Efficient data processing pipeline for event-based vision datasets: techniques and insights
Event-based vision datasets have emerged as a critical asset in advancing the capabilities of real-time perception systems, particularly in fields such as robotics, autonomous vehicles, and human-computer interaction. These datasets enable low-latency processing by capturing asynchronous, pixel-leve...
Saved in:
Published in | Engineering Research Express Vol. 6; no. 4; pp. 45238 - 45251 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Event-based vision datasets have emerged as a critical asset in advancing the capabilities of real-time perception systems, particularly in fields such as robotics, autonomous vehicles, and human-computer interaction. These datasets enable low-latency processing by capturing asynchronous, pixel-level changes in the scene, providing a distinct advantage over traditional frame-based systems. However, the diverse formats and characteristics of event-based datasets pose significant challenges for efficient processing and analysis, hindering their broader adoption and integration. In this paper, we present a versatile and comprehensive data processing pipeline designed to address these challenges by supporting multiple event-data formats, including newer formats such as EVT2 and EVT3. This pipeline not only converts data into widely supported formats like AEDAT and NPZ, but also ensures that the unique characteristics of event-based data-such as temporal precision and sparse event representation-are preserved throughout the conversion process. By applying this pipeline to several open-source datasets, we establish a standardized, efficient methodology for dataset manipulation that enhances compatibility and reproducibility in event-based vision research. Additionally, we introduce a novel high-resolution event-based action dataset, converted into various formats using our pipeline, which opens new avenues for exploring event-based techniques in action recognition. This dataset and our pipeline serve as valuable resources for the research community, enabling advancements in real-time vision applications and fostering greater collaboration and standardization across studies. |
---|---|
AbstractList | Event-based vision datasets have emerged as a critical asset in advancing the capabilities of real-time perception systems, particularly in fields such as robotics, autonomous vehicles, and human-computer interaction. These datasets enable low-latency processing by capturing asynchronous, pixel-level changes in the scene, providing a distinct advantage over traditional frame-based systems. However, the diverse formats and characteristics of event-based datasets pose significant challenges for efficient processing and analysis, hindering their broader adoption and integration. In this paper, we present a versatile and comprehensive data processing pipeline designed to address these challenges by supporting multiple event-data formats, including newer formats such as EVT2 and EVT3. This pipeline not only converts data into widely supported formats like AEDAT and NPZ, but also ensures that the unique characteristics of event-based data-such as temporal precision and sparse event representation-are preserved throughout the conversion process. By applying this pipeline to several open-source datasets, we establish a standardized, efficient methodology for dataset manipulation that enhances compatibility and reproducibility in event-based vision research. Additionally, we introduce a novel high-resolution event-based action dataset, converted into various formats using our pipeline, which opens new avenues for exploring event-based techniques in action recognition. This dataset and our pipeline serve as valuable resources for the research community, enabling advancements in real-time vision applications and fostering greater collaboration and standardization across studies. |
Author | Jimenez Rodriguez, Alejandro Aitsam, Muhammad Di Nuovo, Alessandro |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-4157-7282 surname: Aitsam fullname: Aitsam, Muhammad organization: Sheffield Hallam University , Howard St, Sheffield City Centre, Sheffield, S1 1WB, United Kingdom – sequence: 2 givenname: Alejandro surname: Jimenez Rodriguez fullname: Jimenez Rodriguez, Alejandro organization: Sheffield Hallam University , Howard St, Sheffield City Centre, Sheffield, S1 1WB, United Kingdom – sequence: 3 givenname: Alessandro surname: Di Nuovo fullname: Di Nuovo, Alessandro organization: Sheffield Hallam University , Howard St, Sheffield City Centre, Sheffield, S1 1WB, United Kingdom |
BookMark | eNp9kE1LAzEQhoNUsGrvHnPy5Npkk51NvUmpH1DwoicPIU0mbaRm12Rb9N-7tSIeROYww_C8w_Ack0FsIhJyxtklZ0qNSxC8UDCpxsZNSlEdkOHPavBrPiKjnMOCSQAONa-H5HnmfbABY0ed6QxtU2OxZ-KStqHFdYhIfZMobnukWJiMjm5DDk384jN2-Yp2aFcxvG0wUxMdDTGH5arLp-TQm3XG0Xc_IU83s8fpXTF_uL2fXs8LyyeyK6wApgAVKgM1GmGdl16VoMCyvoQAlExwh4obW0pVofXG9IEKQJi6FCeE7e_a1OSc0Os2hVeTPjRneudH7wTonQC999NHLvaR0LT6pdmk2D_4H37-B47pXYOWmsmqFEq3zotPhVp2zw |
CODEN | ERENBL |
Cites_doi | 10.1155/2021/8973482 10.1109/ACCESS.2020.2996661 10.1109/JSSC.2012.2230553 10.1109/ICCV48922.2021.00266 10.3389/fnins.2015.00437 10.1145/263109.263162 10.1109/IJCNN60899.2024.10650870 10.1126/sciadv.adi1480 10.1109/ACCESS.2022.3219440 10.3389/fnins.2017.00309 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/2631-8695/ad9235 |
DatabaseName | Open Access: IOP Publishing Free Content IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: IOP Publishing url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-8695 |
ExternalDocumentID | 10_1088_2631_8695_ad9235 erxad9235 |
GrantInformation_xml | – fundername: HORIZON EUROPE Marie Sklodowska-Curie Actions grantid: 955778 funderid: https://doi.org/10.13039/100018694 |
GroupedDBID | O3W TSCCA AAYXX CITATION |
ID | FETCH-LOGICAL-c194t-c36086e8e8a67ea3cdf4f82686c0c0c336e4031de81ac2485ecfaa6e85663a723 |
IEDL.DBID | IOP |
ISSN | 2631-8695 |
IngestDate | Wed Nov 27 13:00:15 EST 2024 Tue Nov 26 22:22:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c194t-c36086e8e8a67ea3cdf4f82686c0c0c336e4031de81ac2485ecfaa6e85663a723 |
Notes | ERX-105596.R1 |
ORCID | 0000-0002-4157-7282 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/2631-8695/ad9235 |
PageCount | 14 |
ParticipantIDs | iop_journals_10_1088_2631_8695_ad9235 crossref_primary_10_1088_2631_8695_ad9235 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering Research Express |
PublicationTitleAbbrev | ERX |
PublicationTitleAlternate | Eng. Res. Express |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Fang (erxad9235bib23) 2021 Lv (erxad9235bib7) 2021; 2021 erxad9235bib24 Kamarudin (erxad9235bib19) 2015; 10 Orchard (erxad9235bib18) 2015; 9 Aitsam (erxad9235bib6) 2024 Dong (erxad9235bib20) 2023; 6 Gallego (erxad9235bib1) 2019 Baby (erxad9235bib8) 2018; 3 erxad9235bib10 Fang (erxad9235bib5) 2023; 9 erxad9235bib16 Gehrig (erxad9235bib14) 2022; 3 erxad9235bib15 Lin (erxad9235bib9) 2022; 13667 erxad9235bib13 Li (erxad9235bib22) 2017; 11 erxad9235bib2 erxad9235bib3 Serrano-Gotarredona (erxad9235bib21) 2013; 48 Mogul (erxad9235bib17) 1997; 27 Lenz (erxad9235bib4) 2021 Khan (erxad9235bib12) 2020; 8 Aitsam (erxad9235bib11) 2022; 10 Rebecq (erxad9235bib25) 2018 |
References_xml | – volume: 2021 start-page: 1 year: 2021 ident: erxad9235bib7 article-title: Dynamic vision sensor tracking method based on event correlation index publication-title: Complexity doi: 10.1155/2021/8973482 contributor: fullname: Lv – year: 2018 ident: erxad9235bib25 article-title: Esim: an open event camera simulator contributor: fullname: Rebecq – volume: 8 start-page: 103149 year: 2020 ident: erxad9235bib12 article-title: Lossless compression of data from static and mobile dynamic vision sensors-performance and trade-offs publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996661 contributor: fullname: Khan – volume: 48 start-page: 827 year: 2013 ident: erxad9235bib21 article-title: A 128,128 1.5 contrast sensitivity 0.9 fpn 3 micro sec latency 4 mw asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2012.2230553 contributor: fullname: Serrano-Gotarredona – volume: 13667 start-page: 578 year: 2022 ident: erxad9235bib9 article-title: Dvs-voltmeter: stochastic process-based event simulator for dynamic vision sensors publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) contributor: fullname: Lin – year: 2021 ident: erxad9235bib23 article-title: Incorporating learnable membrane time constant to enhance learning of spiking neural networks doi: 10.1109/ICCV48922.2021.00266 contributor: fullname: Fang – year: 2021 ident: erxad9235bib4 article-title: Tonic: event-based datasets and transformations contributor: fullname: Lenz – volume: 3 year: 2018 ident: erxad9235bib8 article-title: Dynamic vision sensors for human activity recognition contributor: fullname: Baby – volume: 9 start-page: 1 year: 2015 ident: erxad9235bib18 article-title: Converting static image datasets to spiking neuromorphic datasets using saccades publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2015.00437 contributor: fullname: Orchard – volume: 27 start-page: 181 year: 1997 ident: erxad9235bib17 article-title: Potential benefits of delta encoding and data compression for http publication-title: ACM SIGCOMM Computer Communication Review doi: 10.1145/263109.263162 contributor: fullname: Mogul – start-page: 1–8 year: 2024 ident: erxad9235bib6 doi: 10.1109/IJCNN60899.2024.10650870 contributor: fullname: Aitsam – ident: erxad9235bib24 – ident: erxad9235bib16 – volume: 6 year: 2023 ident: erxad9235bib20 article-title: Bullying10k: a neuromorphic dataset towards privacy-preserving bullying recognition contributor: fullname: Dong – ident: erxad9235bib3 – ident: erxad9235bib10 – volume: 10 year: 2015 ident: erxad9235bib19 article-title: Comparison of image classification techniques using caltech 101 dataset texture-based image retrieval publication-title: Article in Journal of Theoretical and Applied Information Technology contributor: fullname: Kamarudin – volume: 3 year: 2022 ident: erxad9235bib14 article-title: Are high-resolution event cameras really needed? contributor: fullname: Gehrig – volume: 9 year: 2023 ident: erxad9235bib5 article-title: Spikingjelly: an open-source machine learning infrastructure platform for spike-based intelligence publication-title: Science Advances doi: 10.1126/sciadv.adi1480 contributor: fullname: Fang – volume: 10 start-page: 122261 year: 2022 ident: erxad9235bib11 article-title: Neuromorphic computing for interactive robotics: a systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3219440 contributor: fullname: Aitsam – year: 2019 ident: erxad9235bib1 article-title: Event-based vision: a survey contributor: fullname: Gallego – ident: erxad9235bib15 – volume: 11 start-page: 5 year: 2017 ident: erxad9235bib22 article-title: Cifar10-dvs: an event-stream dataset for object classification publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00309 contributor: fullname: Li – ident: erxad9235bib13 – ident: erxad9235bib2 |
SSID | ssib046616717 ssib037096498 |
Score | 2.3269281 |
Snippet | Event-based vision datasets have emerged as a critical asset in advancing the capabilities of real-time perception systems, particularly in fields such as... |
SourceID | crossref iop |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 45238 |
SubjectTerms | event based vision dataset event data processing neuromophic computing application |
Title | Efficient data processing pipeline for event-based vision datasets: techniques and insights |
URI | https://iopscience.iop.org/article/10.1088/2631-8695/ad9235 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA27evHiByqunznowUN2bZOmqZ5EXNSDenBxQSGk-QARarEVxF_vpOmqKyIihdLDNG2HtO8NefOK0K5OMiWY08QZ5wjLHSN5ajOS5KlmaeZSG1S-l_xsxC7GybiDjj56YZ7K9tPfh8NgFBxS2ArixCDmNCKCZ8lAGaAnSRfNUiG41_OdX11PJhNNgZyzz1qCARBxqF3apcqfBpqCpi5c_gvSDBfQ_eQeg8Dksf9S53399s2-8Z8PsYjmWwaKj0PoEurYYhndnTZWEoBA2GtGcRn6BwDXcPlQ-p51i4He4sbviXjoMzi0pTfxla2rQ_zhB1thVRj8UFS-8q9W0Gh4enNyRtr_LhAdZawmmnIodKywQvHUKqqNYw7KEMH1AWyUcsvgW2CsiJT2lmhWO6XgBKCGVKUxXUUzxVNh1xAWsXEZjZzxNoSxYrk1USYUkAygFSJKe2h_knJZBnsN2SyLCyF9iqRPkQwp6qE9yKZs37Hql7idqTj7_Cq5ZNKbx1MhS-PW_zjSBpqLgcME9commqmfX-wWcJA6327mGuyv6O07tyrV7g |
link.rule.ids | 314,780,784,27924,27925,38865,38890,53841,53867 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9ugngRRcXv5aAHD3G2SdPUm-jG_GB6cDjwENJ8wC5dWSf45_vSdOpARHrp4TWEl7z-fo-89wtCpzrJlGBOE2ecIyx3jOSpzUiSp5qlmUttqPId8sGI3Y-TcXPPad0LMy2bX_8FvAah4ODCpiBOdGNOIyJ4lnSVAXqSdEvjWmgVIpf77OuJvi42FE2BoLPvfIIBGHHIX5rjyt8GW4KnFkzhB9r0N9FGQxPxdZjUFlqxxTZ669V6DwAT2Bd24jIU-QP44HJS-sZyi4GD4lqUiXh8Mjj0jtf2lZ1XV_hLtLXCqjB4UlQ-Pa920Kjfe7kZkOZyBKKjjM2JphyyESusUDy1imrjmINcQXB9CQ-l3DIIWGNFpLTXLbPaKQUfAH-jKo3pLmoX08LuISxi4zIaOeO1AmPFcmuiTChgAoD9Ikr30fnCJ7IMGhiyPrsWQnr_Se8_Gfy3j87AabIJhOoPu86SnZ19SC6Z9ArvVEhY0oN_jtRBa8-3ffl4N3w4ROsxcI5QbXKE2vPZuz0GzjDPT-p98Qm63bnd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+data+processing+pipeline+for+event-based+vision+datasets%3A+techniques+and+insights&rft.jtitle=Engineering+Research+Express&rft.au=Aitsam%2C+Muhammad&rft.au=Jimenez+Rodriguez%2C+Alejandro&rft.au=Di+Nuovo%2C+Alessandro&rft.date=2024-12-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1088%2F2631-8695%2Fad9235&rft.externalDocID=erxad9235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |