Attention-Based Approach for Arabic Sign Language Recognition, Supporting Differently Abled Persons
Sign language serves as a critical communication channel for non-speaking individuals. In this paper, we use a vision transformer (ViT) to classify static images representing the alphabets of Arabic Sign Language. We employ two Kaggle Arabic alphabet datasets, one with over 15,000 static images, und...
Saved in:
Published in | Journal of Disability Research Vol. 4; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
04.08.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Sign language serves as a critical communication channel for non-speaking individuals. In this paper, we use a vision transformer (ViT) to classify static images representing the alphabets of Arabic Sign Language. We employ two Kaggle Arabic alphabet datasets, one with over 15,000 static images, under varying background conditions, consisting of 31 classes. Our approach emphasizes the inclusivity aspect by aiming to minimize background-related biases and enhance accessibility for persons with a communication disability. Experiments reveal that ViT outperforms traditional convolutional neural networks by achieving a peak accuracy. Cross-data validation results show the reliability, generalizability, and robustness of findings by testing results across multiple, independent datasets. |
---|---|
AbstractList | Sign language serves as a critical communication channel for non-speaking individuals. In this paper, we use a vision transformer (ViT) to classify static images representing the alphabets of Arabic Sign Language. We employ two Kaggle Arabic alphabet datasets, one with over 15,000 static images, under varying background conditions, consisting of 31 classes. Our approach emphasizes the inclusivity aspect by aiming to minimize background-related biases and enhance accessibility for persons with a communication disability. Experiments reveal that ViT outperforms traditional convolutional neural networks by achieving a peak accuracy. Cross-data validation results show the reliability, generalizability, and robustness of findings by testing results across multiple, independent datasets. |
Author | Almufareh, Maram Fahaad Kausar, Sumaira Farooq, Asad Tehsin, Samabia Humayun, Mamoona |
Author_xml | – sequence: 1 givenname: Maram Fahaad orcidid: 0000-0002-6613-0831 surname: Almufareh fullname: Almufareh, Maram Fahaad – sequence: 2 givenname: Samabia orcidid: 0000-0003-0761-0752 surname: Tehsin fullname: Tehsin, Samabia – sequence: 3 givenname: Mamoona orcidid: 0000-0001-6339-2257 surname: Humayun fullname: Humayun, Mamoona – sequence: 4 givenname: Sumaira orcidid: 0000-0003-4229-7802 surname: Kausar fullname: Kausar, Sumaira – sequence: 5 givenname: Asad orcidid: 0009-0005-5090-159X surname: Farooq fullname: Farooq, Asad |
BookMark | eNotkMlOwzAARC1UJErplbM_ABcv9ZJjaFlVCdTCObIdOxgVO7LTQ_-eFDjNZeZJ8y7BJKboALgmeMElqeTty3qLKKYcYa7EGZhSIQWigrEJmBLBFaoqQi_AvJQvjDFjZIklnwJbD4OLQ0gR3eniWlj3fU7afkKfMqyzNsHCXegi3OjYHXTn4NbZ1MVw2tzA3aHvUx5C7OA6eO_yCNsfYW32I-vN5ZJiuQLnXu-Lm__nDHw83L-vntDm9fF5VW-QJdVSIKeWxitriMNGtkaLlijWMu-M1qql2jKhCR6vVEoTxiUltJWKKM2rseYcm4HFH9fmVEp2vulz-Nb52BDc_FpqRkvNyVJzssR-AFDeXR8 |
Cites_doi | 10.1016/j.array.2022.100141 10.1155/2022/4567989 10.1109/SCEECS.2018.8546967 10.1109/ICAEEE.2018.8642983 10.14569/IJACSA.2018.090327 10.1109/ICME.2015.7177428 10.48550/arXiv.2010.11929 10.5120/14106-2145 10.5815/ijigsp.2018.08.03 10.1016/j.dib.2021.107021 10.3390/s24113683 10.1109/MVT.2021.3140047 10.1109/ICCVW.2011.6130290 10.19026/rjaset.15.5292 10.1109/INISTA.2011.5946072 10.11591/ijeecs.v22.i2.pp1096-1107 10.1145/3373625.3417023 10.1007/s12652-020-01790-w 10.4236/jilsa.2012.41004 10.48550/arXiv.2008.09918 10.1016/j.neucom.2020.12.006 10.48550/arXiv.2305.14527 10.1109/ICICCS56967.2023.10142596 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.57197/JDR-2025-0586 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2676-2633 |
ExternalDocumentID | 10_57197_JDR_2025_0586 |
GroupedDBID | AAYXX ABDBF ALMA_UNASSIGNED_HOLDINGS CITATION ESX GROUPED_DOAJ |
ID | FETCH-LOGICAL-c1946-e84bf8cb1e0b7dba6d183d3febaa8d2ac36a1065898a1357212d7818a593d3ee3 |
ISSN | 1658-9912 |
IngestDate | Thu Aug 14 00:01:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1946-e84bf8cb1e0b7dba6d183d3febaa8d2ac36a1065898a1357212d7818a593d3ee3 |
ORCID | 0000-0003-4229-7802 0000-0002-6613-0831 0000-0003-0761-0752 0000-0001-6339-2257 0009-0005-5090-159X |
OpenAccessLink | https://www.scienceopen.com/hosted-document?doi=10.57197/JDR-2025-0586 |
ParticipantIDs | crossref_primary_10_57197_JDR_2025_0586 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-04 |
PublicationDateYYYYMMDD | 2025-08-04 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Disability Research |
PublicationYear | 2025 |
References | Wikipedia Contributors (r27) 2025 NC Camgoz (r5) 2020 R Alzohairi (r4) 2018; 9 World Health Organization (r28) 2021 A Alani (r2) 2021; 22 S Katoch (r16) 2022; 14 B Surya (r10) 2023 F Işikdoğan (r14) 2011 M Maraqa (r19) 2012; 4 S Nagarajan (r21) 2013; 82 M Albarham (r3) 2023 A Dosovitskiy (r6) 2021 R El Kharoua (r7) 2023 A Imran (r13) 2021; 36 RD Raj (r24) 2018 Z Hu (r11) 2022; 17 M Zakariah (r29) 2022; 2022 J Huang (r12) 2015 S Shivashankara (r25) 2018; 10 C Gleason (r9) 2020 M Mustafa (r20) 2021; 12 A Kapitanov (r15) 2023 Abdel-Samie (r1) 2018; 15 O Koller (r17) 2020 TH Noor (r22) 2024; 24 L Gao (r8) 2021; 434 N Pugeault (r23) 2011 I Mahmud (r18) 2018 |
References_xml | – volume: 14 year: 2022 ident: r16 article-title: Indian Sign Language recognition system using SURF with SVM and CNN publication-title: Array doi: 10.1016/j.array.2022.100141 – volume: 2022 year: 2022 ident: r29 article-title: Sign language recognition for Arabic alphabets using transfer learning technique publication-title: Comput Intell Neurosci doi: 10.1155/2022/4567989 – start-page: 1 year: 2018 ident: r24 article-title: British Sign Language recognition using HOG doi: 10.1109/SCEECS.2018.8546967 – start-page: 1 year: 2018 ident: r18 article-title: Efficient noise reduction and HOG feature extraction for sign language recognition doi: 10.1109/ICAEEE.2018.8642983 – volume: 9 start-page: 1 issue: 3 year: 2018 ident: r4 article-title: Image based Arabic Sign Language recognition system publication-title: Int J Adv Comput Sci Appl doi: 10.14569/IJACSA.2018.090327 – start-page: 1 year: 2015 ident: r12 article-title: Sign language recognition using 3D convolutional neural networks doi: 10.1109/ICME.2015.7177428 – year: 2021 ident: r6 article-title: An image is worth 16×16 words: Transformers for image recognition at scale doi: 10.48550/arXiv.2010.11929 – volume: 82 start-page: 28 year: 2013 ident: r21 article-title: Static hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVM publication-title: Int J Comput Appl doi: 10.5120/14106-2145 – volume: 10 start-page: 18 issue: 8 year: 2018 ident: r25 article-title: American Sign Language recognition system: An optimal approach publication-title: Int J Image Graph Signal Process doi: 10.5815/ijigsp.2018.08.03 – volume-title: SignWriting year: 2025 ident: r27 – volume-title: Deafness and hearing loss year: 2021 ident: r28 – volume: 36 year: 2021 ident: r13 article-title: Dataset of Pakistan Sign Language and automatic recognition of hand configuration of Urdu alphabet through machine learning publication-title: Data Brief doi: 10.1016/j.dib.2021.107021 – volume: 24 issue: 11 year: 2024 ident: r22 article-title: Real-time Arabic Sign Language recognition using a hybrid deep learning model publication-title: Sensors doi: 10.3390/s24113683 – volume: 17 start-page: 57 issue: 4 year: 2022 ident: r11 article-title: Toward human-centered automated driving: A novel spatiotemporal vision transformer-enabled head tracker publication-title: IEEE Veh Technol Mag doi: 10.1109/MVT.2021.3140047 – start-page: 1114 year: 2011 ident: r23 article-title: Spelling it out: Real-time ASL fingerspelling recognition doi: 10.1109/ICCVW.2011.6130290 – volume-title: RGB Arabic Alphabets Sign Language Dataset year: 2023 ident: r3 – volume: 15 start-page: 57 year: 2018 ident: r1 article-title: Arabic Sign Language recognition using Kinect sensor publication-title: Res J Appl Sci Eng Technol doi: 10.19026/rjaset.15.5292 – start-page: 10020 year: 2020 ident: r5 article-title: Sign language transformers: Joint end-to-end sign language recognition and translation – start-page: 264 year: 2011 ident: r14 article-title: Automatic recognition of Turkish doi: 10.1109/INISTA.2011.5946072 – volume: 22 start-page: 1096 year: 2021 ident: r2 article-title: ArSL-CNN: A convolutional neural network for Arabic Sign Language gesture recognition publication-title: Indones J Electr Eng Comput Sci doi: 10.11591/ijeecs.v22.i2.pp1096-1107 – start-page: 1 year: 2020 ident: r9 article-title: Disability and the COVID-19 pandemic: using twitter to understand accessibility during rapid societal transition doi: 10.1145/3373625.3417023 – volume: 12 start-page: 410 year: 2021 ident: r20 article-title: RETRACTED ARTICLE: A study on Arabic Sign Language recognition for differently abled using advanced machine learning classifiers publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-020-01790-w – volume: 4 start-page: 41 year: 2012 ident: r19 article-title: Recognition of Arabic Sign Language (ArSL) using recurrent neural networks publication-title: J Intell Learn Syst Appl doi: 10.4236/jilsa.2012.41004 – year: 2020 ident: r17 article-title: Quantitative survey of the state of the art in sign language recognition doi: 10.48550/arXiv.2008.09918 – volume: 434 start-page: 45 year: 2021 ident: r8 article-title: RNN-transducer based Chinese Sign Language recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.006 – volume-title: No background RGB Arabic Alphabets Sign Language year: 2023 ident: r7 – year: 2023 ident: r15 article-title: Slovo: Russian Sign Language dataset doi: 10.48550/arXiv.2305.14527 – volume-title: An efficient real-time Indian sign language (ISL) detection using deep learning year: 2023 ident: r10 doi: 10.1109/ICICCS56967.2023.10142596 |
SSID | ssj0003314075 |
Score | 2.2992408 |
Snippet | Sign language serves as a critical communication channel for non-speaking individuals. In this paper, we use a vision transformer (ViT) to classify static... |
SourceID | crossref |
SourceType | Index Database |
Title | Attention-Based Approach for Arabic Sign Language Recognition, Supporting Differently Abled Persons |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIB4FfmAxGExrPNwkuPCUlXlIcS2Um_R-KWttA-UTQ7tL-BnM7azqakWqXCJIseeWJlP42-cmTEhr4VB2mkrw3SaTVhmqpRVqsyZLSqpdcKtTVyC89dv4vgsOznPz0ejX1HUUtfKd-pqb17J_2gV21CvLkv2HzQ7CMUGvEf94hU1jNdb6XjatiFakX3AxUg7ShkSpFzs4LQBeaHGc3fw5pd-V9KxxBAvFH62uzM9N42PfJ71J6W0y8vxVC5R2ndPxrd_oa-zvjivJ_HRlpgDz3LVWWjMok8GgtX4CBYAetgmMIttqF0whxVKgQhccNmF8GJYbTbr4cln6LYhFnyOfS4aiLcrktwHy2WRhUXKw5CUBhNsfFsiCsESESpi7MxyFqEv22fs84L7KsInsx8svCnfV1X7xmo3xCCi9-Ml1Di-duNrN_4OuZugw5FEzrlb09MUHVFftXmYf6gA6kW8_2MKEcOJqMrpA3K_VxKdBsA8JCOzfkTUDbDQHVgogoUGsFAHFroDC43A8pZeQ4VGUKEeKrSHymNydvTp9OMx60_YYIpXmWCmzKQtleRmIgstQWi08Dq1RgKUOgGVCuCOpFYl8DQvkOfoAike5BV2MyZ9Qg7Wm7V5SijXkwlYZQ0u_kixDQhZKEg5txoUur3PyJvdV6l_hkIq9X4VPL91zxfk3jXEXpKDtunMIXLEVr7y6vsNcnxpGg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Based+Approach+for+Arabic+Sign+Language+Recognition%2C+Supporting+Differently+Abled+Persons&rft.jtitle=Journal+of+Disability+Research&rft.au=Almufareh%2C+Maram+Fahaad&rft.au=Tehsin%2C+Samabia&rft.au=Humayun%2C+Mamoona&rft.au=Kausar%2C+Sumaira&rft.date=2025-08-04&rft.issn=1658-9912&rft.eissn=2676-2633&rft.volume=4&rft.issue=4&rft_id=info:doi/10.57197%2FJDR-2025-0586&rft.externalDBID=n%2Fa&rft.externalDocID=10_57197_JDR_2025_0586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1658-9912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1658-9912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1658-9912&client=summon |