Dyson–Schwinger equations in minimal subtraction
We compare the solutions of one-scale Dyson–Schwinger equations (DSEs) in the minimal subtraction (MS) scheme to the solutions in kinematic momentum subtraction (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOM-solution, but with a shifted renormalization p...
Saved in:
Published in | Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions Vol. 12; no. 1; pp. 1 - 50 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.01.2025
|
Online Access | Get full text |
ISSN | 2308-5827 2308-5835 |
DOI | 10.4171/aihpd/169 |
Cover
Loading…
Abstract | We compare the solutions of one-scale Dyson–Schwinger equations (DSEs) in the minimal subtraction (MS) scheme to the solutions in kinematic momentum subtraction (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOM-solution, but with a shifted renormalization point, where the shift itself is a function of the coupling. We derive relations between this shift and various renormalization group functions and counterterms in perturbation theory. As concrete examples, we examine three different one-scale Dyson–Schwinger equations: one based on the 1-loop multiedge graph in
D=4
dimensions, one for
D=6
dimensions, and one for mathematical toy model. For each of the integral kernels, we examine both the linear and nine different non-linear Dyson–Schwinger equations. For the linear cases, we empirically find exact functional forms of the shift between MOM and MS renormalization points. For the non-linear DSEs, the results for the shift suggest a factorially divergent power series. We determine the leading asymptotic growth parameters and find them in agreement with the ones of the anomalous dimension. Finally, we present a tentative exact solution to one of the non-linear DSEs of the toy model. |
---|---|
AbstractList | We compare the solutions of one-scale Dyson–Schwinger equations (DSEs) in the minimal subtraction (MS) scheme to the solutions in kinematic momentum subtraction (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOM-solution, but with a shifted renormalization point, where the shift itself is a function of the coupling. We derive relations between this shift and various renormalization group functions and counterterms in perturbation theory. As concrete examples, we examine three different one-scale Dyson–Schwinger equations: one based on the 1-loop multiedge graph in
D=4
dimensions, one for
D=6
dimensions, and one for mathematical toy model. For each of the integral kernels, we examine both the linear and nine different non-linear Dyson–Schwinger equations. For the linear cases, we empirically find exact functional forms of the shift between MOM and MS renormalization points. For the non-linear DSEs, the results for the shift suggest a factorially divergent power series. We determine the leading asymptotic growth parameters and find them in agreement with the ones of the anomalous dimension. Finally, we present a tentative exact solution to one of the non-linear DSEs of the toy model. |
Author | Balduf, Paul-Hermann |
Author_xml | – sequence: 1 givenname: Paul-Hermann surname: Balduf fullname: Balduf, Paul-Hermann |
BookMark | eNptj81OwzAQhC1UJErpgTfIlUPIrn9q54jKr1SJA3CObMehRqlT7FSoN96BN-RJSAvigDjtaDUzmu-YjEIXHCGnCOccJRbaL9d1gbPygIwpA5ULxcToV1N5RKYpvQAABWRMiTGhl9vUhc_3jwe7fPPh2cXMvW5077uQMh-ylQ9-pdssbUwftd39T8hho9vkpj93Qp6urx7nt_ni_uZufrHILZa8z5m1RolaN8aUVEnJFShZM6FR4cxpNFYAUqcEQI0cONeGcim40do0DdZsQs6-e23sUoquqdZx2BK3FUK14632vNXAO3iLP17r-z3FsNq3_yS-AEhhXFs |
CitedBy_id | crossref_primary_10_1007_JHEP11_2023_160 crossref_primary_10_1016_j_physletb_2024_138697 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.4171/aihpd/169 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2308-5835 |
EndPage | 50 |
ExternalDocumentID | 10_4171_aihpd_169 |
GroupedDBID | AAYXX AKZPS ALMA_UNASSIGNED_HOLDINGS CITATION EBS EJD FEDTE GROUPED_DOAJ HVGLF REW |
ID | FETCH-LOGICAL-c194t-3ccb85dafbb9287748087d35a1816ea1bc5012e8500d14044ab24754baabff1d3 |
ISSN | 2308-5827 |
IngestDate | Tue Jul 01 01:06:55 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c194t-3ccb85dafbb9287748087d35a1816ea1bc5012e8500d14044ab24754baabff1d3 |
OpenAccessLink | https://doi.org/10.4171/aihpd/169 |
PageCount | 50 |
ParticipantIDs | crossref_primary_10_4171_aihpd_169 crossref_citationtrail_10_4171_aihpd_169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions |
PublicationYear | 2025 |
SSID | ssj0002013385 |
Score | 2.3116288 |
Snippet | We compare the solutions of one-scale Dyson–Schwinger equations (DSEs) in the minimal subtraction (MS) scheme to the solutions in kinematic momentum... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 1 |
Title | Dyson–Schwinger equations in minimal subtraction |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF1S59IeSpO2NGkTRGihIGRrpV19HEPSYgoJhSaQm9kvYRVXcWyZ0pzyH_oP-0sysyvLqt1Dmoswy46EPMPsvNW8t4S8F7mGqj7Kg4JJHbAkjAMRyyxIYpFSFUM21EgUPjtPhpfsyxW_WmOX1LKvbv_JK3mMV2EM_Ios2f_wbHtTGIDf4F-4gofh-iAfn_7CVo6mXSH-psY_nayguVmsesRRPOQHskIWsp45GkO3IrUKymbua-NPPkTpsnnAR_ZC6X-9Lislms_pff-0jwkEwLSw2iI2BtzeyHzZilnOrARF86TVJryY6EWx7EUMhrggVFV3zyHinT0Hm5oAtyBfy7H6-6Y75sRH2twabcSQS5S0s-I65dn1XM5oirlclOMpeo-6E13-VsxeW8na_kJANmg-ssYjMH1CtiPAEVEHc3-3X2ERonN7AGHzRk59Cq0H1npAsRe-rVk6xcfFC_K8QQ3esQuBHbJlql3y7KyV3J2_JJENhj93v9sw8Now8MrKa8LA64TBK3L5-dPFyTBoDsQIFM1ZHcRKyYxrUUiZA9JNWRZmqY65gDItMYJKxaHeMBkPQ42ySUzIiKWcSSFkUVAdvya96royb4hnEBqnWhqKEnZC4szQSJVzzo1I8j3ycfnKI9WoxeOhJZPRxn-7R47aqVMnkbI5af8hk96Sp6toe0d69WxhDqDmq-Wh9ds9K9xbEw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dyson%E2%80%93Schwinger+equations+in+minimal+subtraction&rft.jtitle=Annales+de+l%27Institut+Henri+Poincar%C3%A9.+D.+Combinatorics%2C+physics+and+their+interactions&rft.au=Balduf%2C+Paul-Hermann&rft.date=2025-01-01&rft.issn=2308-5827&rft.eissn=2308-5835&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=50&rft_id=info:doi/10.4171%2Faihpd%2F169&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_aihpd_169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-5827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-5827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-5827&client=summon |