Multimodal Data Fusion to Track Students’ Distress during Educational Gameplay

Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student distress states during educational gameplay. We collected and analyzed 1,145 data instances, sampled from a total of 31 middle-school students’ audio- and video-recorded gameplay sessions. W...

Full description

Saved in:
Bibliographic Details
Published inJournal of Learning Analytics Vol. 9; no. 3; pp. 75 - 87
Main Authors Moon, Jewoong, Ke, Fengfeng, Sokolikj, Zlatko, Dahlstrom-Hakki, Ibrahim
Format Journal Article
LanguageEnglish
Published 16.12.2022
Online AccessGet full text

Cover

Loading…
Abstract Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student distress states during educational gameplay. We collected and analyzed 1,145 data instances, sampled from a total of 31 middle-school students’ audio- and video-recorded gameplay sessions. We conducted data wrangling with student gameplay data from multiple data sources, such as individual facial expression recordings and gameplay logs. Using supervised machine learning, we built and tested candidate classifiers that yielded an estimated probability of distress states. We then conducted confidence-based data fusion that averaged the estimated probability scores from the unimodal classifiers with a single data source. The results of this study suggest that the classifier with multimodal data fusion improves the performance of tracking distress states during educational gameplay, compared to the performance of unimodal classifiers. The study finding suggests the feasibility of multimodal data fusion in developing game-based learning analytics. Also, this study proposes the benefits of optimizing several methodological means for multimodal data fusion in educational game research.
AbstractList Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student distress states during educational gameplay. We collected and analyzed 1,145 data instances, sampled from a total of 31 middle-school students’ audio- and video-recorded gameplay sessions. We conducted data wrangling with student gameplay data from multiple data sources, such as individual facial expression recordings and gameplay logs. Using supervised machine learning, we built and tested candidate classifiers that yielded an estimated probability of distress states. We then conducted confidence-based data fusion that averaged the estimated probability scores from the unimodal classifiers with a single data source. The results of this study suggest that the classifier with multimodal data fusion improves the performance of tracking distress states during educational gameplay, compared to the performance of unimodal classifiers. The study finding suggests the feasibility of multimodal data fusion in developing game-based learning analytics. Also, this study proposes the benefits of optimizing several methodological means for multimodal data fusion in educational game research.
Author Moon, Jewoong
Dahlstrom-Hakki, Ibrahim
Ke, Fengfeng
Sokolikj, Zlatko
Author_xml – sequence: 1
  givenname: Jewoong
  surname: Moon
  fullname: Moon, Jewoong
– sequence: 2
  givenname: Fengfeng
  surname: Ke
  fullname: Ke, Fengfeng
– sequence: 3
  givenname: Zlatko
  surname: Sokolikj
  fullname: Sokolikj, Zlatko
– sequence: 4
  givenname: Ibrahim
  surname: Dahlstrom-Hakki
  fullname: Dahlstrom-Hakki, Ibrahim
BookMark eNp1kL1OwzAUhS1UJErpyuwXSPC1k7geUf9AKgKJMke3_kEpaVLZztCN1-D1eBLSwoCQmO4Z7nd09F2SQdM2lpBrYClMCja52daYcsZ5KgsBZ2QIiqtEypwNfuULMg5hyxgTHIRQbEieHro6VrvWYE1nGJEuulC1DY0tXXvUb_Q5dsY2MXy-f9BZFaK3IVDT-ap5pXPTaYz9ew8vcWf3NR6uyLnDOtjxzx2Rl8V8Pb1LVo_L--ntKtGgMkhMgU7lkkOhc2NNNtG5A8lzLhz0iW8scygKpZkzUqICsxEKHNM6KxCyjRiR9LtX-zYEb12599UO_aEEVp6UlL2S8qikPCrpgewPoKt4Wh89VvV_2Bd2QWj8
CitedBy_id crossref_primary_10_1111_jcal_13028
crossref_primary_10_1108_IJILT_02_2024_0020
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.18608/jla.2022.7631
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 1929-7750
EndPage 87
ExternalDocumentID 10_18608_jla_2022_7631
GroupedDBID AAYXX
ABOPQ
ALMA_UNASSIGNED_HOLDINGS
CITATION
FRS
M~E
OK1
ID FETCH-LOGICAL-c1941-d6af957216c5ded48c5f172523f15f12be0fa369c0fd77a91db391f0cc46a14b3
ISSN 1929-7750
IngestDate Thu Apr 24 23:10:56 EDT 2025
Tue Jul 01 01:42:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1941-d6af957216c5ded48c5f172523f15f12be0fa369c0fd77a91db391f0cc46a14b3
OpenAccessLink https://learning-analytics.info/index.php/JLA/article/download/7631/7667
PageCount 13
ParticipantIDs crossref_primary_10_18608_jla_2022_7631
crossref_citationtrail_10_18608_jla_2022_7631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-16
  day: 16
PublicationDecade 2020
PublicationTitle Journal of Learning Analytics
PublicationYear 2022
SSID ssj0003213390
Score 2.2587464
Snippet Using multimodal data fusion techniques, we built and tested prediction models to track middle-school student distress states during educational gameplay. We...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 75
Title Multimodal Data Fusion to Track Students’ Distress during Educational Gameplay
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEA7jevEiiorrixwED9Jjp985iriOiyOCu7B4adJ57K7dM71ID4IH8Rd49-_5S6xK-pHREVYvTQhJ6On6pvKlUg9CHisG_xkuskAluQqSODMBHiOCSjGM5AyzwpZvW77NFsfJ4Ul6Mpt997yWNl01l192xpX8j1ShD-SKUbL_INlxUeiANsgXniBheF5KxjZ6dtUqVF2iE08PNmj7QjoJW5CsrZOgdZToPRo4Jtt0wSF9eOLo3wFLvBIrfdGIrXtej6--GY0omMek87zkl627uj_Un6F1Oulwy4z1-tToqfd9W7fNeW0vjT40oqvbyVh-1sDbgdJeiNpV034NZ_mz85VvmohslRQXOdlrU-BeQN9dZtm53tHXq2DuIS321KkrqrK1Mf-h8ovMxjF8bDCLVBTNQWGyaXMbLvR_2_NGT0Q8A-EKJcwvcX6J86-QqxEcO1BvLr9ONrs4ghO9NduNv6LPA4pLPNt6BY_neITl6Aa53kuOPnewuUlmen2LvJsgQxEy1EGGdi21kKEDZH5--0EHsFAHFuqBhQ5guU2OD14evVgEfVGNQDKesEBlwvAUUzbJVGmVFDI1QGLTKDYMWlGlQyPijMvQqDwXnKkq5syEUiaZYEkV3yF763at7xLKdJQXCuhMaoBUR0VRaJmHvFDQqZI03CfB8AlK2Wecx8InTbn7q--TJ-P4C5dr5S8j71165H1ybULmA7LXfdroh0Aju-qRle0v9vhy3w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Data+Fusion+to+Track+Students%E2%80%99+Distress+during+Educational+Gameplay&rft.jtitle=Journal+of+Learning+Analytics&rft.au=Moon%2C+Jewoong&rft.au=Ke%2C+Fengfeng&rft.au=Sokolikj%2C+Zlatko&rft.au=Dahlstrom-Hakki%2C+Ibrahim&rft.date=2022-12-16&rft.issn=1929-7750&rft.eissn=1929-7750&rft.volume=9&rft.issue=3&rft.spage=75&rft.epage=87&rft_id=info:doi/10.18608%2Fjla.2022.7631&rft.externalDBID=n%2Fa&rft.externalDocID=10_18608_jla_2022_7631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1929-7750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1929-7750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1929-7750&client=summon