Power control strategies and network performance assessment for C+L+S multiband optical transport
Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band wavelength-division multiplexing (WDM) optical systems and to deal with increasing traffic demands. An important difference between these two approaches is tha...
Saved in:
Published in | Journal of optical communications and networking Vol. 13; no. 7; pp. 147 - 157 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Optica Publishing Group
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1943-0620 1943-0639 |
DOI | 10.1364/JOCN.419293 |
Cover
Abstract | Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band wavelength-division multiplexing (WDM) optical systems and to deal with increasing traffic demands. An important difference between these two approaches is that BDM solutions enable data transmission over unused spectral bands of already-deployed optical fibers, whereas SDM solutions require the availability of additional fibers to replicate C-band WDM transmission. On the other hand, to properly design a multiband optical line system (OLS), the following fiber propagation effects have been taken into account in the analysis: (i) stimulated Raman scattering (SRS), which induces considerable power transfer among bands; (ii) frequency dependence of fiber parameters such as attenuation, dispersion, and nonlinear coefficients; and (iii) utilization of optical amplifiers with different doping materials, thus leading to different characteristics, e.g., in terms of noise figures. This work follows a two-step approach: First, we aim at maximizing and flattening the quality of transmission (QoT) when adding L- and {\rm L} {+} {\rm S}-bands to a traditional WDM OLS where only the C-band is deployed. This is achieved by applying a multiband optimized optical power control for BDM upgrades, which consists of setting a pre-tilt and power offset in the line amplifiers, thus achieving a considerable increase in QoT, both in average value and flatness. Second, the SDM approach is used as a benchmark for the BDM approach by assessing network performance on three network topologies with different geographical footprints. We show that, with optical power properly optimized, BDM may enable an increase in network traffic, slightly less than an SDM upgrade but still comparable, without requiring additional fiber cables. |
---|---|
AbstractList | Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band wavelength-division multiplexing (WDM) optical systems and to deal with increasing traffic demands. An important difference between these two approaches is that BDM solutions enable data transmission over unused spectral bands of already-deployed optical fibers, whereas SDM solutions require the availability of additional fibers to replicate C-band WDM transmission. On the other hand, to properly design a multiband optical line system (OLS), the following fiber propagation effects have been taken into account in the analysis: (i) stimulated Raman scattering (SRS), which induces considerable power transfer among bands; (ii) frequency dependence of fiber parameters such as attenuation, dispersion, and nonlinear coefficients; and (iii) utilization of optical amplifiers with different doping materials, thus leading to different characteristics, e.g., in terms of noise figures. This work follows a two-step approach: First, we aim at maximizing and flattening the quality of transmission (QoT) when adding L- and {\rm L} {+} {\rm S}-bands to a traditional WDM OLS where only the C-band is deployed. This is achieved by applying a multiband optimized optical power control for BDM upgrades, which consists of setting a pre-tilt and power offset in the line amplifiers, thus achieving a considerable increase in QoT, both in average value and flatness. Second, the SDM approach is used as a benchmark for the BDM approach by assessing network performance on three network topologies with different geographical footprints. We show that, with optical power properly optimized, BDM may enable an increase in network traffic, slightly less than an SDM upgrade but still comparable, without requiring additional fiber cables. Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band wavelength-division multiplexing (WDM) optical systems and to deal with increasing traffic demands. An important difference between these two approaches is that BDM solutions enable data transmission over unused spectral bands of already-deployed optical fibers, whereas SDM solutions require the availability of additional fibers to replicate C-band WDM transmission. On the other hand, to properly design a multiband optical line system (OLS), the following fiber propagation effects have been taken into account in the analysis: (i) stimulated Raman scattering (SRS), which induces considerable power transfer among bands; (ii) frequency dependence of fiber parameters such as attenuation, dispersion, and nonlinear coefficients; and (iii) utilization of optical amplifiers with different doping materials, thus leading to different characteristics, e.g., in terms of noise figures. This work follows a two-step approach: First, we aim at maximizing and flattening the quality of transmission (QoT) when adding L- and -bands to a traditional WDM OLS where only the C-band is deployed. This is achieved by applying a multiband optimized optical power control for BDM upgrades, which consists of setting a pre-tilt and power offset in the line amplifiers, thus achieving a considerable increase in QoT, both in average value and flatness. Second, the SDM approach is used as a benchmark for the BDM approach by assessing network performance on three network topologies with different geographical footprints. We show that, with optical power properly optimized, BDM may enable an increase in network traffic, slightly less than an SDM upgrade but still comparable, without requiring additional fiber cables. |
Author | Correia, Bruno Pedro, Joao Curri, Vittorio Napoli, Antonio Sadeghi, Rasoul Virgillito, Emanuele Costa, Nelson |
Author_xml | – sequence: 1 givenname: Bruno orcidid: 0000-0002-2848-8517 surname: Correia fullname: Correia, Bruno organization: DET, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino (TO) 10129, Italy – sequence: 2 givenname: Rasoul surname: Sadeghi fullname: Sadeghi, Rasoul organization: DET, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino (TO) 10129, Italy – sequence: 3 givenname: Emanuele orcidid: 0000-0003-2682-6110 surname: Virgillito fullname: Virgillito, Emanuele organization: DET, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino (TO) 10129, Italy – sequence: 4 givenname: Antonio surname: Napoli fullname: Napoli, Antonio organization: Infinera, Sankt-Martinstr. 76, Munich, 81541, Germany – sequence: 5 givenname: Nelson surname: Costa fullname: Costa, Nelson organization: Infinera Unipessoal Lda, Rua da Garagem 1, 2790-078 Carnaxide, Portugal – sequence: 6 givenname: Joao orcidid: 0000-0003-4471-7401 surname: Pedro fullname: Pedro, Joao organization: Infinera Unipessoal Lda, Rua da Garagem 1, 2790-078 Carnaxide, Portugal – sequence: 7 givenname: Vittorio orcidid: 0000-0003-0691-0067 surname: Curri fullname: Curri, Vittorio organization: DET, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino (TO) 10129, Italy |
BookMark | eNp1kM9LwzAUx4NMcE5PHr0EPI7OpEna5ijFnwwnuHvJslfJbJOaZAz_e1sqOwi-y3u89_1-H3zO0cQ6CwhdUbKgLOO3L6vydcGpTCU7QVMqOUtIxuTkOKfkDJ2HsCMkyykVU6Te3AE81s5G7xocolcRPgwErOwWW4gH5z9xB752vlVWA1YhQAgt2Ij7HS7ny_k7bvdNNJvB4rpotGpwH2RD53y8QKe1agJc_vYZWj_cr8unZLl6fC7vlommMosJlaoQfW1EkTJBhMzzWqYZp5yqjaaU5FCoVBekIFQzrbNtzUFArbecMUXYDN2MsZ13X3sIsdq5vbf9xyoVlDHZJ_BeNR9V2rsQPNRV502r_HdFSTUgrAaE1YiwV9M_am2iimaApUzzj-d69BgAOKZLTvqjYD8aKH7u |
CODEN | JOCNBB |
CitedBy_id | crossref_primary_10_1007_s11107_024_01023_6 crossref_primary_10_1364_JOCN_450726 crossref_primary_10_1364_JOCN_483414 crossref_primary_10_1364_JOCN_503265 crossref_primary_10_1515_joc_2024_0296 crossref_primary_10_1109_JLT_2024_3395620 crossref_primary_10_1364_JOCN_505490 crossref_primary_10_1016_j_yofte_2024_103815 crossref_primary_10_2139_ssrn_4135108 crossref_primary_10_1364_JOCN_456582 crossref_primary_10_1016_j_osn_2021_100652 crossref_primary_10_1109_JPROC_2022_3178977 crossref_primary_10_1109_JLT_2022_3210769 crossref_primary_10_1364_JOCN_492244 crossref_primary_10_1364_JOCN_440214 crossref_primary_10_23919_transcom_2024CEI0011 crossref_primary_10_1109_JLT_2024_3401540 crossref_primary_10_1109_JLT_2022_3161502 crossref_primary_10_1364_JOCN_533906 crossref_primary_10_1109_JLT_2024_3411886 crossref_primary_10_1109_JLT_2022_3223919 crossref_primary_10_1364_JOCN_486898 crossref_primary_10_1109_JLT_2022_3170332 crossref_primary_10_1364_OL_465942 crossref_primary_10_3390_photonics10050530 crossref_primary_10_1364_OE_439635 crossref_primary_10_1016_j_yofte_2024_103956 crossref_primary_10_1088_2040_8986_ad261f crossref_primary_10_1016_j_yofte_2022_103118 crossref_primary_10_1016_j_yofte_2022_103071 crossref_primary_10_1109_JPROC_2022_3202103 crossref_primary_10_1364_OE_537942 crossref_primary_10_1364_JOCN_503723 crossref_primary_10_1016_j_yofte_2022_103077 crossref_primary_10_1109_JLT_2024_3522314 crossref_primary_10_1109_JLT_2024_3439999 crossref_primary_10_1109_JLT_2021_3096045 crossref_primary_10_1364_JOCN_493231 crossref_primary_10_1109_JLT_2022_3167908 crossref_primary_10_1109_JLT_2023_3339391 crossref_primary_10_1109_TNSM_2023_3259391 crossref_primary_10_1109_JLT_2022_3162134 crossref_primary_10_1364_JOCN_440471 crossref_primary_10_1109_JLT_2022_3166652 crossref_primary_10_1364_JOCN_464386 crossref_primary_10_1109_JLT_2023_3250751 crossref_primary_10_1109_JLT_2021_3103758 crossref_primary_10_1109_JLT_2022_3208209 crossref_primary_10_1364_OE_498596 crossref_primary_10_1109_JLT_2023_3328783 crossref_primary_10_1364_JOCN_514026 crossref_primary_10_1364_JOCN_512049 crossref_primary_10_1109_JLT_2023_3303783 |
Cites_doi | 10.1109/JLT.2020.2968225 10.1109/JLT.2020.2989620 10.1109/JLT.2019.2894827 10.1109/JLT.2019.2954458 10.1109/JLT.2018.2814840 10.1109/IPC47351.2020.9252426 10.1109/ICTON51198.2020.9203450 10.23919/ONDM48393.2020.9133013 10.1109/JLT.2016.2551299 10.1109/JLT.2020.2970484 10.1364/JOCN.10.000272 10.1109/JLT.2017.2657231 10.1364/JOCN.12.00A123 10.1364/JOCN.382906 10.1109/JLT.2019.2941765 10.1109/JLT.2003.822828 10.1109/JLT.2015.2447151 10.1109/JLT.2018.2866805 10.1109/JLT.2019.2959272 10.1109/JLT.2018.2818406 10.1364/NETWORKS.2018.NeTu3E.1 10.1364/OSAC.410333 10.1364/JOCN.9.0000B1 10.1109/ICTON51198.2020.9203358 10.1109/JLT.2020.2966491 10.1049/cp.2013.1458 10.1109/ICTON.2015.7193526 10.1109/JLT.2017.2771719 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1364/JOCN.419293 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-0639 |
EndPage | 157 |
ExternalDocumentID | 10_1364_JOCN_419293 9402935 |
Genre | orig-research |
GroupedDBID | 0R~ 29L 29N 4.4 5VS 6IK 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACIWK AEDJG AENEX AETIX AGQYO AGSQL AHBIQ AKGWG AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR AZYMN BEFXN BFFAM BGNUA BKEBE BPEOZ DSZJF DU5 EBS EJD ESBDL HZ~ IES IFIPE IPLJI JAVBF M43 O9- OCL ODPQJ OFLFD OPJBK RIA RIE RNS ROL ROS TR6 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c196t-19a85555b5823505977f9264141abc1107e8a2c80801c3cc6df4e5efcd433a03 |
IEDL.DBID | RIE |
ISSN | 1943-0620 |
IngestDate | Mon Jun 30 05:35:44 EDT 2025 Tue Jul 01 01:09:31 EDT 2025 Thu Apr 24 22:53:02 EDT 2025 Wed Aug 27 02:17:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c196t-19a85555b5823505977f9264141abc1107e8a2c80801c3cc6df4e5efcd433a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2848-8517 0000-0003-4471-7401 0000-0003-0691-0067 0000-0003-2682-6110 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9402935 |
PQID | 2513391074 |
PQPubID | 85498 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1364_JOCN_419293 proquest_journals_2513391074 crossref_citationtrail_10_1364_JOCN_419293 ieee_primary_9402935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | Journal of optical communications and networking |
PublicationTitleAbbrev | jocn |
PublicationYear | 2021 |
Publisher | Optica Publishing Group The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: Optica Publishing Group – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Roberts (jocn-13-7-147-R20) 2017; 35 Ferrari (jocn-13-7-147-R7) 2020; 38 London (jocn-13-7-147-R28) 2020; 3 Ferrari (jocn-13-7-147-R29) 2020; 12 Pedro (jocn-13-7-147-R4) 2020; 12 Curri (jocn-13-7-147-R33) 2015; 33 Cantono (jocn-13-7-147-R23) 2018; 36 Okamoto (jocn-13-7-147-R11) 2016 Virgillito (jocn-13-7-147-R18) 2020 Filer (jocn-13-7-147-R24) 2018; 36 Poggiolini (jocn-13-7-147-R34) 2013 Pastorelli (jocn-13-7-147-R32) 2013 Klinkowski (jocn-13-7-147-R8) 2018 Ionescu (jocn-13-7-147-R15) 2020; 38 Bromage (jocn-13-7-147-R31) 2004; 22 Pedro (jocn-13-7-147-R36) 2015 Yuan (jocn-13-7-147-R2) 2018; 10 Zhang (jocn-13-7-147-R3) 2020; 38 Khodashenas (jocn-13-7-147-R5) 2016; 34 Hamaoka (jocn-13-7-147-R22) 2019; 37 Pederzolli (jocn-13-7-147-R6) 2017; 9 Curri (jocn-13-7-147-R27) 2020 Napoli (jocn-13-7-147-R9) 2018 Renaudier (jocn-13-7-147-R26) 2020; 38 Ferrari (jocn-13-7-147-R10) 2019 Virgillito (jocn-13-7-147-R19) 2020 Cantono (jocn-13-7-147-R16) 2019; 38 Ferrari (jocn-13-7-147-R13) 2020; 38 Ferrari (jocn-13-7-147-R17) 2019 Kim (jocn-13-7-147-R1) 2019; 37 Curri (jocn-13-7-147-R25) 2017; 35 Arnould (jocn-13-7-147-R12) 2020 Semrau (jocn-13-7-147-R14) 2020 Lopez (jocn-13-7-147-R21) 2020; 38 |
References_xml | – volume: 38 start-page: 1080 year: 2020 ident: jocn-13-7-147-R21 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2968225 – volume: 38 start-page: 4279 year: 2020 ident: jocn-13-7-147-R7 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2989620 – volume: 37 start-page: 1764 year: 2019 ident: jocn-13-7-147-R22 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2894827 – volume: 38 start-page: 531 year: 2020 ident: jocn-13-7-147-R15 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2954458 – volume: 36 start-page: 3131 year: 2018 ident: jocn-13-7-147-R23 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2814840 – start-page: 404 volume-title: International Conference on Computing, Networking and Communications (ICNC) year: 2018 ident: jocn-13-7-147-R8 article-title: A study on the impact of inter-core crosstalk on SDM network performance – volume-title: IEEE Photonics Conference (IPC) year: 2020 ident: jocn-13-7-147-R14 article-title: The benefits of using the S-band in optical fiber communications and how to get there doi: 10.1109/IPC47351.2020.9252426 – volume-title: 22nd International Conference on Transparent Optical Networks (ICTON) year: 2020 ident: jocn-13-7-147-R27 article-title: Software-defined WDM optical transport in disaggregated open optical networks doi: 10.1109/ICTON51198.2020.9203450 – volume-title: International Conference on Optical Network Design and Modelling (ONDM) year: 2020 ident: jocn-13-7-147-R19 article-title: Network performance assessment with uniform and non-uniform nodes distribution in C+L upgrades vs. fiber doubling SDM solutions doi: 10.23919/ONDM48393.2020.9133013 – volume: 34 start-page: 2710 year: 2016 ident: jocn-13-7-147-R5 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2551299 – volume: 38 start-page: 1041 year: 2020 ident: jocn-13-7-147-R13 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2970484 – volume: 10 start-page: 272 year: 2018 ident: jocn-13-7-147-R2 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.000272 – volume: 35 start-page: 1211 year: 2017 ident: jocn-13-7-147-R25 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2657231 – volume: 12 start-page: A123 year: 2020 ident: jocn-13-7-147-R4 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.12.00A123 – volume: 12 start-page: C31 year: 2020 ident: jocn-13-7-147-R29 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.382906 – volume: 38 start-page: 18 year: 2020 ident: jocn-13-7-147-R3 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2941765 – volume: 22 start-page: 79 year: 2004 ident: jocn-13-7-147-R31 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.822828 – volume: 33 start-page: 3921 year: 2015 ident: jocn-13-7-147-R33 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2447151 – start-page: W2 volume-title: Optical Fiber Communications Conference and Exhibition (OFC) year: 2019 ident: jocn-13-7-147-R17 article-title: Power control strategies in C+L optical line systems – start-page: OW1H.3 volume-title: Optical Fiber Communication Conference (OFC) year: 2013 ident: jocn-13-7-147-R34 article-title: The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks – volume: 37 start-page: 2873 year: 2019 ident: jocn-13-7-147-R1 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2866805 – volume: 38 start-page: 1050 year: 2019 ident: jocn-13-7-147-R16 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2959272 – volume: 36 start-page: 3073 year: 2018 ident: jocn-13-7-147-R24 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2818406 – start-page: NeTu3E.1 volume-title: Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF) year: 2018 ident: jocn-13-7-147-R9 article-title: Towards multiband optical systems doi: 10.1364/NETWORKS.2018.NeTu3E.1 – volume: 3 start-page: 3378 year: 2020 ident: jocn-13-7-147-R28 publication-title: OSA Continuum doi: 10.1364/OSAC.410333 – volume: 9 start-page: B1 year: 2017 ident: jocn-13-7-147-R6 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.9.0000B1 – volume-title: 22nd International Conference on Transparent Optical Networks (ICTON) year: 2020 ident: jocn-13-7-147-R12 article-title: High-speed and ultra-wideband devices for coherent transmission: challenges and opportunities doi: 10.1109/ICTON51198.2020.9203358 – volume: 38 start-page: 1071 year: 2020 ident: jocn-13-7-147-R26 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2966491 – volume-title: 39th European Conference and Exhibition on Optical Communication (ECOC) year: 2013 ident: jocn-13-7-147-R32 article-title: Optical control plane based on an analytical model of non-linear transmission effects in a self-optimized network doi: 10.1049/cp.2013.1458 – start-page: M2 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-7-147-R18 article-title: Network performance assessment of C+L upgrades vs. fiber doubling SDM solutions – volume-title: 17th International Conference on Transparent Optical Networks (ICTON) year: 2015 ident: jocn-13-7-147-R36 article-title: On scaling transport networks for very high nodal degree ROADM nodes using state-of-the-art optical switch technology doi: 10.1109/ICTON.2015.7193526 – volume: 35 start-page: 5237 year: 2017 ident: jocn-13-7-147-R20 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2771719 – start-page: 3 volume-title: International Conference on Transparent Optical Networks year: 2019 ident: jocn-13-7-147-R10 article-title: Upgrade capacity scenarios enabled by multiband optical systems – start-page: 20 volume-title: European Conference on Optical Communication (ECOC) year: 2016 ident: jocn-13-7-147-R11 article-title: 5-band (O, E, S, C, and L) WDM transmission with wavelength adaptive modulation format allocation |
SSID | ssj0067115 |
Score | 2.4836361 |
Snippet | Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band... Spatial-division multiplexing (SDM) and band-division multiplexing (BDM) have emerged as solutions to expand the capacity of existing C-band... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 147 |
SubjectTerms | Amplifiers Attenuation C band Cables Communications traffic Computer networks Data transmission Network topologies Nonlinear optics Optical fiber networks Optical fibers Optical noise Optical scattering Optimization Performance assessment Power control Power transfer Raman spectra Spectral bands Wavelength division multiplexing |
Title | Power control strategies and network performance assessment for C+L+S multiband optical transport |
URI | https://ieeexplore.ieee.org/document/9402935 https://www.proquest.com/docview/2513391074 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdO6gK77Rb2aIiEkIAmYsJt09deNAuR5eKvt9N9-OLgnpptmzSdPmY633wD0PEFZxE3zGOKa4_pQd8TEp28Vnnm9nqwdejRnc355IVNl-GyBndVLIwxxoHPTBeLzpevV2qLT2W9yBo7EQ3rULfLLI_VKk9dPvBdtgJrk2O2gqBfxOJRznrTx9G8i97OiP64fVw6lT9nsLtYxocwK4eU40leu9tMdtXHL7bG_475CA4KDZPc50viGGomPYH9b7yDTRBPmBuNFDB1sslKvggiUk3SHBlO1l8xBURUBJ7E_iPWlr99Jg6MKLHLau2exElWUqWfwmL8sBhNvCLXgqfsHsw8PxLD0H4yHAbUakVWLUwiqyz5zBdSoZFohiJQyELpK6qsYBNmQpMozSgVfXoGjXSVmnMgKlGGa43uN1vHpUhogsRwgkc6UdJvwU0pglgVPOSYDuMtds41zmKUV5zLqwWdqvE6p9_Y3ayJM181KSa9Be1StnGxNTdxgBltIsShXuzudQl7AQJXHCa3DY3sfWuurOaRyWu35D4BIRfWyQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFPDQCUjaxI7bjKiiKqUtSBSpW-Q4zgJKK5ou_Hp8zoNXBzJFsS1FPtt35_vuO4CmIzjzuWIWkzyyWNRpWyLEIK82nrlWD7oNI7rjCR-8sOHMm1XgpsyFUUoZ8Jmy8dXE8qO5XOFVWcvXzo5PvQ3Y1HqfeVm2VnHu8o5j6hVorxzrFbjtPBuPctYaPvYmNsY7ffpD_5iCKn9OYaNa-nswLn4qQ5S82qs0tOXHL77G__71PuzmNia5zRbFAVRUcgg735gHayCesDoayYHqZJkWjBFEJBFJMmw4WXxlFRBRUngS_Y1ob_76mRg4YohD5gtzKU7Sgiz9CKb9u2lvYOXVFiypd2FqOb7oevoJva5LtV2kDcPY1-aSwxwRSnQTVVe4EnkoHUmlFm3MlKdiGTFKRZseQzWZJ-oEiIyl4lGEATjdxkMR0xip4QT3o1iGTh2uChEEMmcix4IYb4EJr3EWoLyCTF51aJadFxkBx_puNZz5sks-6XVoFLIN8s25DFysaeMjEvV0_ahL2BpMx6NgdD95OINtF2EsBqHbgGr6vlLn2g5Jwwuz_D4Bhf7aFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+control+strategies+and+network+performance+assessment+for+C%2BL%2BS+multiband+optical+transport&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Correia%2C+Bruno&rft.au=Sadeghi%2C+Rasoul&rft.au=Virgillito%2C+Emanuele&rft.au=Napoli%2C+Antonio&rft.date=2021-07-01&rft.pub=Optica+Publishing+Group&rft.issn=1943-0620&rft.volume=13&rft.issue=7&rft.spage=147&rft.epage=157&rft_id=info:doi/10.1364%2FJOCN.419293&rft.externalDocID=9402935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon |