Interface engineering of ultrathin Cu(In,Ga)Se 2 solar cells on reflective back contacts
Cu(In,Ga)Se 2 ‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIG...
Saved in:
Published in | Progress in photovoltaics Vol. 29; no. 2; pp. 212 - 221 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cu(In,Ga)Se
2
‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500°C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X‐ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In
2
O
3
:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al
2
O
3
layer and by decreasing the CIGS coevaporation temperature from 550°C to 500°C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open‐ circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short‐circuit current density of 28.9 mA/cm
2
(+2.6 mA/cm
2
) enabled by double‐pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes. |
---|---|
AbstractList | Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes. Cu(In,Ga)Se 2 ‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500°C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X‐ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In 2 O 3 :Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al 2 O 3 layer and by decreasing the CIGS coevaporation temperature from 550°C to 500°C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open‐ circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short‐circuit current density of 28.9 mA/cm 2 (+2.6 mA/cm 2 ) enabled by double‐pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes. |
Author | Naghavi, Negar Chen, Wei‐Chao Riekehr, Lars Collin, Stéphane Gouillart, Louis Jubault, Marie Cattoni, Andrea Edoff, Marika Goffard, Julie Keller, Jan |
Author_xml | – sequence: 1 givenname: Louis orcidid: 0000-0001-5434-7577 surname: Gouillart fullname: Gouillart, Louis organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France, IPVF UMR 9006 CNRS 18 boulevard Thomas Gobert Palaiseau 91120 France – sequence: 2 givenname: Andrea orcidid: 0000-0002-6402-0911 surname: Cattoni fullname: Cattoni, Andrea organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France – sequence: 3 givenname: Wei‐Chao orcidid: 0000-0002-3376-7545 surname: Chen fullname: Chen, Wei‐Chao organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden – sequence: 4 givenname: Julie orcidid: 0000-0002-3970-895X surname: Goffard fullname: Goffard, Julie organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France – sequence: 5 givenname: Lars orcidid: 0000-0003-1874-932X surname: Riekehr fullname: Riekehr, Lars organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden – sequence: 6 givenname: Jan orcidid: 0000-0002-3461-6036 surname: Keller fullname: Keller, Jan organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden – sequence: 7 givenname: Marie orcidid: 0000-0001-8264-9628 surname: Jubault fullname: Jubault, Marie organization: IPVF EDF R&D 18 boulevard Thomas Gobert Palaiseau 91120 France – sequence: 8 givenname: Negar orcidid: 0000-0002-6045-5096 surname: Naghavi fullname: Naghavi, Negar organization: IPVF UMR 9006 CNRS 18 boulevard Thomas Gobert Palaiseau 91120 France – sequence: 9 givenname: Marika orcidid: 0000-0003-4111-4613 surname: Edoff fullname: Edoff, Marika organization: Ångström Solar Centre, Division of Solid State Electronics Uppsala University PO Box 534 Uppsala SE‐75121 Sweden – sequence: 10 givenname: Stéphane orcidid: 0000-0001-6176-1653 surname: Collin fullname: Collin, Stéphane organization: Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris‐Saclay 10 boulevard Thomas Gobert Palaiseau 91120 France |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438836$$DView record from Swedish Publication Index |
BookMark | eNplkE1LAzEQhoNUsK2CPyHHCt2abHazm2OpWguCBz_oLSTppEbXbEmyiv_eLdWLnmYOzzvz8ozQwLceEDqnZEYJyS93bjdjrBRHaEiJEBktxXqw33meVUKUJ2gU4yshtKoFH6L1yicIVhnA4LfOAwTnt7i1uGtSUOnFebzoJis_XaqLB8A5jm2jAjbQNBG3HgewDZjkPgBrZd6waX1SJsVTdGxVE-HsZ47R08314-I2u7tfrhbzu8xQUaRM8zyH0gilDFO0toWxhJRWW25qrXMNRcVYUVCTAwGhyg2vNN-UFS0YV1W9YWM0PdyNn7DrtNwF967Cl2yVk1fueS7bsJVdJwtW14z3-OyAm9DG2JeXxiWVXN86KNdISuReo-w1yr3GPjD5E_j98A_9BmKTdgE |
CitedBy_id | crossref_primary_10_1002_solr_202400147 crossref_primary_10_1016_j_device_2023_100013 crossref_primary_10_1002_admi_202300566 crossref_primary_10_1016_j_nanoen_2025_110802 crossref_primary_10_1007_s10854_021_06740_6 crossref_primary_10_3390_molecules27196285 crossref_primary_10_1002_solr_202200695 crossref_primary_10_1002_adts_202100191 crossref_primary_10_1002_solr_202500101 crossref_primary_10_1016_j_optmat_2022_113041 crossref_primary_10_1002_adfm_202303188 crossref_primary_10_1016_j_mtcomm_2022_104220 crossref_primary_10_1016_j_apcatb_2022_122340 crossref_primary_10_1002_adpr_202100190 crossref_primary_10_1002_admi_202400085 crossref_primary_10_1002_solr_202400837 crossref_primary_10_1007_s11356_024_32938_2 crossref_primary_10_3390_en14144268 crossref_primary_10_1016_j_solener_2021_05_074 crossref_primary_10_1021_acsaem_2c00088 crossref_primary_10_1088_1361_6463_ac4363 crossref_primary_10_1002_pip_3476 crossref_primary_10_1109_JPHOTOV_2022_3165764 |
Cites_doi | 10.1016/j.tsf.2011.01.369 10.1016/j.tsf.2004.11.142 10.1063/1.5036991 10.1016/j.solmat.2015.03.025 10.1016/j.solmat.2016.09.019 10.1109/JPHOTOV.2014.2345436 10.1063/1.1794860 10.1016/j.tsf.2018.12.041 10.1016/j.solener.2004.08.010 10.1016/S0040-6090(03)00257-8 10.1109/JPHOTOV.2019.2945196 10.1016/j.tsf.2016.11.029 10.1063/1.4762004 10.1039/c3cp53310g 10.1109/JPHOTOV.2017.2726566 10.1021/acs.jpcc.8b11149 10.1021/acsphotonics.7b00089 10.1016/j.solmat.2018.07.017 10.1002/aenm.201900408 10.1109/JPHOTOV.2019.2937218 10.1016/j.solmat.2016.04.029 10.1002/pip.3033 10.1109/JPHOTOV.2019.2922323 10.1016/j.apsusc.2016.10.037 10.1016/S0040-6090(01)01526-7 10.1557/opl.2013.1007 10.1364/OE.21.002563 10.1002/pip.2536 10.1063/1.4866255 10.1002/pip.3025 10.1021/acsnano.5b04091 10.1002/pip.2162 10.1038/s41560-019-0434-y 10.1002/pip.3029 10.1111/j.1151-2916.1952.tb13087.x |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTPV AOWAS DF2 |
DOI | 10.1002/pip.3359 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-159X |
EndPage | 221 |
ExternalDocumentID | oai_DiVA_org_uu_438836 10_1002_pip_3359 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TWZ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB ADTPV AEFGJ AGXDD AIDQK AIDYY AOWAS DF2 |
ID | FETCH-LOGICAL-c194t-b622e5c9aac3a18f4cf005fbf6c8bb2be4733441c2e0e9a5d67b6d571436a78d3 |
ISSN | 1062-7995 1099-159X |
IngestDate | Thu Aug 21 07:01:52 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 00:22:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c194t-b622e5c9aac3a18f4cf005fbf6c8bb2be4733441c2e0e9a5d67b6d571436a78d3 |
ORCID | 0000-0001-6176-1653 0000-0002-3461-6036 0000-0002-3970-895X 0000-0003-4111-4613 0000-0001-5434-7577 0000-0002-6402-0911 0000-0002-3376-7545 0000-0001-8264-9628 0000-0003-1874-932X 0000-0002-6045-5096 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_438836 crossref_citationtrail_10_1002_pip_3359 crossref_primary_10_1002_pip_3359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Progress in photovoltaics |
PublicationYear | 2021 |
References | e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 Yin G (e_1_2_6_26_1) 2017; 5 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Salomé PMP (e_1_2_6_10_1) 2018; 5 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 |
References_xml | – ident: e_1_2_6_5_1 doi: 10.1016/j.tsf.2011.01.369 – ident: e_1_2_6_29_1 doi: 10.1016/j.tsf.2004.11.142 – ident: e_1_2_6_34_1 – ident: e_1_2_6_38_1 doi: 10.1063/1.5036991 – ident: e_1_2_6_19_1 doi: 10.1016/j.solmat.2015.03.025 – ident: e_1_2_6_39_1 doi: 10.1016/j.solmat.2016.09.019 – ident: e_1_2_6_30_1 doi: 10.1109/JPHOTOV.2014.2345436 – ident: e_1_2_6_14_1 doi: 10.1063/1.1794860 – ident: e_1_2_6_31_1 doi: 10.1016/j.tsf.2018.12.041 – ident: e_1_2_6_28_1 doi: 10.1016/j.solener.2004.08.010 – ident: e_1_2_6_21_1 doi: 10.1016/S0040-6090(03)00257-8 – ident: e_1_2_6_25_1 doi: 10.1109/JPHOTOV.2019.2945196 – ident: e_1_2_6_11_1 doi: 10.1016/j.tsf.2016.11.029 – ident: e_1_2_6_20_1 doi: 10.1063/1.4762004 – volume: 5 start-page: 1 year: 2017 ident: e_1_2_6_26_1 article-title: Optoelectronic enhancement of ultrathin CuIn 1‐x Ga x Se2 solar cells by nanophotonic contacts publication-title: Adv Opt Mater – ident: e_1_2_6_4_1 – ident: e_1_2_6_9_1 doi: 10.1039/c3cp53310g – ident: e_1_2_6_17_1 – ident: e_1_2_6_12_1 doi: 10.1109/JPHOTOV.2017.2726566 – ident: e_1_2_6_42_1 doi: 10.1021/acs.jpcc.8b11149 – ident: e_1_2_6_18_1 doi: 10.1021/acsphotonics.7b00089 – ident: e_1_2_6_40_1 doi: 10.1016/j.solmat.2018.07.017 – ident: e_1_2_6_43_1 doi: 10.1002/aenm.201900408 – volume: 5 start-page: 1 issue: 2 year: 2018 ident: e_1_2_6_10_1 article-title: Passivation of interfaces in thin film solar cells: understanding the effects of a nanostructured rear point contact layer publication-title: Adv Mater Interfaces – ident: e_1_2_6_24_1 – ident: e_1_2_6_2_1 doi: 10.1109/JPHOTOV.2019.2937218 – ident: e_1_2_6_6_1 doi: 10.1016/j.solmat.2016.04.029 – ident: e_1_2_6_8_1 doi: 10.1002/pip.3033 – ident: e_1_2_6_22_1 doi: 10.1109/JPHOTOV.2019.2922323 – ident: e_1_2_6_35_1 doi: 10.1016/j.apsusc.2016.10.037 – ident: e_1_2_6_3_1 – ident: e_1_2_6_27_1 doi: 10.1016/S0040-6090(01)01526-7 – ident: e_1_2_6_41_1 doi: 10.1557/opl.2013.1007 – ident: e_1_2_6_15_1 doi: 10.1364/OE.21.002563 – ident: e_1_2_6_33_1 doi: 10.1002/pip.2536 – ident: e_1_2_6_36_1 doi: 10.1063/1.4866255 – ident: e_1_2_6_32_1 doi: 10.1002/pip.3025 – ident: e_1_2_6_16_1 doi: 10.1021/acsnano.5b04091 – ident: e_1_2_6_13_1 doi: 10.1002/pip.2162 – ident: e_1_2_6_7_1 doi: 10.1038/s41560-019-0434-y – ident: e_1_2_6_23_1 doi: 10.1002/pip.3029 – ident: e_1_2_6_37_1 doi: 10.1111/j.1151-2916.1952.tb13087.x |
SSID | ssj0017896 |
Score | 2.44134 |
Snippet | Cu(In,Ga)Se
2
‐based (CIGS) solar cells with ultrathin (≤500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we... Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here,... |
SourceID | swepub crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 212 |
SubjectTerms | CIGS interface engineering reflective back contact silver ultrathin solar cells |
Title | Interface engineering of ultrathin Cu(In,Ga)Se 2 solar cells on reflective back contacts |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438836 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcoED4lMsXzISCNCSbmInTnJcdaELAoTYXegtsh2HRlRJtSQX_gJ_mpk4cdNlDwuXqHUdR828jJ-dmTeEPEO9F5Gm0ktEaryQKe4pX-E7Vz_MdeTDs465wx8_iaPT8P0iWkwmv0dRS22jpvrXhXkl_2NVaAO7YpbsP1jWDQoN8BnsC0ewMBwvZeNuO6-Q8Giajawg0r92haKzS8zoa5FComuZA01Mj3G_9ScuZ_dwy757VwBz5Mq6vT0l9Y8uel1qq_A08NbPGMaFThGDzpd1U4NXa-QoUn5et1i_yCYAfYAv7peZbIBfli56chMa1CeGfDOlC7mYLWW9GbIopI28xyxuM96gYMEQ0-x8qi-AxKe2lubU9G1p6gGTWowdcb_1UY7Ww4NXZaMJmtmU6r98v9WSXZfrKee9yviWvPa5ac8FI1rhZpbBmRmeeYVcZbDmwHIYh1-cFlkQJ12xN_dvBiVjn-0P19ziNlvKsx1bOblJbvTLDHpgMXOLTEx1m1wfiU_eIQuHHjpCD60L6tBDZ-3Ld9XruXx1bCijHW5ohxtaV3SDG4q4oQNu7pLTt29OZkdeX2fD00EaNp4SjJlIp1JqLoOkCHUBvrlQhdCJUkyZMOYcaLNmxjepjHIRK5FHMVBtIeMk5_fITlVX5j6hxiSRNtAuCh5ywxLFeK5jzYogUbnId8mL4Q5luhehx1ooq-y8FXbJU9dzbYVXLujz3N5k1wPF0g_LrwdZffY9a9ss5EnCxYNLjPWQXNuA9xHZac5a8xj4ZqOedDj4A2QCgwo |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interface+engineering+of+ultrathin+Cu%28In%2CGa%29Se+2+solar+cells+on+reflective+back+contacts&rft.jtitle=Progress+in+photovoltaics&rft.au=Gouillart%2C+Louis&rft.au=Cattoni%2C+Andrea&rft.au=Chen%2C+Wei%E2%80%90Chao&rft.au=Goffard%2C+Julie&rft.date=2021-02-01&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=29&rft.issue=2&rft.spage=212&rft.epage=221&rft_id=info:doi/10.1002%2Fpip.3359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pip_3359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon |