Enhanced GPR signal interpretation via deep learning fusion for unveiling road subsurface conditions
[Display omitted] •Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road subsurface condition tasks are proposed.•Two fusion network architectures are discussed to assess their impact on fusion process.•The fusion result...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 249; p. 117007 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
31.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 |
DOI | 10.1016/j.measurement.2025.117007 |
Cover
Loading…
Abstract | [Display omitted]
•Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road subsurface condition tasks are proposed.•Two fusion network architectures are discussed to assess their impact on fusion process.•The fusion results significantly enhance the image quality compared to the original profile.•The proposed method outperforms competitors in the GPR image fusion domain.
Ground Penetrating Radar (GPR) is an indispensable tool for assessing the internal condition of roads. However, the high dynamic range of electromagnetic wave signals often surpasses the capacity of conventional image representations. During the imaging process, electromagnetic wave signals are subject to compression and clipping. This limitation is particularly acute for weak amplitude signals, as they are compressed into narrow color ranges and become challenging to detect. To overcome this limitation, this study introduces a local mapping method that partitions raw data into multiple patches, map each patch independently, and seamlessly stitches the results. This approach ensures that weak signals remain unaffected by the influence of strong amplitudes in other regions. Furthermore, a fusion framework, GPRFusion, is proposed to integrate complementary information from traditional GPR images and local mapped GPR images. The fused images preserve the traditional amplitude distribution while enhancing the visibility of weak features, minimizing the risk of critical information being overlooked by expert. Experimental results reveal that GPRFusion enables the clear visualization of weak signals with amplitudes up to 20 times lower than dominant signals. Moreover, it outperforms other fusion methods in terms of SSIM and PSNR metrics, establishing a new standard for GPR image fusion. |
---|---|
AbstractList | [Display omitted]
•Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road subsurface condition tasks are proposed.•Two fusion network architectures are discussed to assess their impact on fusion process.•The fusion results significantly enhance the image quality compared to the original profile.•The proposed method outperforms competitors in the GPR image fusion domain.
Ground Penetrating Radar (GPR) is an indispensable tool for assessing the internal condition of roads. However, the high dynamic range of electromagnetic wave signals often surpasses the capacity of conventional image representations. During the imaging process, electromagnetic wave signals are subject to compression and clipping. This limitation is particularly acute for weak amplitude signals, as they are compressed into narrow color ranges and become challenging to detect. To overcome this limitation, this study introduces a local mapping method that partitions raw data into multiple patches, map each patch independently, and seamlessly stitches the results. This approach ensures that weak signals remain unaffected by the influence of strong amplitudes in other regions. Furthermore, a fusion framework, GPRFusion, is proposed to integrate complementary information from traditional GPR images and local mapped GPR images. The fused images preserve the traditional amplitude distribution while enhancing the visibility of weak features, minimizing the risk of critical information being overlooked by expert. Experimental results reveal that GPRFusion enables the clear visualization of weak signals with amplitudes up to 20 times lower than dominant signals. Moreover, it outperforms other fusion methods in terms of SSIM and PSNR metrics, establishing a new standard for GPR image fusion. |
ArticleNumber | 117007 |
Author | Du, Yuchuan Weng, Zihang Yan, Yu Liu, Chenglong Wang, Guoqing Zhong, Shan Wu, Difei Xu, Fei |
Author_xml | – sequence: 1 givenname: Shan orcidid: 0000-0002-5417-0377 surname: Zhong fullname: Zhong, Shan organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 2 givenname: Difei orcidid: 0000-0001-5463-2992 surname: Wu fullname: Wu, Difei email: 1994wudifei@tongji.edu.cn organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 3 givenname: Yuchuan surname: Du fullname: Du, Yuchuan organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 4 givenname: Yu surname: Yan fullname: Yan, Yu organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 5 givenname: Chenglong surname: Liu fullname: Liu, Chenglong organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China – sequence: 6 givenname: Zihang surname: Weng fullname: Weng, Zihang organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China – sequence: 7 givenname: Guoqing surname: Wang fullname: Wang, Guoqing organization: Hebei Transportation Investment Group Co., Ltd, Shijiazhuang 050091, China – sequence: 8 givenname: Fei surname: Xu fullname: Xu, Fei organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang 050043, China |
BookMark | eNqNkM1KAzEUhbOoYFt9h_gAMyaZTCazlFKrUFBE1yE_NzVlminJTMG3t0NddOnqwrmcj8O3QLPYR0DogZKSEioe9-UBdB4THCAOJSOsLiltCGlmaE6YqArGOL1Fi5z3hBBRtWKO3Dp-62jB4c37B85hF3WHQxwgHRMMegh9xKegsQM44g50iiHusB_z9PB9wmM8QeimMPXa4Tya8wKvLWDbRxcmQL5DN153Ge7_7hJ9Pa8_Vy_F9m3zunraFpa29VBIXRNijXWmMVZXvpXc-NZLqWnbCMlqQS3jnGopDHfW1FXNramIpxIYAV4tUXvh2tTnnMCrYwoHnX4UJWpSpPbqSpGaFKmLonN3denCeeApQFLZBpjMhAR2UK4P_6D8AuhufDQ |
Cites_doi | 10.1109/TPAMI.2020.3012548 10.1016/j.measurement.2023.113889 10.1109/JSEN.2022.3164707 10.1016/j.jappgeo.2020.104118 10.1016/j.autcon.2022.104260 10.1016/j.jas.2014.11.033 10.1016/j.ndteint.2020.102289 10.1016/j.scitotenv.2019.04.168 10.1080/10298436.2022.2155648 10.1080/10298436.2022.2037591 10.1016/S0926-9851(01)00042-8 10.1016/j.measurement.2020.108243 10.1016/j.measurement.2020.107770 10.1007/BF02910382 10.1016/j.autcon.2023.105185 10.3390/rs14071593 10.1109/TIM.2020.3022438 10.1016/j.cageo.2012.01.016 10.1016/j.jappgeo.2023.104993 10.1016/j.inffus.2021.12.004 10.1109/TIP.2018.2887342 10.1016/j.measurement.2022.111248 10.1109/ACCESS.2021.3088630 10.1038/s41467-023-39236-4 10.1109/ICGPR.2018.8441528 10.3390/rs12223778 10.1109/TIP.2003.819861 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2025.117007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_measurement_2025_117007 S0263224125003665 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFRF ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIIUN AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSH SSQ SST SSZ T5K ZMT ~G- 29M AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET WUQ XPP |
ID | FETCH-LOGICAL-c195t-8a500cbcdb7bca3f984bf9f88a197682561c2441a86b4dcb5354cb30f18e20e43 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Thu Jul 03 08:35:32 EDT 2025 Sat May 24 17:05:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Ground penetrating radar GPR data fusion Road structure monitor Electromagnetic signal display |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c195t-8a500cbcdb7bca3f984bf9f88a197682561c2441a86b4dcb5354cb30f18e20e43 |
ORCID | 0000-0001-5463-2992 0000-0002-5417-0377 |
ParticipantIDs | crossref_primary_10_1016_j_measurement_2025_117007 elsevier_sciencedirect_doi_10_1016_j_measurement_2025_117007 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-31 |
PublicationDateYYYYMMDD | 2025-05-31 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kim, Cho, Yi (b0170) 2007; 11 Zhao, Forte, Levi, Pipan, Tian (b0015) 2015; 54 Jian, Yang, Liu, Jeon, Gao, Chisholm (b0150) 2021; 70 Eskandari Torbaghan, Li, Metje, Burrow, Chapman, Rogers (b0080) 2020 Wang, Bovik, Sheikh, Simoncelli (b0160) 2004; 13 Zhao, Lu (b0130) 2022; 19 Shen, Li, Duan, Zhao, Zhao, Che, Liu, Xue, Yan, Liu, Jiang, Li, Chang, Gao, Yan (b0110) 2023; 14 Kim, Kang, Park, Lee, Lim, Lee (b0030) 2024; 224 He, Peng, Cui, Zheng, Shi (b0105) 2023; 212 Liu, Du, Yue, Li, Wu, Li (b0010) 2024; 158 Horé, Ziou (b0165) 2010 Bi, Zhao, Shen, Li, Hu, Ge (b0125) 2020; 115 Gao, Liu, Li, Du, Yue, Liu (b0005) 2022; 148 Utsi (b0020) 2017 Zhang, Lu, Yang, Zhu, Zheng, Liu, Tian, Li (b0075) 2022; 138 Wang, Chen, Liu, Zhang, Kang, Li, Jiang, Sui, Wang (b0090) 2021; 9 Beres, Luetscher, Olivier (b0100) 2001; 46 Allred, Daniels, Ehsani (b0055) 2008 Li, Wu (b0145) 2019; 28 Xiong, Tan (b0070) 2023; 24 N. Poomvises, A. Kongsuk, P. Pakdeerod, T. Suklim, Application of Ground Penetrating Radar and Hilbert transformation helps revealing anomalous body of leakage in a concrete structure; A case history at Huai Mae Tor, Tak province, Thailand, in: 2018 17th International Conference on Ground Penetrating Radar (GPR), 2018: pp. 1–4. 10.1109/ICGPR.2018.8441528. Fu, Yang, Li, Song, Li, Xu, Wang, Zhao (b0085) 2020; 12 Yue, Du, Liu, Guo, Li, Gao (b0115) 2023; 24 Lu, Zhao, Forte, Tian, Li, Pipan (b0120) 2020; 166 Feng, Yang, Hoxha, Xiao (b0035) 2023; 23 Xu, Ma, Jiang, Guo, Ling (b0140) 2022; 44 Fang, Lin (b0050) 2012; 49 Wang, Gu, Liu, Wu, Wang (b0025) 2022; 196 Tang, Yuan, Ma (b0155) 2022; 82 Matos, von Sperling, Matos, Aranha, Santos, Pessoa, Viola (b0040) 2019; 676 U. Ozkaya, F. Melgani, M. Belete Bejiga, L. Seyfi, M. Donelli, GPR B scan image analysis with deep learning methods, Measurement 165 (2020) 107770. 10.1016/j.measurement.2020.107770. Daniels (b0060) 2000 Ling, Qian, Shang, Guo, Zhao, Liu (b0065) 2022; 14 SESF-Fuse: an unsupervised deep model for multi-focus image fusion | Neural Computing and Applications, (n.d.). https://link.springer.com/article/10.1007/s00521-020-05358-9 (accessed March 17, 2024). Xiong (10.1016/j.measurement.2025.117007_b0070) 2023; 24 Yue (10.1016/j.measurement.2025.117007_b0115) 2023; 24 Wang (10.1016/j.measurement.2025.117007_b0160) 2004; 13 Xu (10.1016/j.measurement.2025.117007_b0140) 2022; 44 Fang (10.1016/j.measurement.2025.117007_b0050) 2012; 49 10.1016/j.measurement.2025.117007_b0045 Fu (10.1016/j.measurement.2025.117007_b0085) 2020; 12 Wang (10.1016/j.measurement.2025.117007_b0090) 2021; 9 Zhao (10.1016/j.measurement.2025.117007_b0015) 2015; 54 Matos (10.1016/j.measurement.2025.117007_b0040) 2019; 676 Wang (10.1016/j.measurement.2025.117007_b0025) 2022; 196 Li (10.1016/j.measurement.2025.117007_b0145) 2019; 28 Kim (10.1016/j.measurement.2025.117007_b0030) 2024; 224 Zhang (10.1016/j.measurement.2025.117007_b0075) 2022; 138 Eskandari Torbaghan (10.1016/j.measurement.2025.117007_b0080) 2020 Bi (10.1016/j.measurement.2025.117007_b0125) 2020; 115 10.1016/j.measurement.2025.117007_b0135 Liu (10.1016/j.measurement.2025.117007_b0010) 2024; 158 Tang (10.1016/j.measurement.2025.117007_b0155) 2022; 82 Feng (10.1016/j.measurement.2025.117007_b0035) 2023; 23 10.1016/j.measurement.2025.117007_b0095 Lu (10.1016/j.measurement.2025.117007_b0120) 2020; 166 Gao (10.1016/j.measurement.2025.117007_b0005) 2022; 148 Allred (10.1016/j.measurement.2025.117007_b0055) 2008 Shen (10.1016/j.measurement.2025.117007_b0110) 2023; 14 Daniels (10.1016/j.measurement.2025.117007_b0060) 2000 Ling (10.1016/j.measurement.2025.117007_b0065) 2022; 14 Kim (10.1016/j.measurement.2025.117007_b0170) 2007; 11 Utsi (10.1016/j.measurement.2025.117007_b0020) 2017 Beres (10.1016/j.measurement.2025.117007_b0100) 2001; 46 Horé (10.1016/j.measurement.2025.117007_b0165) 2010 Zhao (10.1016/j.measurement.2025.117007_b0130) 2022; 19 Jian (10.1016/j.measurement.2025.117007_b0150) 2021; 70 He (10.1016/j.measurement.2025.117007_b0105) 2023; 212 |
References_xml | – year: 2000 ident: b0060 publication-title: Ground Penetrating Radar Fundamentals – volume: 196 year: 2022 ident: b0025 article-title: Automatic detection of asphalt pavement thickness: A method combining GPR images and improved Canny algorithm publication-title: Measurement – volume: 70 start-page: 1 year: 2021 end-page: 15 ident: b0150 article-title: SEDRFuse: A Symmetric Encoder–Decoder With Residual Block Network for Infrared and Visible Image Fusion publication-title: IEEE Trans. Instrum. Meas. – year: 2020 ident: b0080 article-title: Automated detection of cracks in roads using ground penetrating radar publication-title: Journal of Applied Geophysics 179 – volume: 9 start-page: 87207 year: 2021 end-page: 87218 ident: b0090 article-title: Deep Learning-Based Rebar Clutters Removal and Defect Echoes Enhancement in GPR Images publication-title: IEEE Access – volume: 14 start-page: 1593 year: 2022 ident: b0065 article-title: Research on the Dynamic Monitoring Technology of Road Subgrades with Time-Lapse Full-Coverage 3D Ground Penetrating Radar (GPR) publication-title: Remote Sens. (Basel) – volume: 11 start-page: 75 year: 2007 end-page: 81 ident: b0170 article-title: Removal of ringing noise in GPR data by signal processing publication-title: Geosci. J. – volume: 23 start-page: 4527 year: 2023 end-page: 4539 ident: b0035 article-title: Improving 3D Metric GPR Imaging Using Automated Data Collection and Learning-Based Processing publication-title: IEEE Sens. J. – volume: 82 start-page: 28 year: 2022 end-page: 42 ident: b0155 article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network publication-title: Inf. Fusion – volume: 19 start-page: 1 year: 2022 end-page: 4 ident: b0130 article-title: A Novel Multifrequency GPR Data Fusion Algorithm Based on Time-Varying Weighting Strategy publication-title: IEEE Geosci. Remote Sensing Lett. – start-page: 2366 year: 2010 end-page: 2369 ident: b0165 article-title: Image Quality Metrics: PSNR vs publication-title: SSIM, in: 2010 20th International Conference on Pattern Recognition – volume: 138 year: 2022 ident: b0075 article-title: Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN publication-title: Autom. Constr. – volume: 676 start-page: 333 year: 2019 end-page: 342 ident: b0040 article-title: Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images publication-title: Sci. Total Environ. – volume: 115 year: 2020 ident: b0125 article-title: Multi-frequency GPR data fusion and its application in NDT publication-title: NDT and E Int. – volume: 224 year: 2024 ident: b0030 article-title: Detection of roadbed layers in mountainous area using down-up-crosshole penetrometer and ground penetrating radar publication-title: Measurement – volume: 212 year: 2023 ident: b0105 article-title: An advanced instantaneous frequency method for ground-penetrating radar cavity detection publication-title: J. Appl. Geophys. – volume: 158 year: 2024 ident: b0010 article-title: Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends publication-title: Autom. Constr. – volume: 54 start-page: 77 year: 2015 end-page: 85 ident: b0015 article-title: Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis publication-title: J. Archaeol. Sci. – reference: N. Poomvises, A. Kongsuk, P. Pakdeerod, T. Suklim, Application of Ground Penetrating Radar and Hilbert transformation helps revealing anomalous body of leakage in a concrete structure; A case history at Huai Mae Tor, Tak province, Thailand, in: 2018 17th International Conference on Ground Penetrating Radar (GPR), 2018: pp. 1–4. 10.1109/ICGPR.2018.8441528. – volume: 49 start-page: 323 year: 2012 end-page: 329 ident: b0050 article-title: Symplectic partitioned Runge–Kutta methods for two-dimensional numerical model of ground penetrating radar publication-title: Comput. Geosci. – volume: 14 start-page: 3448 year: 2023 ident: b0110 article-title: Quality evaluation of ground improvement by deep cement mixing piles via ground-penetrating radar publication-title: Nat Commun – year: 2017 ident: b0020 article-title: Ground Penetrating Radar: Theory and Practice – volume: 24 year: 2023 ident: b0115 article-title: Road subsurface distress recognition method using multiattribute feature fusion with ground penetrating radar publication-title: Int. J. Pavement Eng. – volume: 148 year: 2022 ident: b0005 article-title: Mining Co-Occurrence Patterns among Deep Road Distresses Using Association Rule Analysis publication-title: Journal of Transportation Engineering, Part b: Pavements – volume: 44 start-page: 502 year: 2022 end-page: 518 ident: b0140 article-title: U2Fusion: A Unified Unsupervised Image Fusion Network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 year: 2023 ident: b0070 article-title: Deep learning-based detection of tie bars in concrete pavement using ground penetrating radar publication-title: Int. J. Pavement Eng. – reference: U. Ozkaya, F. Melgani, M. Belete Bejiga, L. Seyfi, M. Donelli, GPR B scan image analysis with deep learning methods, Measurement 165 (2020) 107770. 10.1016/j.measurement.2020.107770. – volume: 166 year: 2020 ident: b0120 article-title: Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform publication-title: Measurement – volume: 28 start-page: 2614 year: 2019 end-page: 2623 ident: b0145 article-title: DenseFuse: A Fusion Approach to Infrared and Visible Images publication-title: IEEE Trans. on Image Process. – reference: SESF-Fuse: an unsupervised deep model for multi-focus image fusion | Neural Computing and Applications, (n.d.). https://link.springer.com/article/10.1007/s00521-020-05358-9 (accessed March 17, 2024). – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b0160 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 12 start-page: 3778 year: 2020 ident: b0085 article-title: Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression publication-title: Remote Sens. – volume: 46 start-page: 249 year: 2001 end-page: 262 ident: b0100 article-title: Integration of ground-penetrating radar and microgravimetric methods to map shallow caves publication-title: J. Appl. Geophys. – year: 2008 ident: b0055 article-title: Handbook of Agricultural Geophysics – volume: 44 start-page: 502 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0140 article-title: U2Fusion: A Unified Unsupervised Image Fusion Network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 224 year: 2024 ident: 10.1016/j.measurement.2025.117007_b0030 article-title: Detection of roadbed layers in mountainous area using down-up-crosshole penetrometer and ground penetrating radar publication-title: Measurement doi: 10.1016/j.measurement.2023.113889 – volume: 23 start-page: 4527 year: 2023 ident: 10.1016/j.measurement.2025.117007_b0035 article-title: Improving 3D Metric GPR Imaging Using Automated Data Collection and Learning-Based Processing publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3164707 – year: 2020 ident: 10.1016/j.measurement.2025.117007_b0080 article-title: Automated detection of cracks in roads using ground penetrating radar publication-title: Journal of Applied Geophysics 179 doi: 10.1016/j.jappgeo.2020.104118 – volume: 138 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0075 article-title: Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104260 – volume: 54 start-page: 77 year: 2015 ident: 10.1016/j.measurement.2025.117007_b0015 article-title: Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2014.11.033 – volume: 115 year: 2020 ident: 10.1016/j.measurement.2025.117007_b0125 article-title: Multi-frequency GPR data fusion and its application in NDT publication-title: NDT and E Int. doi: 10.1016/j.ndteint.2020.102289 – volume: 676 start-page: 333 year: 2019 ident: 10.1016/j.measurement.2025.117007_b0040 article-title: Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.168 – volume: 24 year: 2023 ident: 10.1016/j.measurement.2025.117007_b0070 article-title: Deep learning-based detection of tie bars in concrete pavement using ground penetrating radar publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2022.2155648 – start-page: 2366 year: 2010 ident: 10.1016/j.measurement.2025.117007_b0165 article-title: Image Quality Metrics: PSNR vs – ident: 10.1016/j.measurement.2025.117007_b0135 – volume: 24 year: 2023 ident: 10.1016/j.measurement.2025.117007_b0115 article-title: Road subsurface distress recognition method using multiattribute feature fusion with ground penetrating radar publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2022.2037591 – volume: 46 start-page: 249 year: 2001 ident: 10.1016/j.measurement.2025.117007_b0100 article-title: Integration of ground-penetrating radar and microgravimetric methods to map shallow caves publication-title: J. Appl. Geophys. doi: 10.1016/S0926-9851(01)00042-8 – volume: 166 year: 2020 ident: 10.1016/j.measurement.2025.117007_b0120 article-title: Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform publication-title: Measurement doi: 10.1016/j.measurement.2020.108243 – ident: 10.1016/j.measurement.2025.117007_b0045 doi: 10.1016/j.measurement.2020.107770 – volume: 11 start-page: 75 year: 2007 ident: 10.1016/j.measurement.2025.117007_b0170 article-title: Removal of ringing noise in GPR data by signal processing publication-title: Geosci. J. doi: 10.1007/BF02910382 – volume: 158 year: 2024 ident: 10.1016/j.measurement.2025.117007_b0010 article-title: Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.105185 – volume: 14 start-page: 1593 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0065 article-title: Research on the Dynamic Monitoring Technology of Road Subgrades with Time-Lapse Full-Coverage 3D Ground Penetrating Radar (GPR) publication-title: Remote Sens. (Basel) doi: 10.3390/rs14071593 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.measurement.2025.117007_b0150 article-title: SEDRFuse: A Symmetric Encoder–Decoder With Residual Block Network for Infrared and Visible Image Fusion publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3022438 – volume: 49 start-page: 323 year: 2012 ident: 10.1016/j.measurement.2025.117007_b0050 article-title: Symplectic partitioned Runge–Kutta methods for two-dimensional numerical model of ground penetrating radar publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.01.016 – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0130 article-title: A Novel Multifrequency GPR Data Fusion Algorithm Based on Time-Varying Weighting Strategy publication-title: IEEE Geosci. Remote Sensing Lett. – year: 2017 ident: 10.1016/j.measurement.2025.117007_b0020 – volume: 212 year: 2023 ident: 10.1016/j.measurement.2025.117007_b0105 article-title: An advanced instantaneous frequency method for ground-penetrating radar cavity detection publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2023.104993 – volume: 82 start-page: 28 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0155 article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.12.004 – volume: 28 start-page: 2614 year: 2019 ident: 10.1016/j.measurement.2025.117007_b0145 article-title: DenseFuse: A Fusion Approach to Infrared and Visible Images publication-title: IEEE Trans. on Image Process. doi: 10.1109/TIP.2018.2887342 – volume: 196 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0025 article-title: Automatic detection of asphalt pavement thickness: A method combining GPR images and improved Canny algorithm publication-title: Measurement doi: 10.1016/j.measurement.2022.111248 – volume: 148 year: 2022 ident: 10.1016/j.measurement.2025.117007_b0005 article-title: Mining Co-Occurrence Patterns among Deep Road Distresses Using Association Rule Analysis publication-title: Journal of Transportation Engineering, Part b: Pavements – year: 2000 ident: 10.1016/j.measurement.2025.117007_b0060 publication-title: Ground Penetrating Radar Fundamentals – volume: 9 start-page: 87207 year: 2021 ident: 10.1016/j.measurement.2025.117007_b0090 article-title: Deep Learning-Based Rebar Clutters Removal and Defect Echoes Enhancement in GPR Images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088630 – volume: 14 start-page: 3448 year: 2023 ident: 10.1016/j.measurement.2025.117007_b0110 article-title: Quality evaluation of ground improvement by deep cement mixing piles via ground-penetrating radar publication-title: Nat Commun doi: 10.1038/s41467-023-39236-4 – ident: 10.1016/j.measurement.2025.117007_b0095 doi: 10.1109/ICGPR.2018.8441528 – year: 2008 ident: 10.1016/j.measurement.2025.117007_b0055 – volume: 12 start-page: 3778 year: 2020 ident: 10.1016/j.measurement.2025.117007_b0085 article-title: Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression publication-title: Remote Sens. doi: 10.3390/rs12223778 – volume: 13 start-page: 600 year: 2004 ident: 10.1016/j.measurement.2025.117007_b0160 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 |
SSID | ssj0006396 |
Score | 2.4100227 |
Snippet | [Display omitted]
•Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 117007 |
SubjectTerms | Deep learning Electromagnetic signal display GPR data fusion Ground penetrating radar Road structure monitor |
Title | Enhanced GPR signal interpretation via deep learning fusion for unveiling road subsurface conditions |
URI | https://dx.doi.org/10.1016/j.measurement.2025.117007 |
Volume | 249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KRdGDaFWsj7KC19hsdjcP8FJKa1UsohZ6C9nNRiOYlr6O_nZnk5S2IHjwmJCBZTLMN49vZwCuAz8JlK2Z5WnHtTiTniWlcCxmmlQO11Lmg7Sf-m5vwB-GYliB9vIujKFVlr6_8Om5ty7fNEttNsdp2ny1zahxBCAEcXTDrrlozrlnrPzme0XzQAR2izoLs8zXO3C14nh9repwmCo6wrQwbbNZ9jeMWsOd7gHslwEjaRVnOoSKzmqwtzZGsAbbOY1TTY8g7mQfeUuf3D2_EMPNQNF0g1dIFmlEYq3HpFwY8U6SuSmZEQxfyTxb6NTcUCeTURSTKbqV-SSJlCaYN8cFvesYBt3OW7tnlXsULEUDMbN8s_VASRVLT6qIJYHPZRIkvh9RDEYwRXSpQpSnke9KHispmOBKMjuhvnZszdkJVLNRpk-BUOFRpTlXVGNOHUvpCBZFiGmJQGOgug7OUnPhuBiXES55ZJ_hmrpDo-6wUHcdbpc6Djf-fYhu_W_xs_-Jn8OueSoYARdQnU3m-hIDjZls5JbUgK3W_WOv_wPeltXL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qi6-DaFV8u4LX0Gx2N03AixRrax-IttBbyG42GsG09OHvd7ZJbQuCB68JA2GyfN88vp0BuPW92Fe2ZlZVO67FmaxaUgrHYqZJ5XAt5XyQdqfrNvr8aSAGBagt7sIYWWWO_Rmmz9E6f1LJvVkZJUnl1TajxpGAkMQRhl2xASUznUoUoXTfbDW6P4CMJOxmpRZmGYMtuFnKvD6XpTjMFh1hupi2WS77G02tUE99H_bymJHcZ591AAWdlmF3ZZJgGTbnSk41OYToIX2fd_XJ4_MLMfIMNE3WpIXkKwlJpPWI5Dsj3kg8M1UzghEsmaVfOjGX1Ml4GEZkgsgyG8eh0gRT5yhTeB1Bv_7QqzWsfJWCpagvppZnFh8oqSJZlSpkse9xGfux54UU4xHMEl2qkOhp6LmSR0oKJriSzI6ppx1bc3YMxXSY6hMgVFSp0pwrqjGtjqR0BAtDpLVY4Hmg-hScheeCUTYxI1hIyT6CFXcHxt1B5u5TuFv4OFj7_QEi-9_mZ_8zv4btRq_TDtrNbuscdsybTCBwAcXpeKYvMe6Yyqv8XH0DN4jYfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+GPR+signal+interpretation+via+deep+learning+fusion+for+unveiling+road+subsurface+conditions&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhong%2C+Shan&rft.au=Wu%2C+Difei&rft.au=Du%2C+Yuchuan&rft.au=Yan%2C+Yu&rft.date=2025-05-31&rft.issn=0263-2241&rft.volume=249&rft.spage=117007&rft_id=info:doi/10.1016%2Fj.measurement.2025.117007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2025_117007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |