Pricing‐based power allocation in cloud radio access network with multiple access technology selection

In this article, we consider an uplink economy‐efficient resource allocation framework in a multicellular cloud radio access network (C‐RAN) architecture with network virtualization, where a mobile network operator (MNO) interacts with a number of mobile virtual network operators (MVNOs) with a pred...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 34; no. 2
Main Authors Ansari, Ali Asghar, Eslami, Mohsen, Dehghani, Mohammad Javad
Format Journal Article
LanguageEnglish
Published 01.02.2023
Online AccessGet full text
ISSN2161-3915
2161-3915
DOI10.1002/ett.4687

Cover

Abstract In this article, we consider an uplink economy‐efficient resource allocation framework in a multicellular cloud radio access network (C‐RAN) architecture with network virtualization, where a mobile network operator (MNO) interacts with a number of mobile virtual network operators (MVNOs) with a predetermined business model. OFDMA and Massive MIMO multiple access technologies have been assumed to be available for each MVNO at two different prices. In this setup, we propose a multi‐access technology selection approach (MATSA) with the objective of maximizing delivered rate to end users, reducing operation costs and maximizing MVNOs' profit subject to a set of constraints, which leads to a nonconvex resource allocation problem with very high computational complexity. The utility function is defined as the difference between the total throughput and the utilization cost for each technology. To tackle this problem, we apply complementary geometric programming (CGP) and successive convex approximation (SCA), that results in a two‐step iterative solution. Simulation results demonstrate superiority of the proposed approach compared to a similar scenario with predetermined multi‐access technology, especially for large numbers of users. We consider uplink economy‐efficient power allocation and technology selection in a multi‐cell virtual wireless network with cloud radio access network (C‐RAN) architecture, where a mobile network operator (MNO) interacts with a number of mobile virtual network operators (MVNOs) with a predetermined business model. We use optimization techniques to solve the problem.
AbstractList In this article, we consider an uplink economy‐efficient resource allocation framework in a multicellular cloud radio access network (C‐RAN) architecture with network virtualization, where a mobile network operator (MNO) interacts with a number of mobile virtual network operators (MVNOs) with a predetermined business model. OFDMA and Massive MIMO multiple access technologies have been assumed to be available for each MVNO at two different prices. In this setup, we propose a multi‐access technology selection approach (MATSA) with the objective of maximizing delivered rate to end users, reducing operation costs and maximizing MVNOs' profit subject to a set of constraints, which leads to a nonconvex resource allocation problem with very high computational complexity. The utility function is defined as the difference between the total throughput and the utilization cost for each technology. To tackle this problem, we apply complementary geometric programming (CGP) and successive convex approximation (SCA), that results in a two‐step iterative solution. Simulation results demonstrate superiority of the proposed approach compared to a similar scenario with predetermined multi‐access technology, especially for large numbers of users. We consider uplink economy‐efficient power allocation and technology selection in a multi‐cell virtual wireless network with cloud radio access network (C‐RAN) architecture, where a mobile network operator (MNO) interacts with a number of mobile virtual network operators (MVNOs) with a predetermined business model. We use optimization techniques to solve the problem.
In this article, we consider an uplink economy‐efficient resource allocation framework in a multicellular cloud radio access network (C‐RAN) architecture with network virtualization, where a mobile network operator (MNO) interacts with a number of mobile virtual network operators (MVNOs) with a predetermined business model. OFDMA and Massive MIMO multiple access technologies have been assumed to be available for each MVNO at two different prices. In this setup, we propose a multi‐access technology selection approach (MATSA) with the objective of maximizing delivered rate to end users, reducing operation costs and maximizing MVNOs' profit subject to a set of constraints, which leads to a nonconvex resource allocation problem with very high computational complexity. The utility function is defined as the difference between the total throughput and the utilization cost for each technology. To tackle this problem, we apply complementary geometric programming (CGP) and successive convex approximation (SCA), that results in a two‐step iterative solution. Simulation results demonstrate superiority of the proposed approach compared to a similar scenario with predetermined multi‐access technology, especially for large numbers of users.
Author Dehghani, Mohammad Javad
Ansari, Ali Asghar
Eslami, Mohsen
Author_xml – sequence: 1
  givenname: Ali Asghar
  surname: Ansari
  fullname: Ansari, Ali Asghar
  organization: Shiraz University of Technology
– sequence: 2
  givenname: Mohsen
  orcidid: 0000-0001-7236-6923
  surname: Eslami
  fullname: Eslami, Mohsen
  email: m.eslami@sutech.ac.ir
  organization: Shiraz University of Technology
– sequence: 3
  givenname: Mohammad Javad
  orcidid: 0000-0003-0972-2352
  surname: Dehghani
  fullname: Dehghani, Mohammad Javad
  organization: Shiraz University of Technology
BookMark eNp1kM1KAzEUhYNUsNaCj5Clm6lJZiaZLKXUHyjooq6HTOZOG00nJUkZuvMRfEafxGmrIKJ3cy_c7xw45xwNWtcCQpeUTCgh7BpinGS8ECdoyCinSSppPvhxn6FxCC-kH5GzPCuGaPXkjTbt8uPtvVIBarxxHXisrHVaReNabFqsrdvW2KvaOKy0hhBwC7Fz_hV3Jq7wemuj2Vj4fkbQq9ZZt9zhABb03ucCnTbKBhh_7RF6vp0tpvfJ_PHuYXozTzSVuUjSXBEiBc2apiYgpGRciJpLKCoCWZ7VsiGsFrwohOIZqypR8JQ3khNSMM5EOkKTo6_2LgQPTalNPCSJXhlbUlLuqyr7qsp9Vb3g6pdg481a-d1faHJEO2Nh9y9XzhaLA_8J3YN79g
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3437196
crossref_primary_10_1002_dac_70012
Cites_doi 10.1109/TVT.2019.2919289
10.1002/ett.3778
10.1109/TNSM.2021.3124046
10.1109/TVT.2017.2712669
10.1002/ett.3627
10.1109/COMST.2016.2548658
10.1109/VTCSpring.2016.7504446
10.1109/LCOMM.2017.2701803
10.1109/TWC.2007.05960
10.1007/978‐1‐4615‐2025‐2_4
10.1109/TMC.2015.2506578
10.1561/2000000093
10.1109/TVT.2018.2882466
10.1109/ACCESS.2017.2744672
10.1109/JSTSP.2016.2600520
10.1109/ICCS.2016.7833595
10.1016/j.comnet.2018.02.005
10.1109/TCOMM.2018.2846574
10.1109/MWC.2017.1600343
10.1109/ICC.2017.7996490
10.1109/ACCESS.2016.2560218
10.1002/ett.3744
10.1016/j.ejor.2013.10.016
10.1109/TVT.2014.2379922
10.1109/TCOMM.2019.2919547
10.1002/ett.4425
10.1002/ett.4265
10.1002/ett.3615
10.1109/MWC.2014.7000980
10.1109/GLOCOM.2017.8254074
10.1002/ett.4153
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.4687
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_4687
ETT4687
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c1957-35a009714ffd0e7992677d69e8b0e454d9f02d76887a642bb78636f9600826273
ISSN 2161-3915
IngestDate Thu Apr 24 22:58:43 EDT 2025
Tue Jul 01 03:49:28 EDT 2025
Wed Jan 22 16:24:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1957-35a009714ffd0e7992677d69e8b0e454d9f02d76887a642bb78636f9600826273
ORCID 0000-0003-0972-2352
0000-0001-7236-6923
PageCount 22
ParticipantIDs crossref_citationtrail_10_1002_ett_4687
crossref_primary_10_1002_ett_4687
wiley_primary_10_1002_ett_4687_ETT4687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2023
References 2017; 5
2015; 15
2019; 30
2017; 22
2017; 66
2017; 24
2016; 10
1995
2016; 18
2018; 66
2014; 21
2014; 233
2014; 64
2018; 68
2016; 4
2021; 32
2020; 31
2022
2020
2017; 11
2019; 68
2018; 135
2019; 67
2007; 6
2017
2016
2022; 19
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Chiang M (e_1_2_8_22_1)
e_1_2_8_3_1
Iqbal A (e_1_2_8_5_1) 2022
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
Schneir R (e_1_2_8_18_1) 2017
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Mekki T (e_1_2_8_12_1) 2022
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – start-page: 149
  year: 1995
  end-page: 216
– volume: 22
  start-page: 121
  issue: 1
  year: 2017
  end-page: 124
  article-title: Hierarchical matching game for service selection and resource purchasing in wireless network virtualization
  publication-title: IEEE Commun Lett
– volume: 6
  start-page: 2640
  issue: 7
  year: 2007
  end-page: 2651
  article-title: Power control by geometric programming
  publication-title: IEEE Trans Wirel Commun
– volume: 135
  start-page: 240
  year: 2018
  end-page: 252
  article-title: A two‐level auction for resource allocation in multi‐tenant C‐RAN
  publication-title: Comput Netw
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Network slicing in 5G: an auction‐based model, In 2017 IEEE international conference on communications (ICC)
  publication-title: IEEE
– volume: 15
  start-page: 2640
  issue: 10
  year: 2015
  end-page: 2654
  article-title: Virtualization of 5G cellular networks as a hierarchical combinatorial auction
  publication-title: IEEE Trans Mob Comput
– article-title: Geometric Programming for Communication Systems
  publication-title: Foundations and Trends® in Communications and Information Theory
– start-page: 33(4):e4417
  year: 2022
  article-title: Resource allocation for joint energy and spectral efficiency in cloud radio access network based on deep reinforcement learning
  publication-title: Trans Emerging Tel Tech
– volume: 11
  start-page: 154
  issue: 3‐4
  year: 2017
  end-page: 655
  article-title: Massive MIMO networks: spectral, energy, and hardware efficiency
  publication-title: Found Trends Signal Process
– volume: 68
  start-page: 1365
  issue: 2
  year: 2018
  end-page: 1377
  article-title: Energy‐efficient resource allocation in heterogeneous cloud radio access networks via BBU offloading
  publication-title: IEEE Trans Veh Technol
– start-page: 1
  year: 2016
  end-page: 5
  article-title: Remote radio head selection for power saving in cloud radio access networks, In 2016 IEEE 83rd vehicular technology conference (VTC spring)
  publication-title: IEEE
– volume: 24
  start-page: 72
  issue: 4
  year: 2017
  end-page: 80
  article-title: An overview of sustainable green 5G networks
  publication-title: IEEE Wirel Commun
– volume: 66
  start-page: 9512
  issue: 10
  year: 2017
  end-page: 9520
  article-title: Dynamic resource allocation for virtualized wireless networks in massive‐MIMO‐aided and fronthaul‐limited C‐RAN
  publication-title: IEEE Trans Veh Technol
– volume: 31
  year: 2020
  article-title: An integration of slicing, NFV, and SDN for mobility management in corporate environments
  publication-title: Trans Emerging Tel Tech
– volume: 233
  start-page: 500
  issue: 3
  year: 2014
  end-page: 510
  article-title: Global optimization of signomial geometric programming problems
  publication-title: Eur J Oper Res
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Resource allocation for network slices in 5G with network resource pricing, In GLOBECOM 2017‐2017 IEEE global communications conference
  publication-title: IEEE
– year: 2022
  article-title: Software‐defined networking in vehicular networks: a survey
  publication-title: Trans Emerging Tel Tech
– volume: 4
  start-page: 2738
  year: 2016
  end-page: 2750
  article-title: Joint user‐association and resource‐allocation in virtualized wireless networks
  publication-title: IEEE Access
– volume: 32
  year: 2021
  article-title: Resource allocation in sparse code multiple access‐based systems for cloud‐radio access network in 5G networks
  publication-title: Trans Emerging Tel Tech
– volume: 19
  start-page: 216
  issue: 1
  year: 2022
  end-page: 227
  article-title: Blockchain‐enabled resource trading and deep reinforcement learning‐based autonomous RAN slicing in 5G
  publication-title: in IEEE Trans Network Service Manag
– volume: 18
  start-page: 2282
  issue: 3
  year: 2016
  end-page: 2308
  article-title: Recent advances in cloud radio access networks: system architectures, key techniques, and open issues
  publication-title: IEEE Commun Surv Tutorials
– year: 2022
– year: 2020
– volume: 21
  start-page: 126
  issue: 6
  year: 2014
  end-page: 135
  article-title: Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies
  publication-title: IEEE Wirel Commun
– volume: 64
  start-page: 5275
  issue: 11
  year: 2014
  end-page: 5287
  article-title: Energy‐efficient resource assignment and power allocation in heterogeneous cloud radio access networks
  publication-title: IEEE Trans Veh Technol
– volume: 66
  start-page: 5220
  issue: 11
  year: 2018
  end-page: 5234
  article-title: Antenna allocation and pricing in invirtualized massive mimo networks via Stackelberg game
  publication-title: IEEE Trans Commun
– volume: 30
  year: 2019
  article-title: SDN, slicing, and NFV paradigms for a smart home: a comprehensive survey
  publication-title: Trans Emerging Tel Tech
– volume: 68
  start-page: 7096
  issue: 7
  year: 2019
  end-page: 7107
  article-title: Pricing‐based resource allocation in virtualized cloud radio access networks
  publication-title: IEEE Trans Veh Technol
– volume: 67
  start-page: 6360
  issue: 9
  year: 2019
  end-page: 6373
  article-title: Dynamic non‐orthogonal multiple access and orthogonal multiple access in 5G wireless networks
  publication-title: IEEE Trans Commun
– volume: 10
  start-page: 1375
  issue: 8
  year: 2016
  end-page: 1389
  article-title: Secrecy and energy efficiency in massive MIMO aided heterogeneous C‐RAN: a new look at interference
  publication-title: IEEE J Selected Topics Signal Process
– volume: 5
  start-page: 19099
  year: 2017
  end-page: 19115
  article-title: Wireless network virtualization with SDN and C‐RAN for 5G networks: requirements, opportunities, and challenges
  publication-title: IEEE Access
– year: 2017
– volume: 30
  year: 2019
  article-title: An optimal multitier resource allocation of cloud RAN in 5G using machine learning
  publication-title: Trans Emerging Tel Tech
– volume: 31
  issue: 3
  year: 2020
  article-title: Joint uplink and downlink delay‐aware resource allocation in C‐RAN
  publication-title: Trans Emerg Telecommun Technol
– start-page: 1
  year: 2016
  end-page: 6
  article-title: A two‐stage spectrum leasing optimization framework for virtual mobile network operators, In 2016 IEEE international conference on communication systems (ICCS)
  publication-title: IEEE
– ident: e_1_2_8_31_1
  doi: 10.1109/TVT.2019.2919289
– ident: e_1_2_8_38_1
  doi: 10.1002/ett.3778
– ident: e_1_2_8_37_1
  doi: 10.1109/TNSM.2021.3124046
– ident: e_1_2_8_39_1
  doi: 10.1109/TVT.2017.2712669
– ident: e_1_2_8_3_1
  doi: 10.1002/ett.3627
– ident: e_1_2_8_11_1
  doi: 10.1109/COMST.2016.2548658
– ident: e_1_2_8_28_1
  doi: 10.1109/VTCSpring.2016.7504446
– ident: e_1_2_8_30_1
  doi: 10.1109/LCOMM.2017.2701803
– start-page: 33(4):e4417
  year: 2022
  ident: e_1_2_8_5_1
  article-title: Resource allocation for joint energy and spectral efficiency in cloud radio access network based on deep reinforcement learning
  publication-title: Trans Emerging Tel Tech
– ident: e_1_2_8_22_1
  article-title: Geometric Programming for Communication Systems
  publication-title: Foundations and Trends® in Communications and Information Theory
– ident: e_1_2_8_23_1
  doi: 10.1109/TWC.2007.05960
– ident: e_1_2_8_25_1
– ident: e_1_2_8_40_1
  doi: 10.1007/978‐1‐4615‐2025‐2_4
– ident: e_1_2_8_36_1
  doi: 10.1109/TMC.2015.2506578
– ident: e_1_2_8_20_1
  doi: 10.1561/2000000093
– ident: e_1_2_8_27_1
  doi: 10.1109/TVT.2018.2882466
– ident: e_1_2_8_4_1
– ident: e_1_2_8_15_1
  doi: 10.1109/ACCESS.2017.2744672
– ident: e_1_2_8_8_1
  doi: 10.1109/JSTSP.2016.2600520
– ident: e_1_2_8_35_1
  doi: 10.1109/ICCS.2016.7833595
– ident: e_1_2_8_2_1
– ident: e_1_2_8_34_1
  doi: 10.1016/j.comnet.2018.02.005
– ident: e_1_2_8_16_1
– ident: e_1_2_8_29_1
  doi: 10.1109/TCOMM.2018.2846574
– ident: e_1_2_8_19_1
  doi: 10.1109/MWC.2017.1600343
– ident: e_1_2_8_33_1
  doi: 10.1109/ICC.2017.7996490
– ident: e_1_2_8_21_1
  doi: 10.1109/ACCESS.2016.2560218
– ident: e_1_2_8_13_1
  doi: 10.1002/ett.3744
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ejor.2013.10.016
– ident: e_1_2_8_7_1
  doi: 10.1109/TVT.2014.2379922
– ident: e_1_2_8_26_1
  doi: 10.1109/TCOMM.2019.2919547
– ident: e_1_2_8_17_1
  doi: 10.1002/ett.4425
– ident: e_1_2_8_9_1
– volume-title: Cost Analysis of a 5G Network with Multi‐Tenancy Options
  year: 2017
  ident: e_1_2_8_18_1
– year: 2022
  ident: e_1_2_8_12_1
  article-title: Software‐defined networking in vehicular networks: a survey
  publication-title: Trans Emerging Tel Tech
  doi: 10.1002/ett.4265
– ident: e_1_2_8_14_1
  doi: 10.1002/ett.3615
– ident: e_1_2_8_6_1
  doi: 10.1109/MWC.2014.7000980
– ident: e_1_2_8_32_1
  doi: 10.1109/GLOCOM.2017.8254074
– ident: e_1_2_8_10_1
  doi: 10.1002/ett.4153
SSID ssj0000752548
Score 2.2331061
Snippet In this article, we consider an uplink economy‐efficient resource allocation framework in a multicellular cloud radio access network (C‐RAN) architecture with...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Pricing‐based power allocation in cloud radio access network with multiple access technology selection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4687
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFOUlxYJwcFycDa7XvsY0aCqIlxIpd6stXdNglKnah0OnPgJ_AP-G7-E2We2IpUKF8vaGa-snU-eh-eB0GvdQb1mjUo5pTSllKhUjKhKM8YEGNAtIVwXJ88-5Ucn9PiUnQ4Gv6KspU1fD5vvO-tK_keqsAZy1VWy_yDZsCkswD3IF64gYbjeSMZ6ZrsuWPYJC1olyeRcDz5L9A91G47TIY1mtd7I5ELI5ToRZkZi0tkEcBuJDXmFjtiHiHtyaSblePF9jVScrYkw_xt0mbEZd9Rr7rjoJNorylecwNO2xn2yWgJGvixEyBKeapQa2my9uNyWqh2qBbB1niLOzoRMjsU3IePQBRn7bGf_hSMjHfwqbT3nUO1Yc59oF-9cRp6yVdZBlf2lCWxnWdX3Q5o7lX6l2XbgYddxGSU_nc815RbaJ5zrPID9yeHs4-cQxgOLC1xsM_fQv7hvcZyRd37jK0ZP7AQZK2Z-D9117geeWCzdRwPVPUB3oqaUD9HCoer3j58GT9jgCW_xhJcdNnjCBk_YQgY7PGGNJ-zx5IlbPOGAp0fo5MN0_v4odfM40mZUMtBFTJiWY7RtZaZ4WZKcc5mXqqgzRRmVZZsRCf5rwQW4tXXNi3yct-Ajg52Zg538GO116049QTgTIm9UYSbd0ybjouaMiwJY67EcSX6A3voDqxrXrF7PTFlVts02qeBoK320B-hV4Dy3DVp28LwxZ34tQ-XE_PSmjM_Q7S2gn6O9_mKjXoB12tcvHUL-ABFelPA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pricing%E2%80%90based+power+allocation+in+cloud+radio+access+network+with+multiple+access+technology+selection&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Ansari%2C+Ali+Asghar&rft.au=Eslami%2C+Mohsen&rft.au=Dehghani%2C+Mohammad+Javad&rft.date=2023-02-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=34&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.4687&rft.externalDBID=10.1002%252Fett.4687&rft.externalDocID=ETT4687
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon