Multiaxial fatigue life prediction based on modular neural network pretrained with uniaxial fatigue data

Saved in:
Bibliographic Details
Published inEngineering computations
Main Authors Gan, Lei, Wang, Anbin, Zhong, Zheng, Wu, Hao
Format Journal Article
LanguageEnglish
Published 24.05.2024
Online AccessGet full text
ISSN0264-4401
DOI10.1108/EC-11-2023-0852

Cover

Loading…
Author Gan, Lei
Wang, Anbin
Wu, Hao
Zhong, Zheng
Author_xml – sequence: 1
  givenname: Lei
  surname: Gan
  fullname: Gan, Lei
– sequence: 2
  givenname: Anbin
  surname: Wang
  fullname: Wang, Anbin
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0003-4412-717X
  surname: Zhong
  fullname: Zhong, Zheng
– sequence: 4
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
BookMark eNpdkDtPwzAUhT0UibYws_oPmN7rOK8RReEhFbF0j25imxpSp3IcFf49iWBiOmf4dKTzbdjKD94wdodwjwjFrq4EopAgEwFFKldsDTJTQinAa7YZxw8AyJME1uz4OvXR0ZejnluK7n0yvHfW8HMw2nXRDZ63NBrN53Ia9NRT4N5MYea9iZchfC5oDOT8DF1cPPLJ_xvUFOmGXVnqR3P7l1t2eKwP1bPYvz29VA970WGZRtGiKrSlRFvscpCpLFssUpUbDYXOJLXSFLmxXYeACnIqpaZUlZksy1zPf7ds9zvbhWEcg7HNObgThe8GoVncNHU1Z7O4aRY3yQ_n7FzG
Cites_doi 10.1115/1.4015020
10.1016/j.ijfatigue.2019.105187
10.1016/s0308-0161(98)00100-8
10.1111/j.1460-2695.1988.tb01169.x
10.1016/j.ijfatigue.2022.106841
10.1177/0954406217708214
10.1111/ffe.13977
10.1111/ffe.13910
10.1016/j.ijfatigue.2007.07.005
10.1111/j.1460-2695.2004.00740.x
10.1016/j.actamat.2022.118103
10.1016/j.rser.2017.09.047
10.1111/ffe.12752
10.1016/j.ijfatigue.2023.107730
10.1016/j.ijfatigue.2023.107868
10.1115/1.2804541
10.1016/j.ijfatigue.2022.106851
10.1111/ffe.13532
10.1016/j.ijfatigue.2017.04.013
10.1016/j.engfailanal.2022.106851
10.1016/j.ijfatigue.2023.107776
10.1016/j.ijfatigue.2022.106996
10.1016/j.ijfatigue.2022.107281
10.1016/j.ijpvp.2022.104779
10.1016/j.engfracmech.2023.109351
10.1016/s0142-1123(00)00005-0
10.1016/j.ijfatigue.2019.105209
10.1016/j.ijfatigue.2007.02.015
10.1016/j.ijfatigue.2017.04.011
10.1016/j.ijfatigue.2022.107361
10.1111/ffe.13874
10.1016/j.engfracmech.2023.109431
10.1016/j.ijfatigue.2018.07.041
10.1016/j.ijfatigue.2013.08.028
10.1115/1.3226012
10.3901/cjme.2011.02.195
10.1016/j.ijfatigue.2022.107067
10.1016/j.ijfatigue.2006.10.028
10.1016/j.ijfatigue.2011.10.009
10.1016/j.ijfatigue.2021.106356
10.1016/j.euromechsol.2022.104889
10.1115/1.3225980
10.1111/ffe.13792
10.1115/1.3008041
10.1016/j.ijfatigue.2010.05.006
10.1016/j.ijfatigue.2020.105509
10.1177/1056789516651920
10.1016/j.ijfatigue.2018.11.025
10.1007/s10704-005-1088-2
10.1016/j.ijfatigue.2020.105995
10.1016/j.ijfatigue.2023.107648
10.1016/j.ijfatigue.2015.12.002
10.1111/ffe.13070
10.1016/j.ijfatigue.2014.04.008
10.1115/1.3224982
10.1016/j.ijfatigue.2020.106136
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1108/EC-11-2023-0852
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1108_EC_11_2023_0852
GroupedDBID 0R~
29G
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8FW
8R4
8R5
9E0
AAGBP
AAMCF
AATHL
AAUDR
AAYXX
ABIJV
ABJCF
ABJNI
ABKQV
ABSDC
ABYQI
ACBEA
ACGFS
ACGOD
ACIWK
ACZLT
ADFRT
ADOMW
AEBZA
AENEX
AFKRA
AFNTC
AFYHH
AFZLO
AHMHQ
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CS3
DU5
DWQXO
EBS
ECCUG
FNNZZ
GEI
GEL
GNUQQ
GQ.
HCIFZ
HZ~
IJT
IPNFZ
J1Y
JI-
JL0
K6V
K6~
K7-
KBGRL
L6V
M0C
M2P
M42
M7S
O9-
P2P
P62
PHGZM
PHGZT
PQBIZ
PQQKQ
PROAC
PTHSS
Q2X
RIG
RWL
SBBZN
TAE
TN5
U5U
UNMZH
~02
ID FETCH-LOGICAL-c195t-b148dfa3df1c702529b18547ed08d62ab2e87efcc101407a92da54962997d023
ISSN 0264-4401
IngestDate Tue Jul 01 01:31:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://www.emerald.com/insight/site-policies
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c195t-b148dfa3df1c702529b18547ed08d62ab2e87efcc101407a92da54962997d023
ORCID 0000-0003-4412-717X
ParticipantIDs crossref_primary_10_1108_EC_11_2023_0852
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-24
PublicationDateYYYYMMDD 2024-05-24
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-24
  day: 24
PublicationDecade 2020
PublicationTitle Engineering computations
PublicationYear 2024
References (key2024052305450415100_ref024) 2005; 134
(key2024052305450415100_ref048) 2021; 151
(key2024052305450415100_ref036) 2018; 41
(key2024052305450415100_ref012) 2022; 45
(key2024052305450415100_ref052) 2017; 102
(key2024052305450415100_ref005) 2018; 117
(key2024052305450415100_ref019) 2023; 98
(key2024052305450415100_ref035) 2023; 289
(key2024052305450415100_ref051) 2023; 143
(key2024052305450415100_ref002) 2019; 129
(key2024052305450415100_ref004) 2000; 22
(key2024052305450415100_ref030) 2022; 160
(key2024052305450415100_ref006) 2003; 27
(key2024052305450415100_ref020) 2023; 46
(key2024052305450415100_ref021) 1995; 117
(key2024052305450415100_ref016) 1981; 103
(key2024052305450415100_ref033) 2023; 46
(key2024052305450415100_ref011) 1988; 11
(key2024052305450415100_ref027) 2014; 66
(key2024052305450415100_ref003) 2022; 163
(key2024052305450415100_ref015) 2023; 168
(key2024052305450415100_ref053) 2021; 44
(key2024052305450415100_ref037) 2010; 32
(key2024052305450415100_ref041) 2022; 162
(key2024052305450415100_ref042) 1998; 75
(key2024052305450415100_ref049) 2022; 162
(key2024052305450415100_ref013) 2023; 172
(key2024052305450415100_ref046) 2018; 232
(key2024052305450415100_ref043) 2011; 24
(key2024052305450415100_ref023) 2018; 82
(key2024052305450415100_ref034) 2008; 30
(key2024052305450415100_ref026) 2023; 175
(key2024052305450415100_ref056) 2019; 121
(key2024052305450415100_ref044) 2022; 235
(key2024052305450415100_ref010) 1988; 110
(key2024052305450415100_ref017) 2023; 289
(key2024052305450415100_ref029) 2019; 128
(key2024052305450415100_ref008) 1954; 76
(key2024052305450415100_ref022) 2007; 29
(key2024052305450415100_ref001) 2016; 85
(key2024052305450415100_ref055) 2017; 26
(key2024052305450415100_ref028) 2021; 143
(key2024052305450415100_ref054) 2023; 176
(key2024052305450415100_ref047) 2023; 175
(key2024052305450415100_ref025) 2020; 134
(key2024052305450415100_ref032) 2022; 46
(key2024052305450415100_ref018) 2022; 199
(key2024052305450415100_ref050) 2008; 30
(key2024052305450415100_ref038) 2019; 42
(key2024052305450415100_ref039) 2017; 102
(key2024052305450415100_ref031) 2012; 37
(key2024052305450415100_ref009) 2023; 166
(key2024052305450415100_ref014) 2009; 131
(key2024052305450415100_ref007) 2021; 145
(key2024052305450415100_ref045) 2014; 59
(key2024052305450415100_ref040) 1987; 109
References_xml – volume: 76
  start-page: 931
  issue: 6
  year: 1954
  ident: key2024052305450415100_ref008
  article-title: A study of the effects of cyclic thermal stresses on a ductile metal
  publication-title: Transactions of the American Society of Mechanical Engineers
  doi: 10.1115/1.4015020
– volume: 128
  year: 2019
  ident: key2024052305450415100_ref029
  article-title: A modified energy-based model for low-cycle fatigue life prediction under multiaxial irregular loading
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2019.105187
– volume: 75
  start-page: 955
  issue: 13
  year: 1998
  ident: key2024052305450415100_ref042
  article-title: Fatigue life prediction under random loading using total hysteresis energy
  publication-title: International Journal of Pressure Vessels and Piping
  doi: 10.1016/s0308-0161(98)00100-8
– volume: 11
  start-page: 149
  issue: 3
  year: 1988
  ident: key2024052305450415100_ref011
  article-title: A critical plane approach to multiaxial fatigue damage including out-of-phase loading, including out-of-phase loading
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/j.1460-2695.1988.tb01169.x
– volume: 160
  year: 2022
  ident: key2024052305450415100_ref030
  article-title: On the efficiency of machine learning for fatigue assessment of post-processed additively manufactured AlSi10Mg
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.106841
– volume: 232
  start-page: 1823
  issue: 10
  year: 2018
  ident: key2024052305450415100_ref046
  article-title: Evaluation of multiaxial fatigue life prediction criteria for Ni based superalloy GH4169
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
  doi: 10.1177/0954406217708214
– volume: 46
  start-page: 1979
  issue: 5
  year: 2023
  ident: key2024052305450415100_ref020
  article-title: Multiaxial fatigue life prediction for various metallic materials based on the hybrid CNN‐LSTM neural network
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.13977
– volume: 46
  start-page: 940
  issue: 3
  year: 2023
  ident: key2024052305450415100_ref033
  article-title: A new multiaxial fatigue life prediction method based on grey theory under small sample condition
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.13910
– volume: 30
  start-page: 834
  issue: 5
  year: 2008
  ident: key2024052305450415100_ref050
  article-title: Fatigue of 7075-T651 aluminum alloy
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2007.07.005
– volume: 27
  start-page: 439
  issue: 6
  year: 2003
  ident: key2024052305450415100_ref006
  article-title: Low-cycle fatigue of 1Cr-18Ni-9Ti stainless steel and related weld metal under axial, torsional and 90° out-of-phase loading
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/j.1460-2695.2004.00740.x
– volume: 235
  year: 2022
  ident: key2024052305450415100_ref044
  article-title: On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2022.118103
– volume: 82
  start-page: 940
  year: 2018
  ident: key2024052305450415100_ref023
  article-title: Advances in fatigue life modeling: a review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.09.047
– volume: 41
  start-page: 1064
  issue: 5
  year: 2018
  ident: key2024052305450415100_ref036
  article-title: Multiaxial low-cycle fatigue life evaluation under different non-proportional loading paths
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.12752
– volume: 175
  year: 2023
  ident: key2024052305450415100_ref047
  article-title: Predicting multiaxial fatigue life of FGH96 superalloy based on machine learning models by considering failure process and loading paths
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2023.107730
– volume: 176
  year: 2023
  ident: key2024052305450415100_ref054
  article-title: A multiaxial low-cycle fatigue prediction method under irregular loading by ANN model with knowledge-based features
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2023.107868
– volume: 117
  start-page: 285
  issue: 3
  year: 1995
  ident: key2024052305450415100_ref021
  article-title: Nonproportional low cycle fatigue criterion for type 304 stainless steel
  publication-title: Journal of Engineering Materials and Technology
  doi: 10.1115/1.2804541
– volume: 162
  year: 2022
  ident: key2024052305450415100_ref049
  article-title: A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.106851
– volume: 44
  start-page: 2524
  issue: 9
  year: 2021
  ident: key2024052305450415100_ref053
  article-title: Machine learning‐based genetic feature identification and fatigue life prediction
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.13532
– volume: 102
  start-page: 241
  year: 2017
  ident: key2024052305450415100_ref052
  article-title: A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2017.04.013
– volume: 143
  year: 2023
  ident: key2024052305450415100_ref051
  article-title: Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2022.106851
– volume: 175
  year: 2023
  ident: key2024052305450415100_ref026
  article-title: Physics-constrained Gaussian process for life prediction under in-phase multiaxial cyclic loading with superposed static components
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2023.107776
– volume: 162
  year: 2022
  ident: key2024052305450415100_ref041
  article-title: A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.106996
– volume: 166
  year: 2023
  ident: key2024052305450415100_ref009
  article-title: Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.107281
– volume: 199
  year: 2022
  ident: key2024052305450415100_ref018
  article-title: Application of tabular data synthesis using generative adversarial networks on machine learning-based multiaxial fatigue life prediction
  publication-title: International Journal of Pressure Vessels and Piping
  doi: 10.1016/j.ijpvp.2022.104779
– volume: 289
  year: 2023
  ident: key2024052305450415100_ref017
  article-title: Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2023.109351
– volume: 22
  start-page: 275
  issue: 4
  year: 2000
  ident: key2024052305450415100_ref004
  article-title: Analysis of the experimental data on a low cycle fatigue under nonproportional straining
  publication-title: International Journal of Fatigue
  doi: 10.1016/s0142-1123(00)00005-0
– volume: 129
  year: 2019
  ident: key2024052305450415100_ref002
  article-title: Development of new critical plane model forassessment of fatigue life under multi-axial loading conditions
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2019.105209
– volume: 30
  start-page: 58
  issue: 1
  year: 2008
  ident: key2024052305450415100_ref034
  article-title: Two new multiaxial criteria for high cycle fatigue computation
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2007.02.015
– volume: 102
  start-page: 18
  year: 2017
  ident: key2024052305450415100_ref039
  article-title: Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2017.04.011
– volume: 168
  year: 2023
  ident: key2024052305450415100_ref015
  article-title: Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.107361
– volume: 46
  start-page: 416
  issue: 2
  year: 2022
  ident: key2024052305450415100_ref032
  article-title: Application of machine learning methods in multiaxial fatigue life prediction
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.13874
– volume: 289
  year: 2023
  ident: key2024052305450415100_ref035
  article-title: Very high cycle fatigue life prediction of Ti60 alloy based on machine learning with data enhancement
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2023.109431
– volume: 117
  start-page: 121
  year: 2018
  ident: key2024052305450415100_ref005
  article-title: A probabilistic Stüssi function for modelling the S-N curves and its\ application on specimens made of steel S355J2+N
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2018.07.041
– volume: 59
  start-page: 170
  year: 2014
  ident: key2024052305450415100_ref045
  article-title: Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2013.08.028
– volume: 110
  start-page: 63
  issue: 1
  year: 1988
  ident: key2024052305450415100_ref010
  article-title: Multiaxial fatigue damage criterion
  publication-title: Journal of Engineering Materials and Technology
  doi: 10.1115/1.3226012
– volume: 24
  start-page: 195
  issue: 02
  year: 2011
  ident: key2024052305450415100_ref043
  article-title: Multiaxial fatigue of 2024-T4 aluminum alloy
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/cjme.2011.02.195
– volume: 163
  year: 2022
  ident: key2024052305450415100_ref003
  article-title: Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo mechanical fatigue loading
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.107067
– volume: 29
  start-page: 1490
  issue: 8
  year: 2007
  ident: key2024052305450415100_ref022
  article-title: An experimental evaluation of three critical plane multiaxial fatigue criteria
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2006.10.028
– volume: 37
  start-page: 123
  year: 2012
  ident: key2024052305450415100_ref031
  article-title: Load path sensitivity and fatigue life estimation of 30CrNiMo8HH
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2011.10.009
– volume: 151
  year: 2021
  ident: key2024052305450415100_ref048
  article-title: A novel method of multiaxial fatigue life prediction based on deep learning
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2021.106356
– volume: 98
  year: 2023
  ident: key2024052305450415100_ref019
  article-title: MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction
  publication-title: European Journal of Mechanics – A/Solids
  doi: 10.1016/j.euromechsol.2022.104889
– volume: 109
  start-page: 283
  issue: 4
  year: 1987
  ident: key2024052305450415100_ref040
  article-title: Multiaxial fatigue damage models
  publication-title: Journal of Engineering Materials and Technology
  doi: 10.1115/1.3225980
– volume: 45
  start-page: 2748
  issue: 9
  year: 2022
  ident: key2024052305450415100_ref012
  article-title: Fatigue life prediction in presence of mean stresses using domain knowledge integrated ensemble of extreme learning machines
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.13792
– volume: 131
  issue: 2
  year: 2009
  ident: key2024052305450415100_ref014
  article-title: Multiaxial fatigue of 16MnR steel
  publication-title: Journal of Pressure Vessel Technology, Transactions of the ASME
  doi: 10.1115/1.3008041
– volume: 32
  start-page: 1862
  issue: 11
  year: 2010
  ident: key2024052305450415100_ref037
  article-title: Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2010.05.006
– volume: 134
  year: 2020
  ident: key2024052305450415100_ref025
  article-title: Progress in fatigue life calculation by implementing life dependent material parameters in multiaxial fatigue criteria
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2020.105509
– volume: 26
  start-page: 1219
  issue: 8
  year: 2017
  ident: key2024052305450415100_ref055
  article-title: Mean stress effect correction in strain energy based fatigue life prediction of metals
  publication-title: International Journal of Damage Mechanics
  doi: 10.1177/1056789516651920
– volume: 121
  start-page: 1
  year: 2019
  ident: key2024052305450415100_ref056
  article-title: A novel energy-based equivalent damage parameter for multiaxial fatigue life prediction
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2018.11.025
– volume: 134
  start-page: 267
  issue: 3-4
  year: 2005
  ident: key2024052305450415100_ref024
  article-title: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials
  publication-title: International Journal of Fracture
  doi: 10.1007/s10704-005-1088-2
– volume: 143
  year: 2021
  ident: key2024052305450415100_ref028
  article-title: Multiaxial fatigue space: a three-dimensional space constituted of fatigue basic units
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2020.105995
– volume: 172
  year: 2023
  ident: key2024052305450415100_ref013
  article-title: On the integration of domain knowledge and branching neural network for fatigue life prediction with small samples
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2023.107648
– volume: 85
  start-page: 98
  year: 2016
  ident: key2024052305450415100_ref001
  article-title: Testing and assessment offatigue life prediction models for Indian PHWRs piping material under multi-axial load cycling
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2015.12.002
– volume: 42
  start-page: 2000
  issue: 9
  year: 2019
  ident: key2024052305450415100_ref038
  article-title: On the interaction of normal and shear stresses in multiaxial fatigue damage
  publication-title: Fatigue and Fracture of Engineering Materials and Structures
  doi: 10.1111/ffe.13070
– volume: 66
  start-page: 229
  year: 2014
  ident: key2024052305450415100_ref027
  article-title: New energy model for fatigue life determination under multiaxial loading with different mean values
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2014.04.008
– volume: 103
  start-page: 118
  issue: 2
  year: 1981
  ident: key2024052305450415100_ref016
  article-title: A new approach to the evaluation of fatigue under multiaxial loadings
  publication-title: Journal of Engineering Materials and Technology Transactions ASME
  doi: 10.1115/1.3224982
– volume: 145
  year: 2021
  ident: key2024052305450415100_ref007
  article-title: Multiaxial fatigue life prediction of polychloroprene rubber (CR) reinforced with tungsten nano-particles based on semi-empirical and machine learning models
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2020.106136
SSID ssj0007330
Score 2.3499653
SourceID crossref
SourceType Index Database
Title Multiaxial fatigue life prediction based on modular neural network pretrained with uniaxial fatigue data
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS9xAFB7qerEHbdWirS1z8CBIJJtMdjbHdVmRQqWUFcRLmJ_dBc2KJiD-9b43mc2E1YL1koQwDGG-L_N-zPtmCDlkBsyOMBIQYBCgmFxE0uoYfjzBleqroUpRnPzrYnB-yX5eZVfhmDunLqnkiXp6VVfyHlThHeCKKtn_QLbtFF7AM-ALV0AYrm_C2KlnxSMmvS28-lub45u5RekTLr84ZNFKaVwRuF1oV3GKG1hC-7Ip_8am7pSIZRV6Xa506MVrIX0fNjB09eh11cn5YSGPFzOYecjVN_PJqJTzlorXM18LfD0z3nhi09qZQrHoJiMShuvojQbaz1ngX0WMNfmJl7OzUxxMxqjlw2PbI_D3kmCIlovvK_aprRp08Uo8LCZjuBfYQYEdrJH1BGKEuEfWTycXv_-0hpinqU-xNd_kd3bCg49WvqHjlHS8i-knsunDAjpqMP5MPphym2z5EIH6Cfhhm3zsDP8OmQUCUI8XRQLQQADqCEDhwROANgSgngA0EIAiAeiSAG2HSIBdMj2bTMfnkT86I1L9PKsiCVGutiLVtq84uLVJLsExY9zoeKgHiZCJGXJj4W_ECJuLPNEiY_kAnBOuYVS-kF65KM0eoVxIm-aZyWyimQJ_lYuM467_LE9VbPk-OVoOXXHXbJBS_AOor29v-o1sBHodkF51X5vv4P1V8odH-RnQsFt6
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiaxial+fatigue+life+prediction+based+on+modular+neural+network+pretrained+with+uniaxial+fatigue+data&rft.jtitle=Engineering+computations&rft.au=Gan%2C+Lei&rft.au=Wang%2C+Anbin&rft.au=Zhong%2C+Zheng&rft.au=Wu%2C+Hao&rft.date=2024-05-24&rft.issn=0264-4401&rft_id=info:doi/10.1108%2FEC-11-2023-0852&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EC_11_2023_0852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon