Deep convolutional neural network framework with multi-modal fusion for Alzheimer’s detection

The biomedical profession has gained importance due to the rapid and accurate diagnosis of clinical patients using computer-aided diagnosis (CAD) tools. The diagnosis and treatment of Alzheimer’s disease (AD) using complementary multimodalities can improve the quality of life and mental state of pat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of reconfigurable and embedded systems Vol. 13; no. 1; p. 179
Main Authors Sharma, Manoj Kumar, Kaiser, M Shamim, Ray, Kanad
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.03.2024
Subjects
Online AccessGet full text
ISSN2089-4864
2722-2608
2089-4864
DOI10.11591/ijres.v13.i1.pp179-191

Cover

Loading…
Abstract The biomedical profession has gained importance due to the rapid and accurate diagnosis of clinical patients using computer-aided diagnosis (CAD) tools. The diagnosis and treatment of Alzheimer’s disease (AD) using complementary multimodalities can improve the quality of life and mental state of patients. In this study, we integrated a lightweight custom convolutional neural network (CNN) model and nature-inspired optimization techniques to enhance the performance, robustness, and stability of progress detection in AD. A multi-modal fusion database approach was implemented, including positron emission tomography (PET) and magnetic resonance imaging (MRI) datasets, to create a fused database. We compared the performance of custom and pre-trained deep learning models with and without optimization and found that employing natureinspired algorithms like the particle swarm optimization algorithm (PSO) algorithm significantly improved system performance. The proposed methodology, which includes a fused multimodality database and optimization strategy, improved performance metrics such as training, validation, test accuracy, precision, and recall. Furthermore, PSO was found to improve the performance of pre-trained models by 3-5% and custom models by up to 22%. Combining different medical imaging modalities improved the overall model performance by 2-5%. In conclusion, a customized lightweight CNN model and nature-inspired optimization techniques can significantly enhance progress detection, leading to better biomedical research and patient care.
AbstractList The biomedical profession has gained importance due to the rapid and accurate diagnosis of clinical patients using computer-aided diagnosis (CAD) tools. The diagnosis and treatment of Alzheimer’s disease (AD) using complementary multimodalities can improve the quality of life and mental state of patients. In this study, we integrated a lightweight custom convolutional neural network (CNN) model and nature-inspired optimization techniques to enhance the performance, robustness, and stability of progress detection in AD. A multi-modal fusion database approach was implemented, including positron emission tomography (PET) and magnetic resonance imaging (MRI) datasets, to create a fused database. We compared the performance of custom and pre-trained deep learning models with and without optimization and found that employing natureinspired algorithms like the particle swarm optimization algorithm (PSO) algorithm significantly improved system performance. The proposed methodology, which includes a fused multimodality database and optimization strategy, improved performance metrics such as training, validation, test accuracy, precision, and recall. Furthermore, PSO was found to improve the performance of pre-trained models by 3-5% and custom models by up to 22%. Combining different medical imaging modalities improved the overall model performance by 2-5%. In conclusion, a customized lightweight CNN model and nature-inspired optimization techniques can significantly enhance progress detection, leading to better biomedical research and patient care.
Author Kaiser, M Shamim
Sharma, Manoj Kumar
Ray, Kanad
Author_xml – sequence: 1
  givenname: Manoj Kumar
  orcidid: 0000-0002-3393-4825
  surname: Sharma
  fullname: Sharma, Manoj Kumar
– sequence: 2
  givenname: M Shamim
  orcidid: 0000-0002-4604-5461
  surname: Kaiser
  fullname: Kaiser, M Shamim
– sequence: 3
  givenname: Kanad
  orcidid: 0000-0001-9324-2778
  surname: Ray
  fullname: Ray, Kanad
BookMark eNotkE1OwzAQhS1UJErpGYjEOiFjO2m8rMqvVIkNrK3YnqgpSRzspBWsuAbX4ySYwOq9xTdPmu-czDrbISGXkCYAmYDreu_QJwdgSQ1J38NKxCDghMzpitKY5mkxCz0tRMyLnJ-Rpff7NE2BcRCcz4m8QewjbbuDbcahtl3ZRB2OborhaN1rVLmyxakd62EXtWMz1HFrTUCq0YeTqLIuWjcfO6xbdN-fXz4yOKD-nbsgp1XZeFz-54K83N0-bx7i7dP942a9jTWIDGIodaYEaFqIoqCVUlSBzjmH3NCyQsMUK8FwVeU5BVS5MUYZxCJjFKjmjC3I1d9u7-zbiH6Qezu68I2XDHigMp7zQK3-KO2s9w4r2bu6Ld27hFROQuUkVAahsgY5CZVBKPsBSjtxYQ
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science Mar 2024
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science Mar 2024
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijres.v13.i1.pp179-191
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
East & South Asia Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2722-2608
2089-4864
ExternalDocumentID 10_11591_ijres_v13_i1_pp179_191
GroupedDBID .DC
8FE
8FG
AAKDD
AAKPC
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c1951-1ac5b91c289882fbb2b1c64416d2afed3b3a1d4bf6621eb6dddbdee853212c433
IEDL.DBID 8FG
ISSN 2089-4864
IngestDate Fri Jul 25 23:07:15 EDT 2025
Tue Jul 01 04:31:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1951-1ac5b91c289882fbb2b1c64416d2afed3b3a1d4bf6621eb6dddbdee853212c433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4604-5461
0000-0002-3393-4825
0000-0001-9324-2778
OpenAccessLink https://ijres.iaescore.com/index.php/IJRES/article/download/20755/pdf
PQID 3143215464
PQPubID 1686338
ParticipantIDs proquest_journals_3143215464
crossref_primary_10_11591_ijres_v13_i1_pp179_191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of reconfigurable and embedded systems
PublicationYear 2024
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssj0001341944
Score 2.2490199
Snippet The biomedical profession has gained importance due to the rapid and accurate diagnosis of clinical patients using computer-aided diagnosis (CAD) tools. The...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 179
SubjectTerms Algorithms
Alzheimer's disease
Artificial neural networks
Diagnosis
Lightweight
Machine learning
Magnetic resonance imaging
Medical imaging
Neural networks
Optimization techniques
Particle swarm optimization
Performance enhancement
Performance measurement
Positron emission
Weight reduction
Title Deep convolutional neural network framework with multi-modal fusion for Alzheimer’s detection
URI https://www.proquest.com/docview/3143215464
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV27TsMwFLWgXVh4Iwql8sDqFsdO2k6oQEuFRIUQlbpZfkUE0Tb0wcDEb_B7fAnXrqOqC1OGJMvx9T3n3pz4InQJURIDdWgSSxkRHjNLVFtJQmXaNLDRZVO6H5wfB0l_yB9G8Sg03ObBVlnkRJ-ozVS7HnmDAbEDPfGEX-cfxE2Ncl9XwwiNbVSmwDQuzlu9-3WPxR1WxnmwdQFx00b2BlVs_ZOyegY5KodwJLRNN0lpMyd7ounto92gEHFntaQHaMtODtFeMX0Bh814hMSdtTl2rvEQPfCSO53SX7y3G6eF8wq7div25kEynhp4JF26NhkGyYo771-vNhvb2e_3zxwbu_DurMkxGva6L7d9EsYlEE1BJwG8OlZtqqGEAtmcKhUpqp3cSUwkU2uYYpIartIkiahViTFGGWuBr4G-NGfsBJUm04k9RRhERZQw2Ta0pTloDhVBSlexpfAWFGS6gq4KvES-OhVD-GoCIBYeYii-mcio8BALgLiCqgWuImyTuVgv6tn_t8_RTgRqYmX-qqLSYra0F6AGFqrml7yGyjfdwdPzH48autc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB2hpICGG3HjAkoH7PVuSIFQuBSuCKFEojO-VgRBEpIAgorf4Cf4KL6EsbMrlIaOaguvm9mZeW9mnz0Am-glMUKHobFSnIo4clRXtKJMpWWLga7Kyh9wvqwntaY4u4lvxuArPwvjZZV5TgyJ2naM75FvRwjsCE8iEfvdJ-qnRvm_q_kIjaFbnLu3VyzZ-nunR_h9tzg_OW4c1mg2VYAa5mfKM2ViXWEGKw1kl6nWXDPjWUFiuUqdjXSkmBU6TRLOnE6stdo6h7CGWd4I3wDFlF8U_kRrAYoHx_Wr69-ujr8eTYhMSIZUgW237rFuLr2wqNTCrNjFAKCswkZhcBQFArSdTMNkxklJdehEMzDm2rMwlc97IFn4z4E8cq5LvE4981fc5O_DDI-gJidprvUivsFLglyRPnYsvpI--8YcQZJMqg_vd6716HrfH599Yt0g6MHa89D8F1MuQKHdabtFIEhjeBKpimW7RiDL0RxBRMeO4S4sAc0S7OT2kt3hPRwy1C9oYhlMjOV-JFtMBhNLNPESrOZ2lVlg9uWvGy3_vbwB47XG5YW8OK2fr8AERy4zlJ6tQmHQe3ZryEUGej1zAAK3_-1zPyJ--IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+network+framework+with+multi-modal+fusion+for+Alzheimer%E2%80%99s+detection&rft.jtitle=International+journal+of+reconfigurable+and+embedded+systems&rft.au=Sharma%2C+Manoj+Kumar&rft.au=Kaiser%2C+M+Shamim&rft.au=Ray%2C+Kanad&rft.date=2024-03-01&rft.issn=2089-4864&rft.eissn=2722-2608&rft.volume=13&rft.issue=1&rft.spage=179&rft_id=info:doi/10.11591%2Fijres.v13.i1.pp179-191&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijres_v13_i1_pp179_191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4864&client=summon