Interface engineering of ultrathin Cu(In,Ga)Se 2 solar cells on reflective back contacts

Cu(In,Ga)Se 2 ‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIG...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 29; no. 2; pp. 212 - 221
Main Authors Gouillart, Louis, Cattoni, Andrea, Chen, Wei‐Chao, Goffard, Julie, Riekehr, Lars, Keller, Jan, Jubault, Marie, Naghavi, Negar, Edoff, Marika, Collin, Stéphane
Format Journal Article
LanguageEnglish
Published 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cu(In,Ga)Se 2 ‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500°C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X‐ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In 2 O 3 :Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al 2 O 3 layer and by decreasing the CIGS coevaporation temperature from 550°C to 500°C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open‐ circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short‐circuit current density of 28.9 mA/cm 2 (+2.6 mA/cm 2 ) enabled by double‐pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes.
AbstractList Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes.
Cu(In,Ga)Se 2 ‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500°C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X‐ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In 2 O 3 :Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al 2 O 3 layer and by decreasing the CIGS coevaporation temperature from 550°C to 500°C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open‐ circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short‐circuit current density of 28.9 mA/cm 2 (+2.6 mA/cm 2 ) enabled by double‐pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes.
Author Naghavi, Negar
Chen, Wei‐Chao
Riekehr, Lars
Collin, Stéphane
Gouillart, Louis
Jubault, Marie
Cattoni, Andrea
Edoff, Marika
Goffard, Julie
Keller, Jan
Author_xml – sequence: 1
  givenname: Louis
  orcidid: 0000-0001-5434-7577
  surname: Gouillart
  fullname: Gouillart, Louis
  organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France, IPVF UMR 9006 CNRS 18 boulevard Thomas Gobert Palaiseau 91120 France
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0002-6402-0911
  surname: Cattoni
  fullname: Cattoni, Andrea
  organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France
– sequence: 3
  givenname: Wei‐Chao
  orcidid: 0000-0002-3376-7545
  surname: Chen
  fullname: Chen, Wei‐Chao
  organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden
– sequence: 4
  givenname: Julie
  orcidid: 0000-0002-3970-895X
  surname: Goffard
  fullname: Goffard, Julie
  organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France
– sequence: 5
  givenname: Lars
  orcidid: 0000-0003-1874-932X
  surname: Riekehr
  fullname: Riekehr, Lars
  organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden
– sequence: 6
  givenname: Jan
  orcidid: 0000-0002-3461-6036
  surname: Keller
  fullname: Keller, Jan
  organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden
– sequence: 7
  givenname: Marie
  orcidid: 0000-0001-8264-9628
  surname: Jubault
  fullname: Jubault, Marie
  organization: IPVF EDF R&D 18 boulevard Thomas Gobert Palaiseau 91120 France
– sequence: 8
  givenname: Negar
  orcidid: 0000-0002-6045-5096
  surname: Naghavi
  fullname: Naghavi, Negar
  organization: IPVF UMR 9006 CNRS 18 boulevard Thomas Gobert Palaiseau 91120 France
– sequence: 9
  givenname: Marika
  orcidid: 0000-0003-4111-4613
  surname: Edoff
  fullname: Edoff, Marika
  organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden
– sequence: 10
  givenname: Stéphane
  orcidid: 0000-0001-6176-1653
  surname: Collin
  fullname: Collin, Stéphane
  organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438836$$DView record from Swedish Publication Index
BookMark eNplkE1LAzEQhoNUsK2CPyHHCt2abHazm2OpWguCBz_oLSTppEbXbEmyiv_eLdWLnmYOzzvz8ozQwLceEDqnZEYJyS93bjdjrBRHaEiJEBktxXqw33meVUKUJ2gU4yshtKoFH6L1yicIVhnA4LfOAwTnt7i1uGtSUOnFebzoJis_XaqLB8A5jm2jAjbQNBG3HgewDZjkPgBrZd6waX1SJsVTdGxVE-HsZ47R08314-I2u7tfrhbzu8xQUaRM8zyH0gilDFO0toWxhJRWW25qrXMNRcVYUVCTAwGhyg2vNN-UFS0YV1W9YWM0PdyNn7DrtNwF967Cl2yVk1fueS7bsJVdJwtW14z3-OyAm9DG2JeXxiWVXN86KNdISuReo-w1yr3GPjD5E_j98A_9BmKTdgE
CitedBy_id crossref_primary_10_1002_solr_202400147
crossref_primary_10_1016_j_device_2023_100013
crossref_primary_10_1002_admi_202300566
crossref_primary_10_1016_j_nanoen_2025_110802
crossref_primary_10_1007_s10854_021_06740_6
crossref_primary_10_3390_molecules27196285
crossref_primary_10_1002_solr_202200695
crossref_primary_10_1002_adts_202100191
crossref_primary_10_1002_solr_202500101
crossref_primary_10_1016_j_optmat_2022_113041
crossref_primary_10_1002_adfm_202303188
crossref_primary_10_1016_j_mtcomm_2022_104220
crossref_primary_10_1016_j_apcatb_2022_122340
crossref_primary_10_1002_adpr_202100190
crossref_primary_10_1002_admi_202400085
crossref_primary_10_1002_solr_202400837
crossref_primary_10_1007_s11356_024_32938_2
crossref_primary_10_3390_en14144268
crossref_primary_10_1016_j_solener_2021_05_074
crossref_primary_10_1021_acsaem_2c00088
crossref_primary_10_1088_1361_6463_ac4363
crossref_primary_10_1002_pip_3476
crossref_primary_10_1109_JPHOTOV_2022_3165764
Cites_doi 10.1016/j.tsf.2011.01.369
10.1016/j.tsf.2004.11.142
10.1063/1.5036991
10.1016/j.solmat.2015.03.025
10.1016/j.solmat.2016.09.019
10.1109/JPHOTOV.2014.2345436
10.1063/1.1794860
10.1016/j.tsf.2018.12.041
10.1016/j.solener.2004.08.010
10.1016/S0040-6090(03)00257-8
10.1109/JPHOTOV.2019.2945196
10.1016/j.tsf.2016.11.029
10.1063/1.4762004
10.1039/c3cp53310g
10.1109/JPHOTOV.2017.2726566
10.1021/acs.jpcc.8b11149
10.1021/acsphotonics.7b00089
10.1016/j.solmat.2018.07.017
10.1002/aenm.201900408
10.1109/JPHOTOV.2019.2937218
10.1016/j.solmat.2016.04.029
10.1002/pip.3033
10.1109/JPHOTOV.2019.2922323
10.1016/j.apsusc.2016.10.037
10.1016/S0040-6090(01)01526-7
10.1557/opl.2013.1007
10.1364/OE.21.002563
10.1002/pip.2536
10.1063/1.4866255
10.1002/pip.3025
10.1021/acsnano.5b04091
10.1002/pip.2162
10.1038/s41560-019-0434-y
10.1002/pip.3029
10.1111/j.1151-2916.1952.tb13087.x
ContentType Journal Article
DBID AAYXX
CITATION
ADTPV
AOWAS
DF2
DOI 10.1002/pip.3359
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-159X
EndPage 221
ExternalDocumentID oai_DiVA_org_uu_438836
10_1002_pip_3359
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
ADTPV
AEFGJ
AGXDD
AIDQK
AIDYY
AOWAS
DF2
ID FETCH-LOGICAL-c194t-b622e5c9aac3a18f4cf005fbf6c8bb2be4733441c2e0e9a5d67b6d571436a78d3
ISSN 1062-7995
1099-159X
IngestDate Thu Aug 21 07:01:52 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 00:22:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c194t-b622e5c9aac3a18f4cf005fbf6c8bb2be4733441c2e0e9a5d67b6d571436a78d3
ORCID 0000-0001-6176-1653
0000-0002-3461-6036
0000-0002-3970-895X
0000-0003-4111-4613
0000-0001-5434-7577
0000-0002-6402-0911
0000-0002-3376-7545
0000-0001-8264-9628
0000-0003-1874-932X
0000-0002-6045-5096
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_uu_438836
crossref_citationtrail_10_1002_pip_3359
crossref_primary_10_1002_pip_3359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Progress in photovoltaics
PublicationYear 2021
References e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
Yin G (e_1_2_6_26_1) 2017; 5
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Salomé PMP (e_1_2_6_10_1) 2018; 5
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – ident: e_1_2_6_5_1
  doi: 10.1016/j.tsf.2011.01.369
– ident: e_1_2_6_29_1
  doi: 10.1016/j.tsf.2004.11.142
– ident: e_1_2_6_34_1
– ident: e_1_2_6_38_1
  doi: 10.1063/1.5036991
– ident: e_1_2_6_19_1
  doi: 10.1016/j.solmat.2015.03.025
– ident: e_1_2_6_39_1
  doi: 10.1016/j.solmat.2016.09.019
– ident: e_1_2_6_30_1
  doi: 10.1109/JPHOTOV.2014.2345436
– ident: e_1_2_6_14_1
  doi: 10.1063/1.1794860
– ident: e_1_2_6_31_1
  doi: 10.1016/j.tsf.2018.12.041
– ident: e_1_2_6_28_1
  doi: 10.1016/j.solener.2004.08.010
– ident: e_1_2_6_21_1
  doi: 10.1016/S0040-6090(03)00257-8
– ident: e_1_2_6_25_1
  doi: 10.1109/JPHOTOV.2019.2945196
– ident: e_1_2_6_11_1
  doi: 10.1016/j.tsf.2016.11.029
– ident: e_1_2_6_20_1
  doi: 10.1063/1.4762004
– volume: 5
  start-page: 1
  year: 2017
  ident: e_1_2_6_26_1
  article-title: Optoelectronic enhancement of ultrathin CuIn 1‐x Ga x Se2 solar cells by nanophotonic contacts
  publication-title: Adv Opt Mater
– ident: e_1_2_6_4_1
– ident: e_1_2_6_9_1
  doi: 10.1039/c3cp53310g
– ident: e_1_2_6_17_1
– ident: e_1_2_6_12_1
  doi: 10.1109/JPHOTOV.2017.2726566
– ident: e_1_2_6_42_1
  doi: 10.1021/acs.jpcc.8b11149
– ident: e_1_2_6_18_1
  doi: 10.1021/acsphotonics.7b00089
– ident: e_1_2_6_40_1
  doi: 10.1016/j.solmat.2018.07.017
– ident: e_1_2_6_43_1
  doi: 10.1002/aenm.201900408
– volume: 5
  start-page: 1
  issue: 2
  year: 2018
  ident: e_1_2_6_10_1
  article-title: Passivation of interfaces in thin film solar cells: understanding the effects of a nanostructured rear point contact layer
  publication-title: Adv Mater Interfaces
– ident: e_1_2_6_24_1
– ident: e_1_2_6_2_1
  doi: 10.1109/JPHOTOV.2019.2937218
– ident: e_1_2_6_6_1
  doi: 10.1016/j.solmat.2016.04.029
– ident: e_1_2_6_8_1
  doi: 10.1002/pip.3033
– ident: e_1_2_6_22_1
  doi: 10.1109/JPHOTOV.2019.2922323
– ident: e_1_2_6_35_1
  doi: 10.1016/j.apsusc.2016.10.037
– ident: e_1_2_6_3_1
– ident: e_1_2_6_27_1
  doi: 10.1016/S0040-6090(01)01526-7
– ident: e_1_2_6_41_1
  doi: 10.1557/opl.2013.1007
– ident: e_1_2_6_15_1
  doi: 10.1364/OE.21.002563
– ident: e_1_2_6_33_1
  doi: 10.1002/pip.2536
– ident: e_1_2_6_36_1
  doi: 10.1063/1.4866255
– ident: e_1_2_6_32_1
  doi: 10.1002/pip.3025
– ident: e_1_2_6_16_1
  doi: 10.1021/acsnano.5b04091
– ident: e_1_2_6_13_1
  doi: 10.1002/pip.2162
– ident: e_1_2_6_7_1
  doi: 10.1038/s41560-019-0434-y
– ident: e_1_2_6_23_1
  doi: 10.1002/pip.3029
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1151-2916.1952.tb13087.x
SSID ssj0017896
Score 2.44134
Snippet Cu(In,Ga)Se 2 ‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we...
Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here,...
SourceID swepub
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 212
SubjectTerms CIGS
interface engineering
reflective back contact
silver
ultrathin solar cells
Title Interface engineering of ultrathin Cu(In,Ga)Se 2 solar cells on reflective back contacts
URI https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438836
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcoED4lMsXzISCNCSbmInTnJcdaELAoTYXegtsh2HRlRJtSQX_gJ_mpk4cdNlDwuXqHUdR828jJ-dmTeEPEO9F5Gm0ktEaryQKe4pX-E7Vz_MdeTDs465wx8_iaPT8P0iWkwmv0dRS22jpvrXhXkl_2NVaAO7YpbsP1jWDQoN8BnsC0ewMBwvZeNuO6-Q8Giajawg0r92haKzS8zoa5FComuZA01Mj3G_9ScuZ_dwy757VwBz5Mq6vT0l9Y8uel1qq_A08NbPGMaFThGDzpd1U4NXa-QoUn5et1i_yCYAfYAv7peZbIBfli56chMa1CeGfDOlC7mYLWW9GbIopI28xyxuM96gYMEQ0-x8qi-AxKe2lubU9G1p6gGTWowdcb_1UY7Ww4NXZaMJmtmU6r98v9WSXZfrKee9yviWvPa5ac8FI1rhZpbBmRmeeYVcZbDmwHIYh1-cFlkQJ12xN_dvBiVjn-0P19ziNlvKsx1bOblJbvTLDHpgMXOLTEx1m1wfiU_eIQuHHjpCD60L6tBDZ-3Ld9XruXx1bCijHW5ohxtaV3SDG4q4oQNu7pLTt29OZkdeX2fD00EaNp4SjJlIp1JqLoOkCHUBvrlQhdCJUkyZMOYcaLNmxjepjHIRK5FHMVBtIeMk5_fITlVX5j6hxiSRNtAuCh5ywxLFeK5jzYogUbnId8mL4Q5luhehx1ooq-y8FXbJU9dzbYVXLujz3N5k1wPF0g_LrwdZffY9a9ss5EnCxYNLjPWQXNuA9xHZac5a8xj4ZqOedDj4A2QCgwo
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+engineering+of+ultrathin+Cu%28In%2CGa%29Se+2+solar+cells+on+reflective+back+contacts&rft.jtitle=Progress+in+photovoltaics&rft.au=Gouillart%2C+Louis&rft.au=Cattoni%2C+Andrea&rft.au=Chen%2C+Wei%E2%80%90Chao&rft.au=Goffard%2C+Julie&rft.date=2021-02-01&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=29&rft.issue=2&rft.spage=212&rft.epage=221&rft_id=info:doi/10.1002%2Fpip.3359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pip_3359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon