Multiaxial fatigue life prediction based on modular neural network pretrained with uniaxial fatigue data
Saved in:
Published in | Engineering computations |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
24.05.2024
|
Online Access | Get full text |
ISSN | 0264-4401 |
DOI | 10.1108/EC-11-2023-0852 |
Cover
Loading…
Author | Gan, Lei Wang, Anbin Wu, Hao Zhong, Zheng |
---|---|
Author_xml | – sequence: 1 givenname: Lei surname: Gan fullname: Gan, Lei – sequence: 2 givenname: Anbin surname: Wang fullname: Wang, Anbin – sequence: 3 givenname: Zheng orcidid: 0000-0003-4412-717X surname: Zhong fullname: Zhong, Zheng – sequence: 4 givenname: Hao surname: Wu fullname: Wu, Hao |
BookMark | eNpdkDtPwzAUhT0UibYws_oPmN7rOK8RReEhFbF0j25imxpSp3IcFf49iWBiOmf4dKTzbdjKD94wdodwjwjFrq4EopAgEwFFKldsDTJTQinAa7YZxw8AyJME1uz4OvXR0ZejnluK7n0yvHfW8HMw2nXRDZ63NBrN53Ia9NRT4N5MYea9iZchfC5oDOT8DF1cPPLJ_xvUFOmGXVnqR3P7l1t2eKwP1bPYvz29VA970WGZRtGiKrSlRFvscpCpLFssUpUbDYXOJLXSFLmxXYeACnIqpaZUlZksy1zPf7ds9zvbhWEcg7HNObgThe8GoVncNHU1Z7O4aRY3yQ_n7FzG |
Cites_doi | 10.1115/1.4015020 10.1016/j.ijfatigue.2019.105187 10.1016/s0308-0161(98)00100-8 10.1111/j.1460-2695.1988.tb01169.x 10.1016/j.ijfatigue.2022.106841 10.1177/0954406217708214 10.1111/ffe.13977 10.1111/ffe.13910 10.1016/j.ijfatigue.2007.07.005 10.1111/j.1460-2695.2004.00740.x 10.1016/j.actamat.2022.118103 10.1016/j.rser.2017.09.047 10.1111/ffe.12752 10.1016/j.ijfatigue.2023.107730 10.1016/j.ijfatigue.2023.107868 10.1115/1.2804541 10.1016/j.ijfatigue.2022.106851 10.1111/ffe.13532 10.1016/j.ijfatigue.2017.04.013 10.1016/j.engfailanal.2022.106851 10.1016/j.ijfatigue.2023.107776 10.1016/j.ijfatigue.2022.106996 10.1016/j.ijfatigue.2022.107281 10.1016/j.ijpvp.2022.104779 10.1016/j.engfracmech.2023.109351 10.1016/s0142-1123(00)00005-0 10.1016/j.ijfatigue.2019.105209 10.1016/j.ijfatigue.2007.02.015 10.1016/j.ijfatigue.2017.04.011 10.1016/j.ijfatigue.2022.107361 10.1111/ffe.13874 10.1016/j.engfracmech.2023.109431 10.1016/j.ijfatigue.2018.07.041 10.1016/j.ijfatigue.2013.08.028 10.1115/1.3226012 10.3901/cjme.2011.02.195 10.1016/j.ijfatigue.2022.107067 10.1016/j.ijfatigue.2006.10.028 10.1016/j.ijfatigue.2011.10.009 10.1016/j.ijfatigue.2021.106356 10.1016/j.euromechsol.2022.104889 10.1115/1.3225980 10.1111/ffe.13792 10.1115/1.3008041 10.1016/j.ijfatigue.2010.05.006 10.1016/j.ijfatigue.2020.105509 10.1177/1056789516651920 10.1016/j.ijfatigue.2018.11.025 10.1007/s10704-005-1088-2 10.1016/j.ijfatigue.2020.105995 10.1016/j.ijfatigue.2023.107648 10.1016/j.ijfatigue.2015.12.002 10.1111/ffe.13070 10.1016/j.ijfatigue.2014.04.008 10.1115/1.3224982 10.1016/j.ijfatigue.2020.106136 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1108/EC-11-2023-0852 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
ExternalDocumentID | 10_1108_EC_11_2023_0852 |
GroupedDBID | 0R~ 29G 4.4 5GY 5VS 70U 7WY 8AO 8FE 8FG 8FW 8R4 8R5 9E0 AAGBP AAMCF AATHL AAUDR AAYXX ABIJV ABJCF ABJNI ABKQV ABSDC ABYQI ACBEA ACGFS ACGOD ACIWK ACZLT ADFRT ADOMW AEBZA AENEX AFKRA AFNTC AFYHH AFZLO AHMHQ AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ARAPS ASMFL AUCOK AZQEC BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION CS3 DU5 DWQXO EBS ECCUG FNNZZ GEI GEL GNUQQ GQ. HCIFZ HZ~ IJT IPNFZ J1Y JI- JL0 K6V K6~ K7- KBGRL L6V M0C M2P M42 M7S O9- P2P P62 PHGZM PHGZT PQBIZ PQQKQ PROAC PTHSS Q2X RIG RWL SBBZN TAE TN5 U5U UNMZH ~02 |
ID | FETCH-LOGICAL-c195t-b148dfa3df1c702529b18547ed08d62ab2e87efcc101407a92da54962997d023 |
ISSN | 0264-4401 |
IngestDate | Tue Jul 01 01:31:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.emerald.com/insight/site-policies |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c195t-b148dfa3df1c702529b18547ed08d62ab2e87efcc101407a92da54962997d023 |
ORCID | 0000-0003-4412-717X |
ParticipantIDs | crossref_primary_10_1108_EC_11_2023_0852 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-24 |
PublicationDateYYYYMMDD | 2024-05-24 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Engineering computations |
PublicationYear | 2024 |
References | (key2024052305450415100_ref024) 2005; 134 (key2024052305450415100_ref048) 2021; 151 (key2024052305450415100_ref036) 2018; 41 (key2024052305450415100_ref012) 2022; 45 (key2024052305450415100_ref052) 2017; 102 (key2024052305450415100_ref005) 2018; 117 (key2024052305450415100_ref019) 2023; 98 (key2024052305450415100_ref035) 2023; 289 (key2024052305450415100_ref051) 2023; 143 (key2024052305450415100_ref002) 2019; 129 (key2024052305450415100_ref004) 2000; 22 (key2024052305450415100_ref030) 2022; 160 (key2024052305450415100_ref006) 2003; 27 (key2024052305450415100_ref020) 2023; 46 (key2024052305450415100_ref021) 1995; 117 (key2024052305450415100_ref016) 1981; 103 (key2024052305450415100_ref033) 2023; 46 (key2024052305450415100_ref011) 1988; 11 (key2024052305450415100_ref027) 2014; 66 (key2024052305450415100_ref003) 2022; 163 (key2024052305450415100_ref015) 2023; 168 (key2024052305450415100_ref053) 2021; 44 (key2024052305450415100_ref037) 2010; 32 (key2024052305450415100_ref041) 2022; 162 (key2024052305450415100_ref042) 1998; 75 (key2024052305450415100_ref049) 2022; 162 (key2024052305450415100_ref013) 2023; 172 (key2024052305450415100_ref046) 2018; 232 (key2024052305450415100_ref043) 2011; 24 (key2024052305450415100_ref023) 2018; 82 (key2024052305450415100_ref034) 2008; 30 (key2024052305450415100_ref026) 2023; 175 (key2024052305450415100_ref056) 2019; 121 (key2024052305450415100_ref044) 2022; 235 (key2024052305450415100_ref010) 1988; 110 (key2024052305450415100_ref017) 2023; 289 (key2024052305450415100_ref029) 2019; 128 (key2024052305450415100_ref008) 1954; 76 (key2024052305450415100_ref022) 2007; 29 (key2024052305450415100_ref001) 2016; 85 (key2024052305450415100_ref055) 2017; 26 (key2024052305450415100_ref028) 2021; 143 (key2024052305450415100_ref054) 2023; 176 (key2024052305450415100_ref047) 2023; 175 (key2024052305450415100_ref025) 2020; 134 (key2024052305450415100_ref032) 2022; 46 (key2024052305450415100_ref018) 2022; 199 (key2024052305450415100_ref050) 2008; 30 (key2024052305450415100_ref038) 2019; 42 (key2024052305450415100_ref039) 2017; 102 (key2024052305450415100_ref031) 2012; 37 (key2024052305450415100_ref009) 2023; 166 (key2024052305450415100_ref014) 2009; 131 (key2024052305450415100_ref007) 2021; 145 (key2024052305450415100_ref045) 2014; 59 (key2024052305450415100_ref040) 1987; 109 |
References_xml | – volume: 76 start-page: 931 issue: 6 year: 1954 ident: key2024052305450415100_ref008 article-title: A study of the effects of cyclic thermal stresses on a ductile metal publication-title: Transactions of the American Society of Mechanical Engineers doi: 10.1115/1.4015020 – volume: 128 year: 2019 ident: key2024052305450415100_ref029 article-title: A modified energy-based model for low-cycle fatigue life prediction under multiaxial irregular loading publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2019.105187 – volume: 75 start-page: 955 issue: 13 year: 1998 ident: key2024052305450415100_ref042 article-title: Fatigue life prediction under random loading using total hysteresis energy publication-title: International Journal of Pressure Vessels and Piping doi: 10.1016/s0308-0161(98)00100-8 – volume: 11 start-page: 149 issue: 3 year: 1988 ident: key2024052305450415100_ref011 article-title: A critical plane approach to multiaxial fatigue damage including out-of-phase loading, including out-of-phase loading publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/j.1460-2695.1988.tb01169.x – volume: 160 year: 2022 ident: key2024052305450415100_ref030 article-title: On the efficiency of machine learning for fatigue assessment of post-processed additively manufactured AlSi10Mg publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.106841 – volume: 232 start-page: 1823 issue: 10 year: 2018 ident: key2024052305450415100_ref046 article-title: Evaluation of multiaxial fatigue life prediction criteria for Ni based superalloy GH4169 publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science doi: 10.1177/0954406217708214 – volume: 46 start-page: 1979 issue: 5 year: 2023 ident: key2024052305450415100_ref020 article-title: Multiaxial fatigue life prediction for various metallic materials based on the hybrid CNN‐LSTM neural network publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.13977 – volume: 46 start-page: 940 issue: 3 year: 2023 ident: key2024052305450415100_ref033 article-title: A new multiaxial fatigue life prediction method based on grey theory under small sample condition publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.13910 – volume: 30 start-page: 834 issue: 5 year: 2008 ident: key2024052305450415100_ref050 article-title: Fatigue of 7075-T651 aluminum alloy publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2007.07.005 – volume: 27 start-page: 439 issue: 6 year: 2003 ident: key2024052305450415100_ref006 article-title: Low-cycle fatigue of 1Cr-18Ni-9Ti stainless steel and related weld metal under axial, torsional and 90° out-of-phase loading publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/j.1460-2695.2004.00740.x – volume: 235 year: 2022 ident: key2024052305450415100_ref044 article-title: On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets publication-title: Acta Materialia doi: 10.1016/j.actamat.2022.118103 – volume: 82 start-page: 940 year: 2018 ident: key2024052305450415100_ref023 article-title: Advances in fatigue life modeling: a review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.09.047 – volume: 41 start-page: 1064 issue: 5 year: 2018 ident: key2024052305450415100_ref036 article-title: Multiaxial low-cycle fatigue life evaluation under different non-proportional loading paths publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.12752 – volume: 175 year: 2023 ident: key2024052305450415100_ref047 article-title: Predicting multiaxial fatigue life of FGH96 superalloy based on machine learning models by considering failure process and loading paths publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2023.107730 – volume: 176 year: 2023 ident: key2024052305450415100_ref054 article-title: A multiaxial low-cycle fatigue prediction method under irregular loading by ANN model with knowledge-based features publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2023.107868 – volume: 117 start-page: 285 issue: 3 year: 1995 ident: key2024052305450415100_ref021 article-title: Nonproportional low cycle fatigue criterion for type 304 stainless steel publication-title: Journal of Engineering Materials and Technology doi: 10.1115/1.2804541 – volume: 162 year: 2022 ident: key2024052305450415100_ref049 article-title: A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.106851 – volume: 44 start-page: 2524 issue: 9 year: 2021 ident: key2024052305450415100_ref053 article-title: Machine learning‐based genetic feature identification and fatigue life prediction publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.13532 – volume: 102 start-page: 241 year: 2017 ident: key2024052305450415100_ref052 article-title: A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2017.04.013 – volume: 143 year: 2023 ident: key2024052305450415100_ref051 article-title: Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2022.106851 – volume: 175 year: 2023 ident: key2024052305450415100_ref026 article-title: Physics-constrained Gaussian process for life prediction under in-phase multiaxial cyclic loading with superposed static components publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2023.107776 – volume: 162 year: 2022 ident: key2024052305450415100_ref041 article-title: A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.106996 – volume: 166 year: 2023 ident: key2024052305450415100_ref009 article-title: Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.107281 – volume: 199 year: 2022 ident: key2024052305450415100_ref018 article-title: Application of tabular data synthesis using generative adversarial networks on machine learning-based multiaxial fatigue life prediction publication-title: International Journal of Pressure Vessels and Piping doi: 10.1016/j.ijpvp.2022.104779 – volume: 289 year: 2023 ident: key2024052305450415100_ref017 article-title: Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2023.109351 – volume: 22 start-page: 275 issue: 4 year: 2000 ident: key2024052305450415100_ref004 article-title: Analysis of the experimental data on a low cycle fatigue under nonproportional straining publication-title: International Journal of Fatigue doi: 10.1016/s0142-1123(00)00005-0 – volume: 129 year: 2019 ident: key2024052305450415100_ref002 article-title: Development of new critical plane model forassessment of fatigue life under multi-axial loading conditions publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2019.105209 – volume: 30 start-page: 58 issue: 1 year: 2008 ident: key2024052305450415100_ref034 article-title: Two new multiaxial criteria for high cycle fatigue computation publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2007.02.015 – volume: 102 start-page: 18 year: 2017 ident: key2024052305450415100_ref039 article-title: Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2017.04.011 – volume: 168 year: 2023 ident: key2024052305450415100_ref015 article-title: Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.107361 – volume: 46 start-page: 416 issue: 2 year: 2022 ident: key2024052305450415100_ref032 article-title: Application of machine learning methods in multiaxial fatigue life prediction publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.13874 – volume: 289 year: 2023 ident: key2024052305450415100_ref035 article-title: Very high cycle fatigue life prediction of Ti60 alloy based on machine learning with data enhancement publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2023.109431 – volume: 117 start-page: 121 year: 2018 ident: key2024052305450415100_ref005 article-title: A probabilistic Stüssi function for modelling the S-N curves and its\ application on specimens made of steel S355J2+N publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2018.07.041 – volume: 59 start-page: 170 year: 2014 ident: key2024052305450415100_ref045 article-title: Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2013.08.028 – volume: 110 start-page: 63 issue: 1 year: 1988 ident: key2024052305450415100_ref010 article-title: Multiaxial fatigue damage criterion publication-title: Journal of Engineering Materials and Technology doi: 10.1115/1.3226012 – volume: 24 start-page: 195 issue: 02 year: 2011 ident: key2024052305450415100_ref043 article-title: Multiaxial fatigue of 2024-T4 aluminum alloy publication-title: Chinese Journal of Mechanical Engineering doi: 10.3901/cjme.2011.02.195 – volume: 163 year: 2022 ident: key2024052305450415100_ref003 article-title: Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo mechanical fatigue loading publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.107067 – volume: 29 start-page: 1490 issue: 8 year: 2007 ident: key2024052305450415100_ref022 article-title: An experimental evaluation of three critical plane multiaxial fatigue criteria publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2006.10.028 – volume: 37 start-page: 123 year: 2012 ident: key2024052305450415100_ref031 article-title: Load path sensitivity and fatigue life estimation of 30CrNiMo8HH publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2011.10.009 – volume: 151 year: 2021 ident: key2024052305450415100_ref048 article-title: A novel method of multiaxial fatigue life prediction based on deep learning publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2021.106356 – volume: 98 year: 2023 ident: key2024052305450415100_ref019 article-title: MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction publication-title: European Journal of Mechanics – A/Solids doi: 10.1016/j.euromechsol.2022.104889 – volume: 109 start-page: 283 issue: 4 year: 1987 ident: key2024052305450415100_ref040 article-title: Multiaxial fatigue damage models publication-title: Journal of Engineering Materials and Technology doi: 10.1115/1.3225980 – volume: 45 start-page: 2748 issue: 9 year: 2022 ident: key2024052305450415100_ref012 article-title: Fatigue life prediction in presence of mean stresses using domain knowledge integrated ensemble of extreme learning machines publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.13792 – volume: 131 issue: 2 year: 2009 ident: key2024052305450415100_ref014 article-title: Multiaxial fatigue of 16MnR steel publication-title: Journal of Pressure Vessel Technology, Transactions of the ASME doi: 10.1115/1.3008041 – volume: 32 start-page: 1862 issue: 11 year: 2010 ident: key2024052305450415100_ref037 article-title: Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2010.05.006 – volume: 134 year: 2020 ident: key2024052305450415100_ref025 article-title: Progress in fatigue life calculation by implementing life dependent material parameters in multiaxial fatigue criteria publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2020.105509 – volume: 26 start-page: 1219 issue: 8 year: 2017 ident: key2024052305450415100_ref055 article-title: Mean stress effect correction in strain energy based fatigue life prediction of metals publication-title: International Journal of Damage Mechanics doi: 10.1177/1056789516651920 – volume: 121 start-page: 1 year: 2019 ident: key2024052305450415100_ref056 article-title: A novel energy-based equivalent damage parameter for multiaxial fatigue life prediction publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2018.11.025 – volume: 134 start-page: 267 issue: 3-4 year: 2005 ident: key2024052305450415100_ref024 article-title: A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials publication-title: International Journal of Fracture doi: 10.1007/s10704-005-1088-2 – volume: 143 year: 2021 ident: key2024052305450415100_ref028 article-title: Multiaxial fatigue space: a three-dimensional space constituted of fatigue basic units publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2020.105995 – volume: 172 year: 2023 ident: key2024052305450415100_ref013 article-title: On the integration of domain knowledge and branching neural network for fatigue life prediction with small samples publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2023.107648 – volume: 85 start-page: 98 year: 2016 ident: key2024052305450415100_ref001 article-title: Testing and assessment offatigue life prediction models for Indian PHWRs piping material under multi-axial load cycling publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2015.12.002 – volume: 42 start-page: 2000 issue: 9 year: 2019 ident: key2024052305450415100_ref038 article-title: On the interaction of normal and shear stresses in multiaxial fatigue damage publication-title: Fatigue and Fracture of Engineering Materials and Structures doi: 10.1111/ffe.13070 – volume: 66 start-page: 229 year: 2014 ident: key2024052305450415100_ref027 article-title: New energy model for fatigue life determination under multiaxial loading with different mean values publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2014.04.008 – volume: 103 start-page: 118 issue: 2 year: 1981 ident: key2024052305450415100_ref016 article-title: A new approach to the evaluation of fatigue under multiaxial loadings publication-title: Journal of Engineering Materials and Technology Transactions ASME doi: 10.1115/1.3224982 – volume: 145 year: 2021 ident: key2024052305450415100_ref007 article-title: Multiaxial fatigue life prediction of polychloroprene rubber (CR) reinforced with tungsten nano-particles based on semi-empirical and machine learning models publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2020.106136 |
SSID | ssj0007330 |
Score | 2.3499653 |
SourceID | crossref |
SourceType | Index Database |
Title | Multiaxial fatigue life prediction based on modular neural network pretrained with uniaxial fatigue data |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS9xAFB7qerEHbdWirS1z8CBIJJtMdjbHdVmRQqWUFcRLmJ_dBc2KJiD-9b43mc2E1YL1koQwDGG-L_N-zPtmCDlkBsyOMBIQYBCgmFxE0uoYfjzBleqroUpRnPzrYnB-yX5eZVfhmDunLqnkiXp6VVfyHlThHeCKKtn_QLbtFF7AM-ALV0AYrm_C2KlnxSMmvS28-lub45u5RekTLr84ZNFKaVwRuF1oV3GKG1hC-7Ip_8am7pSIZRV6Xa506MVrIX0fNjB09eh11cn5YSGPFzOYecjVN_PJqJTzlorXM18LfD0z3nhi09qZQrHoJiMShuvojQbaz1ngX0WMNfmJl7OzUxxMxqjlw2PbI_D3kmCIlovvK_aprRp08Uo8LCZjuBfYQYEdrJH1BGKEuEfWTycXv_-0hpinqU-xNd_kd3bCg49WvqHjlHS8i-knsunDAjpqMP5MPphym2z5EIH6Cfhhm3zsDP8OmQUCUI8XRQLQQADqCEDhwROANgSgngA0EIAiAeiSAG2HSIBdMj2bTMfnkT86I1L9PKsiCVGutiLVtq84uLVJLsExY9zoeKgHiZCJGXJj4W_ECJuLPNEiY_kAnBOuYVS-kF65KM0eoVxIm-aZyWyimQJ_lYuM467_LE9VbPk-OVoOXXHXbJBS_AOor29v-o1sBHodkF51X5vv4P1V8odH-RnQsFt6 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiaxial+fatigue+life+prediction+based+on+modular+neural+network+pretrained+with+uniaxial+fatigue+data&rft.jtitle=Engineering+computations&rft.au=Gan%2C+Lei&rft.au=Wang%2C+Anbin&rft.au=Zhong%2C+Zheng&rft.au=Wu%2C+Hao&rft.date=2024-05-24&rft.issn=0264-4401&rft_id=info:doi/10.1108%2FEC-11-2023-0852&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EC_11_2023_0852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon |