Enhanced GPR signal interpretation via deep learning fusion for unveiling road subsurface conditions

[Display omitted] •Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road subsurface condition tasks are proposed.•Two fusion network architectures are discussed to assess their impact on fusion process.•The fusion result...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 249; p. 117007
Main Authors Zhong, Shan, Wu, Difei, Du, Yuchuan, Yan, Yu, Liu, Chenglong, Weng, Zihang, Wang, Guoqing, Xu, Fei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 31.05.2025
Subjects
Online AccessGet full text
ISSN0263-2241
DOI10.1016/j.measurement.2025.117007

Cover

Loading…
Abstract [Display omitted] •Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road subsurface condition tasks are proposed.•Two fusion network architectures are discussed to assess their impact on fusion process.•The fusion results significantly enhance the image quality compared to the original profile.•The proposed method outperforms competitors in the GPR image fusion domain. Ground Penetrating Radar (GPR) is an indispensable tool for assessing the internal condition of roads. However, the high dynamic range of electromagnetic wave signals often surpasses the capacity of conventional image representations. During the imaging process, electromagnetic wave signals are subject to compression and clipping. This limitation is particularly acute for weak amplitude signals, as they are compressed into narrow color ranges and become challenging to detect. To overcome this limitation, this study introduces a local mapping method that partitions raw data into multiple patches, map each patch independently, and seamlessly stitches the results. This approach ensures that weak signals remain unaffected by the influence of strong amplitudes in other regions. Furthermore, a fusion framework, GPRFusion, is proposed to integrate complementary information from traditional GPR images and local mapped GPR images. The fused images preserve the traditional amplitude distribution while enhancing the visibility of weak features, minimizing the risk of critical information being overlooked by expert. Experimental results reveal that GPRFusion enables the clear visualization of weak signals with amplitudes up to 20 times lower than dominant signals. Moreover, it outperforms other fusion methods in terms of SSIM and PSNR metrics, establishing a new standard for GPR image fusion.
AbstractList [Display omitted] •Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road subsurface condition tasks are proposed.•Two fusion network architectures are discussed to assess their impact on fusion process.•The fusion results significantly enhance the image quality compared to the original profile.•The proposed method outperforms competitors in the GPR image fusion domain. Ground Penetrating Radar (GPR) is an indispensable tool for assessing the internal condition of roads. However, the high dynamic range of electromagnetic wave signals often surpasses the capacity of conventional image representations. During the imaging process, electromagnetic wave signals are subject to compression and clipping. This limitation is particularly acute for weak amplitude signals, as they are compressed into narrow color ranges and become challenging to detect. To overcome this limitation, this study introduces a local mapping method that partitions raw data into multiple patches, map each patch independently, and seamlessly stitches the results. This approach ensures that weak signals remain unaffected by the influence of strong amplitudes in other regions. Furthermore, a fusion framework, GPRFusion, is proposed to integrate complementary information from traditional GPR images and local mapped GPR images. The fused images preserve the traditional amplitude distribution while enhancing the visibility of weak features, minimizing the risk of critical information being overlooked by expert. Experimental results reveal that GPRFusion enables the clear visualization of weak signals with amplitudes up to 20 times lower than dominant signals. Moreover, it outperforms other fusion methods in terms of SSIM and PSNR metrics, establishing a new standard for GPR image fusion.
ArticleNumber 117007
Author Du, Yuchuan
Weng, Zihang
Yan, Yu
Liu, Chenglong
Wang, Guoqing
Zhong, Shan
Wu, Difei
Xu, Fei
Author_xml – sequence: 1
  givenname: Shan
  orcidid: 0000-0002-5417-0377
  surname: Zhong
  fullname: Zhong, Shan
  organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 2
  givenname: Difei
  orcidid: 0000-0001-5463-2992
  surname: Wu
  fullname: Wu, Difei
  email: 1994wudifei@tongji.edu.cn
  organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 3
  givenname: Yuchuan
  surname: Du
  fullname: Du, Yuchuan
  organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 4
  givenname: Yu
  surname: Yan
  fullname: Yan, Yu
  organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 5
  givenname: Chenglong
  surname: Liu
  fullname: Liu, Chenglong
  organization: Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
– sequence: 6
  givenname: Zihang
  surname: Weng
  fullname: Weng, Zihang
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
– sequence: 7
  givenname: Guoqing
  surname: Wang
  fullname: Wang, Guoqing
  organization: Hebei Transportation Investment Group Co., Ltd, Shijiazhuang 050091, China
– sequence: 8
  givenname: Fei
  surname: Xu
  fullname: Xu, Fei
  organization: School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
BookMark eNqNkM1KAzEUhbOoYFt9h_gAMyaZTCazlFKrUFBE1yE_NzVlminJTMG3t0NddOnqwrmcj8O3QLPYR0DogZKSEioe9-UBdB4THCAOJSOsLiltCGlmaE6YqArGOL1Fi5z3hBBRtWKO3Dp-62jB4c37B85hF3WHQxwgHRMMegh9xKegsQM44g50iiHusB_z9PB9wmM8QeimMPXa4Tya8wKvLWDbRxcmQL5DN153Ge7_7hJ9Pa8_Vy_F9m3zunraFpa29VBIXRNijXWmMVZXvpXc-NZLqWnbCMlqQS3jnGopDHfW1FXNramIpxIYAV4tUXvh2tTnnMCrYwoHnX4UJWpSpPbqSpGaFKmLonN3denCeeApQFLZBpjMhAR2UK4P_6D8AuhufDQ
Cites_doi 10.1109/TPAMI.2020.3012548
10.1016/j.measurement.2023.113889
10.1109/JSEN.2022.3164707
10.1016/j.jappgeo.2020.104118
10.1016/j.autcon.2022.104260
10.1016/j.jas.2014.11.033
10.1016/j.ndteint.2020.102289
10.1016/j.scitotenv.2019.04.168
10.1080/10298436.2022.2155648
10.1080/10298436.2022.2037591
10.1016/S0926-9851(01)00042-8
10.1016/j.measurement.2020.108243
10.1016/j.measurement.2020.107770
10.1007/BF02910382
10.1016/j.autcon.2023.105185
10.3390/rs14071593
10.1109/TIM.2020.3022438
10.1016/j.cageo.2012.01.016
10.1016/j.jappgeo.2023.104993
10.1016/j.inffus.2021.12.004
10.1109/TIP.2018.2887342
10.1016/j.measurement.2022.111248
10.1109/ACCESS.2021.3088630
10.1038/s41467-023-39236-4
10.1109/ICGPR.2018.8441528
10.3390/rs12223778
10.1109/TIP.2003.819861
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2025.117007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2025_117007
S0263224125003665
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
WUQ
XPP
ID FETCH-LOGICAL-c195t-8a500cbcdb7bca3f984bf9f88a197682561c2441a86b4dcb5354cb30f18e20e43
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Thu Jul 03 08:35:32 EDT 2025
Sat May 24 17:05:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Ground penetrating radar
GPR data fusion
Road structure monitor
Electromagnetic signal display
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c195t-8a500cbcdb7bca3f984bf9f88a197682561c2441a86b4dcb5354cb30f18e20e43
ORCID 0000-0001-5463-2992
0000-0002-5417-0377
ParticipantIDs crossref_primary_10_1016_j_measurement_2025_117007
elsevier_sciencedirect_doi_10_1016_j_measurement_2025_117007
PublicationCentury 2000
PublicationDate 2025-05-31
PublicationDateYYYYMMDD 2025-05-31
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-31
  day: 31
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, Cho, Yi (b0170) 2007; 11
Zhao, Forte, Levi, Pipan, Tian (b0015) 2015; 54
Jian, Yang, Liu, Jeon, Gao, Chisholm (b0150) 2021; 70
Eskandari Torbaghan, Li, Metje, Burrow, Chapman, Rogers (b0080) 2020
Wang, Bovik, Sheikh, Simoncelli (b0160) 2004; 13
Zhao, Lu (b0130) 2022; 19
Shen, Li, Duan, Zhao, Zhao, Che, Liu, Xue, Yan, Liu, Jiang, Li, Chang, Gao, Yan (b0110) 2023; 14
Kim, Kang, Park, Lee, Lim, Lee (b0030) 2024; 224
He, Peng, Cui, Zheng, Shi (b0105) 2023; 212
Liu, Du, Yue, Li, Wu, Li (b0010) 2024; 158
Horé, Ziou (b0165) 2010
Bi, Zhao, Shen, Li, Hu, Ge (b0125) 2020; 115
Gao, Liu, Li, Du, Yue, Liu (b0005) 2022; 148
Utsi (b0020) 2017
Zhang, Lu, Yang, Zhu, Zheng, Liu, Tian, Li (b0075) 2022; 138
Wang, Chen, Liu, Zhang, Kang, Li, Jiang, Sui, Wang (b0090) 2021; 9
Beres, Luetscher, Olivier (b0100) 2001; 46
Allred, Daniels, Ehsani (b0055) 2008
Li, Wu (b0145) 2019; 28
Xiong, Tan (b0070) 2023; 24
N. Poomvises, A. Kongsuk, P. Pakdeerod, T. Suklim, Application of Ground Penetrating Radar and Hilbert transformation helps revealing anomalous body of leakage in a concrete structure; A case history at Huai Mae Tor, Tak province, Thailand, in: 2018 17th International Conference on Ground Penetrating Radar (GPR), 2018: pp. 1–4. 10.1109/ICGPR.2018.8441528.
Fu, Yang, Li, Song, Li, Xu, Wang, Zhao (b0085) 2020; 12
Yue, Du, Liu, Guo, Li, Gao (b0115) 2023; 24
Lu, Zhao, Forte, Tian, Li, Pipan (b0120) 2020; 166
Feng, Yang, Hoxha, Xiao (b0035) 2023; 23
Xu, Ma, Jiang, Guo, Ling (b0140) 2022; 44
Fang, Lin (b0050) 2012; 49
Wang, Gu, Liu, Wu, Wang (b0025) 2022; 196
Tang, Yuan, Ma (b0155) 2022; 82
Matos, von Sperling, Matos, Aranha, Santos, Pessoa, Viola (b0040) 2019; 676
U. Ozkaya, F. Melgani, M. Belete Bejiga, L. Seyfi, M. Donelli, GPR B scan image analysis with deep learning methods, Measurement 165 (2020) 107770. 10.1016/j.measurement.2020.107770.
Daniels (b0060) 2000
Ling, Qian, Shang, Guo, Zhao, Liu (b0065) 2022; 14
SESF-Fuse: an unsupervised deep model for multi-focus image fusion | Neural Computing and Applications, (n.d.). https://link.springer.com/article/10.1007/s00521-020-05358-9 (accessed March 17, 2024).
Xiong (10.1016/j.measurement.2025.117007_b0070) 2023; 24
Yue (10.1016/j.measurement.2025.117007_b0115) 2023; 24
Wang (10.1016/j.measurement.2025.117007_b0160) 2004; 13
Xu (10.1016/j.measurement.2025.117007_b0140) 2022; 44
Fang (10.1016/j.measurement.2025.117007_b0050) 2012; 49
10.1016/j.measurement.2025.117007_b0045
Fu (10.1016/j.measurement.2025.117007_b0085) 2020; 12
Wang (10.1016/j.measurement.2025.117007_b0090) 2021; 9
Zhao (10.1016/j.measurement.2025.117007_b0015) 2015; 54
Matos (10.1016/j.measurement.2025.117007_b0040) 2019; 676
Wang (10.1016/j.measurement.2025.117007_b0025) 2022; 196
Li (10.1016/j.measurement.2025.117007_b0145) 2019; 28
Kim (10.1016/j.measurement.2025.117007_b0030) 2024; 224
Zhang (10.1016/j.measurement.2025.117007_b0075) 2022; 138
Eskandari Torbaghan (10.1016/j.measurement.2025.117007_b0080) 2020
Bi (10.1016/j.measurement.2025.117007_b0125) 2020; 115
10.1016/j.measurement.2025.117007_b0135
Liu (10.1016/j.measurement.2025.117007_b0010) 2024; 158
Tang (10.1016/j.measurement.2025.117007_b0155) 2022; 82
Feng (10.1016/j.measurement.2025.117007_b0035) 2023; 23
10.1016/j.measurement.2025.117007_b0095
Lu (10.1016/j.measurement.2025.117007_b0120) 2020; 166
Gao (10.1016/j.measurement.2025.117007_b0005) 2022; 148
Allred (10.1016/j.measurement.2025.117007_b0055) 2008
Shen (10.1016/j.measurement.2025.117007_b0110) 2023; 14
Daniels (10.1016/j.measurement.2025.117007_b0060) 2000
Ling (10.1016/j.measurement.2025.117007_b0065) 2022; 14
Kim (10.1016/j.measurement.2025.117007_b0170) 2007; 11
Utsi (10.1016/j.measurement.2025.117007_b0020) 2017
Beres (10.1016/j.measurement.2025.117007_b0100) 2001; 46
Horé (10.1016/j.measurement.2025.117007_b0165) 2010
Zhao (10.1016/j.measurement.2025.117007_b0130) 2022; 19
Jian (10.1016/j.measurement.2025.117007_b0150) 2021; 70
He (10.1016/j.measurement.2025.117007_b0105) 2023; 212
References_xml – year: 2000
  ident: b0060
  publication-title: Ground Penetrating Radar Fundamentals
– volume: 196
  year: 2022
  ident: b0025
  article-title: Automatic detection of asphalt pavement thickness: A method combining GPR images and improved Canny algorithm
  publication-title: Measurement
– volume: 70
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0150
  article-title: SEDRFuse: A Symmetric Encoder–Decoder With Residual Block Network for Infrared and Visible Image Fusion
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2020
  ident: b0080
  article-title: Automated detection of cracks in roads using ground penetrating radar
  publication-title: Journal of Applied Geophysics 179
– volume: 9
  start-page: 87207
  year: 2021
  end-page: 87218
  ident: b0090
  article-title: Deep Learning-Based Rebar Clutters Removal and Defect Echoes Enhancement in GPR Images
  publication-title: IEEE Access
– volume: 14
  start-page: 1593
  year: 2022
  ident: b0065
  article-title: Research on the Dynamic Monitoring Technology of Road Subgrades with Time-Lapse Full-Coverage 3D Ground Penetrating Radar (GPR)
  publication-title: Remote Sens. (Basel)
– volume: 11
  start-page: 75
  year: 2007
  end-page: 81
  ident: b0170
  article-title: Removal of ringing noise in GPR data by signal processing
  publication-title: Geosci. J.
– volume: 23
  start-page: 4527
  year: 2023
  end-page: 4539
  ident: b0035
  article-title: Improving 3D Metric GPR Imaging Using Automated Data Collection and Learning-Based Processing
  publication-title: IEEE Sens. J.
– volume: 82
  start-page: 28
  year: 2022
  end-page: 42
  ident: b0155
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
  publication-title: Inf. Fusion
– volume: 19
  start-page: 1
  year: 2022
  end-page: 4
  ident: b0130
  article-title: A Novel Multifrequency GPR Data Fusion Algorithm Based on Time-Varying Weighting Strategy
  publication-title: IEEE Geosci. Remote Sensing Lett.
– start-page: 2366
  year: 2010
  end-page: 2369
  ident: b0165
  article-title: Image Quality Metrics: PSNR vs
  publication-title: SSIM, in: 2010 20th International Conference on Pattern Recognition
– volume: 138
  year: 2022
  ident: b0075
  article-title: Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN
  publication-title: Autom. Constr.
– volume: 676
  start-page: 333
  year: 2019
  end-page: 342
  ident: b0040
  article-title: Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images
  publication-title: Sci. Total Environ.
– volume: 115
  year: 2020
  ident: b0125
  article-title: Multi-frequency GPR data fusion and its application in NDT
  publication-title: NDT and E Int.
– volume: 224
  year: 2024
  ident: b0030
  article-title: Detection of roadbed layers in mountainous area using down-up-crosshole penetrometer and ground penetrating radar
  publication-title: Measurement
– volume: 212
  year: 2023
  ident: b0105
  article-title: An advanced instantaneous frequency method for ground-penetrating radar cavity detection
  publication-title: J. Appl. Geophys.
– volume: 158
  year: 2024
  ident: b0010
  article-title: Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends
  publication-title: Autom. Constr.
– volume: 54
  start-page: 77
  year: 2015
  end-page: 85
  ident: b0015
  article-title: Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis
  publication-title: J. Archaeol. Sci.
– reference: N. Poomvises, A. Kongsuk, P. Pakdeerod, T. Suklim, Application of Ground Penetrating Radar and Hilbert transformation helps revealing anomalous body of leakage in a concrete structure; A case history at Huai Mae Tor, Tak province, Thailand, in: 2018 17th International Conference on Ground Penetrating Radar (GPR), 2018: pp. 1–4. 10.1109/ICGPR.2018.8441528.
– volume: 49
  start-page: 323
  year: 2012
  end-page: 329
  ident: b0050
  article-title: Symplectic partitioned Runge–Kutta methods for two-dimensional numerical model of ground penetrating radar
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 3448
  year: 2023
  ident: b0110
  article-title: Quality evaluation of ground improvement by deep cement mixing piles via ground-penetrating radar
  publication-title: Nat Commun
– year: 2017
  ident: b0020
  article-title: Ground Penetrating Radar: Theory and Practice
– volume: 24
  year: 2023
  ident: b0115
  article-title: Road subsurface distress recognition method using multiattribute feature fusion with ground penetrating radar
  publication-title: Int. J. Pavement Eng.
– volume: 148
  year: 2022
  ident: b0005
  article-title: Mining Co-Occurrence Patterns among Deep Road Distresses Using Association Rule Analysis
  publication-title: Journal of Transportation Engineering, Part b: Pavements
– volume: 44
  start-page: 502
  year: 2022
  end-page: 518
  ident: b0140
  article-title: U2Fusion: A Unified Unsupervised Image Fusion Network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  year: 2023
  ident: b0070
  article-title: Deep learning-based detection of tie bars in concrete pavement using ground penetrating radar
  publication-title: Int. J. Pavement Eng.
– reference: U. Ozkaya, F. Melgani, M. Belete Bejiga, L. Seyfi, M. Donelli, GPR B scan image analysis with deep learning methods, Measurement 165 (2020) 107770. 10.1016/j.measurement.2020.107770.
– volume: 166
  year: 2020
  ident: b0120
  article-title: Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform
  publication-title: Measurement
– volume: 28
  start-page: 2614
  year: 2019
  end-page: 2623
  ident: b0145
  article-title: DenseFuse: A Fusion Approach to Infrared and Visible Images
  publication-title: IEEE Trans. on Image Process.
– reference: SESF-Fuse: an unsupervised deep model for multi-focus image fusion | Neural Computing and Applications, (n.d.). https://link.springer.com/article/10.1007/s00521-020-05358-9 (accessed March 17, 2024).
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0160
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 12
  start-page: 3778
  year: 2020
  ident: b0085
  article-title: Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression
  publication-title: Remote Sens.
– volume: 46
  start-page: 249
  year: 2001
  end-page: 262
  ident: b0100
  article-title: Integration of ground-penetrating radar and microgravimetric methods to map shallow caves
  publication-title: J. Appl. Geophys.
– year: 2008
  ident: b0055
  article-title: Handbook of Agricultural Geophysics
– volume: 44
  start-page: 502
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0140
  article-title: U2Fusion: A Unified Unsupervised Image Fusion Network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 224
  year: 2024
  ident: 10.1016/j.measurement.2025.117007_b0030
  article-title: Detection of roadbed layers in mountainous area using down-up-crosshole penetrometer and ground penetrating radar
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113889
– volume: 23
  start-page: 4527
  year: 2023
  ident: 10.1016/j.measurement.2025.117007_b0035
  article-title: Improving 3D Metric GPR Imaging Using Automated Data Collection and Learning-Based Processing
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3164707
– year: 2020
  ident: 10.1016/j.measurement.2025.117007_b0080
  article-title: Automated detection of cracks in roads using ground penetrating radar
  publication-title: Journal of Applied Geophysics 179
  doi: 10.1016/j.jappgeo.2020.104118
– volume: 138
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0075
  article-title: Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104260
– volume: 54
  start-page: 77
  year: 2015
  ident: 10.1016/j.measurement.2025.117007_b0015
  article-title: Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2014.11.033
– volume: 115
  year: 2020
  ident: 10.1016/j.measurement.2025.117007_b0125
  article-title: Multi-frequency GPR data fusion and its application in NDT
  publication-title: NDT and E Int.
  doi: 10.1016/j.ndteint.2020.102289
– volume: 676
  start-page: 333
  year: 2019
  ident: 10.1016/j.measurement.2025.117007_b0040
  article-title: Clogging in constructed wetlands: Indirect estimation of medium porosity by analysis of ground-penetrating radar images
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.168
– volume: 24
  year: 2023
  ident: 10.1016/j.measurement.2025.117007_b0070
  article-title: Deep learning-based detection of tie bars in concrete pavement using ground penetrating radar
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2022.2155648
– start-page: 2366
  year: 2010
  ident: 10.1016/j.measurement.2025.117007_b0165
  article-title: Image Quality Metrics: PSNR vs
– ident: 10.1016/j.measurement.2025.117007_b0135
– volume: 24
  year: 2023
  ident: 10.1016/j.measurement.2025.117007_b0115
  article-title: Road subsurface distress recognition method using multiattribute feature fusion with ground penetrating radar
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2022.2037591
– volume: 46
  start-page: 249
  year: 2001
  ident: 10.1016/j.measurement.2025.117007_b0100
  article-title: Integration of ground-penetrating radar and microgravimetric methods to map shallow caves
  publication-title: J. Appl. Geophys.
  doi: 10.1016/S0926-9851(01)00042-8
– volume: 166
  year: 2020
  ident: 10.1016/j.measurement.2025.117007_b0120
  article-title: Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108243
– ident: 10.1016/j.measurement.2025.117007_b0045
  doi: 10.1016/j.measurement.2020.107770
– volume: 11
  start-page: 75
  year: 2007
  ident: 10.1016/j.measurement.2025.117007_b0170
  article-title: Removal of ringing noise in GPR data by signal processing
  publication-title: Geosci. J.
  doi: 10.1007/BF02910382
– volume: 158
  year: 2024
  ident: 10.1016/j.measurement.2025.117007_b0010
  article-title: Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105185
– volume: 14
  start-page: 1593
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0065
  article-title: Research on the Dynamic Monitoring Technology of Road Subgrades with Time-Lapse Full-Coverage 3D Ground Penetrating Radar (GPR)
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14071593
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2025.117007_b0150
  article-title: SEDRFuse: A Symmetric Encoder–Decoder With Residual Block Network for Infrared and Visible Image Fusion
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3022438
– volume: 49
  start-page: 323
  year: 2012
  ident: 10.1016/j.measurement.2025.117007_b0050
  article-title: Symplectic partitioned Runge–Kutta methods for two-dimensional numerical model of ground penetrating radar
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.01.016
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0130
  article-title: A Novel Multifrequency GPR Data Fusion Algorithm Based on Time-Varying Weighting Strategy
  publication-title: IEEE Geosci. Remote Sensing Lett.
– year: 2017
  ident: 10.1016/j.measurement.2025.117007_b0020
– volume: 212
  year: 2023
  ident: 10.1016/j.measurement.2025.117007_b0105
  article-title: An advanced instantaneous frequency method for ground-penetrating radar cavity detection
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2023.104993
– volume: 82
  start-page: 28
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0155
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.12.004
– volume: 28
  start-page: 2614
  year: 2019
  ident: 10.1016/j.measurement.2025.117007_b0145
  article-title: DenseFuse: A Fusion Approach to Infrared and Visible Images
  publication-title: IEEE Trans. on Image Process.
  doi: 10.1109/TIP.2018.2887342
– volume: 196
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0025
  article-title: Automatic detection of asphalt pavement thickness: A method combining GPR images and improved Canny algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111248
– volume: 148
  year: 2022
  ident: 10.1016/j.measurement.2025.117007_b0005
  article-title: Mining Co-Occurrence Patterns among Deep Road Distresses Using Association Rule Analysis
  publication-title: Journal of Transportation Engineering, Part b: Pavements
– year: 2000
  ident: 10.1016/j.measurement.2025.117007_b0060
  publication-title: Ground Penetrating Radar Fundamentals
– volume: 9
  start-page: 87207
  year: 2021
  ident: 10.1016/j.measurement.2025.117007_b0090
  article-title: Deep Learning-Based Rebar Clutters Removal and Defect Echoes Enhancement in GPR Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088630
– volume: 14
  start-page: 3448
  year: 2023
  ident: 10.1016/j.measurement.2025.117007_b0110
  article-title: Quality evaluation of ground improvement by deep cement mixing piles via ground-penetrating radar
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-39236-4
– ident: 10.1016/j.measurement.2025.117007_b0095
  doi: 10.1109/ICGPR.2018.8441528
– year: 2008
  ident: 10.1016/j.measurement.2025.117007_b0055
– volume: 12
  start-page: 3778
  year: 2020
  ident: 10.1016/j.measurement.2025.117007_b0085
  article-title: Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression
  publication-title: Remote Sens.
  doi: 10.3390/rs12223778
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.measurement.2025.117007_b0160
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
SSID ssj0006396
Score 2.4100227
Snippet [Display omitted] •Fusion framework based on deep learning proposed for integrating multiple GPR images.•Three fusion cases for unveiling different road...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117007
SubjectTerms Deep learning
Electromagnetic signal display
GPR data fusion
Ground penetrating radar
Road structure monitor
Title Enhanced GPR signal interpretation via deep learning fusion for unveiling road subsurface conditions
URI https://dx.doi.org/10.1016/j.measurement.2025.117007
Volume 249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KRdGDaFWsj7KC19hsdjcP8FJKa1UsohZ6C9nNRiOYlr6O_nZnk5S2IHjwmJCBZTLMN49vZwCuAz8JlK2Z5WnHtTiTniWlcCxmmlQO11Lmg7Sf-m5vwB-GYliB9vIujKFVlr6_8Om5ty7fNEttNsdp2ny1zahxBCAEcXTDrrlozrlnrPzme0XzQAR2izoLs8zXO3C14nh9repwmCo6wrQwbbNZ9jeMWsOd7gHslwEjaRVnOoSKzmqwtzZGsAbbOY1TTY8g7mQfeUuf3D2_EMPNQNF0g1dIFmlEYq3HpFwY8U6SuSmZEQxfyTxb6NTcUCeTURSTKbqV-SSJlCaYN8cFvesYBt3OW7tnlXsULEUDMbN8s_VASRVLT6qIJYHPZRIkvh9RDEYwRXSpQpSnke9KHispmOBKMjuhvnZszdkJVLNRpk-BUOFRpTlXVGNOHUvpCBZFiGmJQGOgug7OUnPhuBiXES55ZJ_hmrpDo-6wUHcdbpc6Djf-fYhu_W_xs_-Jn8OueSoYARdQnU3m-hIDjZls5JbUgK3W_WOv_wPeltXL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qi6-DaFV8u4LX0Gx2N03AixRrax-IttBbyG42GsG09OHvd7ZJbQuCB68JA2GyfN88vp0BuPW92Fe2ZlZVO67FmaxaUgrHYqZJ5XAt5XyQdqfrNvr8aSAGBagt7sIYWWWO_Rmmz9E6f1LJvVkZJUnl1TajxpGAkMQRhl2xASUznUoUoXTfbDW6P4CMJOxmpRZmGYMtuFnKvD6XpTjMFh1hupi2WS77G02tUE99H_bymJHcZ591AAWdlmF3ZZJgGTbnSk41OYToIX2fd_XJ4_MLMfIMNE3WpIXkKwlJpPWI5Dsj3kg8M1UzghEsmaVfOjGX1Ml4GEZkgsgyG8eh0gRT5yhTeB1Bv_7QqzWsfJWCpagvppZnFh8oqSJZlSpkse9xGfux54UU4xHMEl2qkOhp6LmSR0oKJriSzI6ppx1bc3YMxXSY6hMgVFSp0pwrqjGtjqR0BAtDpLVY4Hmg-hScheeCUTYxI1hIyT6CFXcHxt1B5u5TuFv4OFj7_QEi-9_mZ_8zv4btRq_TDtrNbuscdsybTCBwAcXpeKYvMe6Yyqv8XH0DN4jYfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+GPR+signal+interpretation+via+deep+learning+fusion+for+unveiling+road+subsurface+conditions&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhong%2C+Shan&rft.au=Wu%2C+Difei&rft.au=Du%2C+Yuchuan&rft.au=Yan%2C+Yu&rft.date=2025-05-31&rft.issn=0263-2241&rft.volume=249&rft.spage=117007&rft_id=info:doi/10.1016%2Fj.measurement.2025.117007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2025_117007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon