‐liquid crystal (NLC) hydrogel counterpart, the aligned Ti 3 C 2 T x /LC hydrogel with a hierarchical microstructure significantly enhances new muscle tissue formation and functional recovery in a Sprague–Dawley (SD) rat model of VML. This study offers a robust and practical strategy for fabricating aligned hydrogel scaffolds with substantial potential in muscle tissue engineering and regenerative medicine.
Author Cheng, Wei‐Wei
Cheng, Yin‐Jia
Huang, Rong
Liu, Wen‐Long
Ma, Yi‐Han
Qin, Si‐Yong
Cai, Chuang
Zhang, Ai‐Qing
Author_xml – sequence: 1
  givenname: Rong
  surname: Huang
  fullname: Huang, Rong
  organization: School of Pharmaceutical Sciences South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 2
  givenname: Chuang
  surname: Cai
  fullname: Cai, Chuang
  organization: School of Pharmaceutical Sciences South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 3
  givenname: Wei‐Wei
  surname: Cheng
  fullname: Cheng, Wei‐Wei
  organization: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 4
  givenname: Yin‐Jia
  surname: Cheng
  fullname: Cheng, Yin‐Jia
  organization: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 5
  givenname: Wen‐Long
  surname: Liu
  fullname: Liu, Wen‐Long
  organization: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 6
  givenname: Yi‐Han
  surname: Ma
  fullname: Ma, Yi‐Han
  organization: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 7
  givenname: Ai‐Qing
  surname: Zhang
  fullname: Zhang, Ai‐Qing
  organization: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central Minzu University Wuhan 430074 P. R. China
– sequence: 8
  givenname: Si‐Yong
  orcidid: 0000-0001-5034-3309
  surname: Qin
  fullname: Qin, Si‐Yong
  organization: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central Minzu University Wuhan 430074 P. R. China
BookMark eNo9kN1OAjEQhRuDiYDeet0XWGy7P10uCYqQQCRGE-82s20XSpYW265mH8M3tkTD3MyZzOSczDdCA2ONQuiekgklhD2AbI4TRlgeB5JdoSEtaJGkhJWDi6YfN2jk_YEQynmaDdHPyhyUCFC3Cm_VKWip8Fp_dlriuet9gBYve-nsTrX4W4c9XmrlwIm9FnG10cJZH1wnQucUftQuenm86W3dgg941uqdOSoTMBiJtzZEqSGoeNJ5ESMXnRFBWxO9XpWwX8r1t-i6gdaru_8-Ru-Lp7f5Mlm_PK_ms3Ui6LQISd7UNZSF5ATKacbKXAmZp8AyycucA2eQc5I2lIhSsozmDRSslFks3tRTkaZjNPnzPb_gnWqqk9NHcH1FSXUGWp2BVheg6S_sJG70
Cites_doi 10.1016/j.progpolymsci.2022.101573
10.1021/la203518w
10.1016/j.compositesb.2024.111729
10.1016/j.biomaterials.2024.122529
10.3390/medicina57060560
10.1182/blood-2020-140436
10.3390/ijms232012494
10.1039/C8CC09548E
10.1038/s41563-023-01611-3
10.1016/j.biomaterials.2022.121537
10.1016/j.cej.2024.149019
10.3389/fimmu.2019.02628
10.1007/s10456-018-9620-y
10.1021/acsami.4c07612
10.1159/000443925
10.1021/acs.nanolett.3c01784
10.1016/j.actbio.2024.08.035
10.1016/j.cej.2022.137455
10.1007/s00018-025-05673-1
10.1136/annrheumdis-2020-eular.5777
10.1021/acs.nanolett.9b03182
10.1002/advs.202305927
10.3390/ijms21207478
10.1016/j.biomaterials.2018.05.027
10.1016/j.biomaterials.2012.05.018
10.1016/j.phymed.2021.153791
10.1016/j.actbio.2022.09.067
10.1016/j.actbio.2025.03.004
10.1021/acsbiomaterials.2c01155
10.1002/stem.2577
10.1021/acs.chemrev.1c00798
10.1016/j.ymthe.2020.09.012
10.1038/s41419-021-03419-y
10.1016/j.actbio.2022.08.037
10.1016/j.annonc.2020.10.335
10.1016/j.cej.2021.131017
10.3892/mmr.2021.12123
10.1002/anie.202007243
10.1002/adma.201600240
10.3168/jds.2023-23637
10.1016/j.nanoen.2023.108971
10.1016/j.biomaterials.2018.02.006
10.1021/accountsmr.3c00181
10.1002/jcsm.12162
10.1016/j.ijbiomac.2024.130825
10.1016/j.ccr.2023.215600
10.1021/acs.nanolett.7b03600
10.1038/s41567-024-02540-x
10.1016/j.jconrel.2023.09.009
10.1016/j.biomaterials.2019.03.036
10.1002/adhm.202303576
10.1038/s41420-018-0027-8
10.1021/acsabm.0c01231
10.1007/s12274-024-6656-8
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.202500204
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202500204
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-c196t-5fbba86d70a894285ecd53a24d7857a72a5703f10c8d2415fa628d44447fb9c33
ISSN 1616-301X
IngestDate Thu Jul 10 08:25:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c196t-5fbba86d70a894285ecd53a24d7857a72a5703f10c8d2415fa628d44447fb9c33
ORCID 0000-0001-5034-3309
ParticipantIDs crossref_primary_10_1002_adfm_202500204
PublicationCentury 2000
PublicationDate 2025-07-06
PublicationDateYYYYMMDD 2025-07-06
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-06
  day: 06
PublicationDecade 2020
PublicationTitle Advanced functional materials
PublicationYear 2025
References Qin S. Y. (e_1_2_9_12_1) 2024; 502
Qin S. Y. (e_1_2_9_34_1) 2012; 28
Corona B. T. (e_1_2_9_1_1) 2016; 202
Aguilar C. A. (e_1_2_9_3_1) 2018; 4
Zhuge W. (e_1_2_9_11_2) 2022; 447
Yu R. (e_1_2_9_31_1) 2017; 8
Feliksiak K. (e_1_2_9_27_1) 2020; 21
Zhao G. (e_1_2_9_18_2) 2022; 131
Wohlgemuth R. P. (e_1_2_9_6_1) 2024; 187
Li J. (e_1_2_9_22_1) 2021; 24
Salem D. (e_1_2_9_32_1) 2020; 136
Jana S. (e_1_2_9_6_2) 2016; 28
De France K. J. (e_1_2_9_14_1) 2017; 17
Riera H. (e_1_2_9_2_2) 2020; 79
Ding W. Q. (e_1_2_9_15_2) 2020; 3
Cao R. (e_1_2_9_32_2) 2022; 23
Mastrodimos M. (e_1_2_9_10_1) 2024; 16
Wang L. (e_1_2_9_5_1) 2022; 285
Qin S. Y. (e_1_2_9_16_1) 2019; 55
Qin S. Y. (e_1_2_9_15_1) 2020; 59
Shankar S. (e_1_2_9_24_4) 2024; 20
Wang P. (e_1_2_9_8_2) 2024; 17
Wang D. (e_1_2_9_33_1) 2023; 118
Yu Q. H. (e_1_2_9_13_1) 2022; 154
Zheng H. (e_1_2_9_18_1) 2023; 23
Chen Z. (e_1_2_9_28_1) 2024; 265
Kim W. (e_1_2_9_24_2) 2019; 19
Tanner G. I. (e_1_2_9_1_2) 2024; 13
Tuieng R. J. (e_1_2_9_26_1) 2025; 197
Li H. (e_1_2_9_22_3) 2024; 107
Li T. (e_1_2_9_23_1) 2023; 156
Sikorska M. (e_1_2_9_30_1) 2021; 93
Ku S. H. (e_1_2_9_24_3) 2012; 33
Wu J. (e_1_2_9_3_2) 2021; 29
Choi S. (e_1_2_9_4_3) 2023; 22
Shi M. (e_1_2_9_17_1) 2024; 484
Shen X. (e_1_2_9_20_2) 2021; 12
Janaszak‐Jasiecka A. (e_1_2_9_29_1) 2018; 21
Qin S. Y. (e_1_2_9_15_3) 2024; 5
Choi T. (e_1_2_9_22_2) 2021; 57
De Masi A. (e_1_2_9_19_1) 2024; 11
Kim J. (e_1_2_9_4_1) 2024; 36
Rojek K. O. (e_1_2_9_11_1) 2022; 122
Yang L. (e_1_2_9_21_2) 2021; 12
Hu T. (e_1_2_9_9_1) 2022; 428
Gilbert‐Honick J. (e_1_2_9_24_1) 2018; 164
Liang W. (e_1_2_9_4_2) 2024; 307
Wang Y. (e_1_2_9_8_1) 2024; 284
Hu Y. (e_1_2_9_26_2) 2025; 82
Kurniawan A. (e_1_2_9_2_1) 2020; 31
Choi Y.‐J. (e_1_2_9_7_1) 2019; 206
Harding A. (e_1_2_9_20_1) 2017; 35
Zou L. (e_1_2_9_20_3) 2023; 9
Parente R. (e_1_2_9_21_1) 2019; 10
Shi M. (e_1_2_9_10_2) 2024; 484
Ge J. (e_1_2_9_25_1) 2018; 175
Zhang D. Y. (e_1_2_9_13_2) 2023; 362
References_xml – volume: 131
  year: 2022
  ident: e_1_2_9_18_2
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2022.101573
– volume: 28
  start-page: 2083
  year: 2012
  ident: e_1_2_9_34_1
  publication-title: Langmuir
  doi: 10.1021/la203518w
– volume: 284
  year: 2024
  ident: e_1_2_9_8_1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2024.111729
– volume: 307
  year: 2024
  ident: e_1_2_9_4_2
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2024.122529
– volume: 57
  start-page: 560
  year: 2021
  ident: e_1_2_9_22_2
  publication-title: Medicina
  doi: 10.3390/medicina57060560
– volume: 136
  start-page: 28
  year: 2020
  ident: e_1_2_9_32_1
  publication-title: Blood
  doi: 10.1182/blood-2020-140436
– volume: 23
  year: 2022
  ident: e_1_2_9_32_2
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms232012494
– volume: 55
  start-page: 1659
  year: 2019
  ident: e_1_2_9_16_1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09548E
– volume: 22
  start-page: 1039
  year: 2023
  ident: e_1_2_9_4_3
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01611-3
– volume: 285
  year: 2022
  ident: e_1_2_9_5_1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121537
– volume: 484
  year: 2024
  ident: e_1_2_9_17_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.149019
– volume: 10
  start-page: 2628
  year: 2019
  ident: e_1_2_9_21_1
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02628
– volume: 21
  start-page: 711
  year: 2018
  ident: e_1_2_9_29_1
  publication-title: Angiogenesis
  doi: 10.1007/s10456-018-9620-y
– volume: 16
  year: 2024
  ident: e_1_2_9_10_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c07612
– volume: 202
  start-page: 180
  year: 2016
  ident: e_1_2_9_1_1
  publication-title: Cells Tissues Organs
  doi: 10.1159/000443925
– volume: 23
  start-page: 7379
  year: 2023
  ident: e_1_2_9_18_1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01784
– volume: 187
  start-page: 227
  year: 2024
  ident: e_1_2_9_6_1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2024.08.035
– volume: 447
  year: 2022
  ident: e_1_2_9_11_2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137455
– volume: 484
  year: 2024
  ident: e_1_2_9_10_2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.149019
– volume: 82
  start-page: 157
  year: 2025
  ident: e_1_2_9_26_2
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-025-05673-1
– volume: 79
  start-page: 920
  year: 2020
  ident: e_1_2_9_2_2
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2020-eular.5777
– volume: 19
  start-page: 8612
  year: 2019
  ident: e_1_2_9_24_2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03182
– volume: 11
  year: 2024
  ident: e_1_2_9_19_1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202305927
– volume: 21
  start-page: 7478
  year: 2020
  ident: e_1_2_9_27_1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21207478
– volume: 36
  start-page: 14
  year: 2024
  ident: e_1_2_9_4_1
  publication-title: Bioact. Mater.
– volume: 175
  start-page: 19
  year: 2018
  ident: e_1_2_9_25_1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.05.027
– volume: 33
  start-page: 6098
  year: 2012
  ident: e_1_2_9_24_3
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.05.018
– volume: 93
  year: 2021
  ident: e_1_2_9_30_1
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2021.153791
– volume: 154
  start-page: 359
  year: 2022
  ident: e_1_2_9_13_1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.09.067
– volume: 197
  start-page: 294
  year: 2025
  ident: e_1_2_9_26_1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2025.03.004
– volume: 9
  start-page: 889
  year: 2023
  ident: e_1_2_9_20_3
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.2c01155
– volume: 35
  start-page: 909
  year: 2017
  ident: e_1_2_9_20_1
  publication-title: Stem Cells
  doi: 10.1002/stem.2577
– volume: 122
  year: 2022
  ident: e_1_2_9_11_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00798
– volume: 29
  start-page: 121
  year: 2021
  ident: e_1_2_9_3_2
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2020.09.012
– volume: 12
  start-page: 142
  year: 2021
  ident: e_1_2_9_20_2
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03419-y
– volume: 12
  year: 2021
  ident: e_1_2_9_21_2
  publication-title: Genet
– volume: 156
  start-page: 21
  year: 2023
  ident: e_1_2_9_23_1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.08.037
– volume: 31
  year: 2020
  ident: e_1_2_9_2_1
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2020.10.335
– volume: 428
  year: 2022
  ident: e_1_2_9_9_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131017
– volume: 24
  start-page: 484
  year: 2021
  ident: e_1_2_9_22_1
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2021.12123
– volume: 59
  year: 2020
  ident: e_1_2_9_15_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007243
– volume: 28
  year: 2016
  ident: e_1_2_9_6_2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600240
– volume: 107
  start-page: 9
  year: 2024
  ident: e_1_2_9_22_3
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2023-23637
– volume: 118
  year: 2023
  ident: e_1_2_9_33_1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108971
– volume: 164
  start-page: 70
  year: 2018
  ident: e_1_2_9_24_1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.02.006
– volume: 5
  start-page: 109
  year: 2024
  ident: e_1_2_9_15_3
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.3c00181
– volume: 8
  start-page: 327
  year: 2017
  ident: e_1_2_9_31_1
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12162
– volume: 265
  year: 2024
  ident: e_1_2_9_28_1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.130825
– volume: 502
  year: 2024
  ident: e_1_2_9_12_1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215600
– volume: 17
  start-page: 6487
  year: 2017
  ident: e_1_2_9_14_1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03600
– volume: 20
  start-page: 1501
  year: 2024
  ident: e_1_2_9_24_4
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-024-02540-x
– volume: 362
  start-page: 565
  year: 2023
  ident: e_1_2_9_13_2
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2023.09.009
– volume: 206
  start-page: 160
  year: 2019
  ident: e_1_2_9_7_1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.03.036
– volume: 13
  year: 2024
  ident: e_1_2_9_1_2
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.202303576
– volume: 4
  start-page: 33
  year: 2018
  ident: e_1_2_9_3_1
  publication-title: Cell Death Discovery
  doi: 10.1038/s41420-018-0027-8
– volume: 3
  start-page: 8989
  year: 2020
  ident: e_1_2_9_15_2
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01231
– volume: 17
  start-page: 6430
  year: 2024
  ident: e_1_2_9_8_2
  publication-title: Nano Res.
  doi: 10.1007/s12274-024-6656-8
SSID ssj0017734
Score 2.4802265
SecondaryResourceType online_first
Snippet A highly hierarchical microstructure with aligned myofibers is a hallmark of native skeletal muscle. To treat volumetric muscle loss (VML), the development of...
SourceID crossref
SourceType Index Database
Title Injectable Peptide Liquid Crystal Hydrogel with Hierarchical Microstructure Directs Myoblast Alignment and Potentiates Muscle Functional Recovery
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb9NIeQtOm9I0OgR6M07XWluzjEho2gQ0hJDQ9LbIlBUOw26w3sP0XPfXvdsaSbeVxSLIHISTZazQf0szomxEhO1HBU8zUHYp8UoRQicI0USaUseQyy7TiBqOR50d8dhYfnifno9E_j7W0avLd4s-9cSVPkSq0gVwxSvYRku1fCg1QB_lCCRKG8kEyPqjQi9IGPx0jO0VpsLF_r0oV7F2tl-21IGt1VV9oR0WflRhu3N5-comEeYz4wPSxeIhg175lMF_XOWjUTTC9LC-qnoJ-XDfIK0LNNJivlvAhwT5sic6TiEbs9a3o6mnHLjDDOFCP7bwMaHL-6pPabaHteUhpmQDYOfAPtB35Q5c9QwPqd_p_llXff1hK363BkpYCy72VmEdIymvv04GNym-z0eR31n6bS1YqgwkGQLPDsN9hl-tO9m9tfj0l0aZvZgt8ftE__4w8Z2B_tLb6SZ-XLBLC0hW6b-yygY7Zt5v_72k7ntpy-opsOnuDTi14tshIV6_JSy8L5Rvyd4ARdTCiFkbUwYh2MKIII-rDiN6EEXUwoh2MaA8jCjCiHoyohREdYEQ7GG2Ts_3vp3uz0N3UERawgjdhYvJcplyJsUwzMGgTXahkIlmsRJoIKZjERG8mGhepQpXRSM5SFcNPmDwrJpO3ZKOqK_2OUClAAzWgxqJHMhUwTImYCSVZlkPJ35Ov3YwuftmELIv7ZffhwSM_khcDBD-RDZgz_Rl0zSb_0sr9P3pqgpw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Injectable+Peptide+Liquid+Crystal+Hydrogel+with+Hierarchical+Microstructure+Directs+Myoblast+Alignment+and+Potentiates+Muscle+Functional+Recovery&rft.jtitle=Advanced+functional+materials&rft.au=Huang%2C+Rong&rft.au=Cai%2C+Chuang&rft.au=Cheng%2C+Wei%E2%80%90Wei&rft.au=Cheng%2C+Yin%E2%80%90Jia&rft.date=2025-07-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002%2Fadfm.202500204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202500204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon