Stochastically constrained best arm identification with Thompson sampling

We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with multiple performance measures. The goal is to identify the arm that optimizes the objective measure subject to constraints on the remaining measure...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 176; p. 112223
Main Authors Yang, Le, Gao, Siyang, Li, Cheng, Wang, Yi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2025
Subjects
Online AccessGet full text
ISSN0005-1098
DOI10.1016/j.automatica.2025.112223

Cover

Loading…
Abstract We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with multiple performance measures. The goal is to identify the arm that optimizes the objective measure subject to constraints on the remaining measures. We will explore the popular idea of Thompson sampling (TS) as a means to solve it. To the best of our knowledge, it is the first attempt to extend TS to this problem. We will design a TS-based sampling algorithm, establish its asymptotic optimality in the rate of posterior convergence, and demonstrate its superior performance using numerical examples.
AbstractList We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with multiple performance measures. The goal is to identify the arm that optimizes the objective measure subject to constraints on the remaining measures. We will explore the popular idea of Thompson sampling (TS) as a means to solve it. To the best of our knowledge, it is the first attempt to extend TS to this problem. We will design a TS-based sampling algorithm, establish its asymptotic optimality in the rate of posterior convergence, and demonstrate its superior performance using numerical examples.
ArticleNumber 112223
Author Wang, Yi
Li, Cheng
Gao, Siyang
Yang, Le
Author_xml – sequence: 1
  givenname: Le
  surname: Yang
  fullname: Yang, Le
  email: lyang272-c@my.cityu.edu.hk
  organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Siyang
  surname: Gao
  fullname: Gao, Siyang
  email: siyangao@cityu.edu.hk
  organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Cheng
  surname: Li
  fullname: Li, Cheng
  email: stalic@nus.edu.sg
  organization: Department of Statistics and Data Science, National University of Singapore, Singapore
– sequence: 4
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: yiwang@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
BookMark eNqFkMtKAzEUhrOoYFt9h3mBGXPrTGapxUuh4MK6Drmc2JSZpCRR6ds7pYJLV4cfzvfz8y3QLMQACFUENwST9u7QqM8SR1W8UQ3FdNUQQillMzTHGK9qgntxjRY5H6bIiaBztHkr0exVPiPDcKpMDLkk5QPYSkMulUpj5S2E4t30UnwM1bcv-2q3j-MxTymr8Tj48HGDrpwaMtz-3iV6f3rcrV_q7evzZn2_rQ3pWakdM2yluQBhTcsEaNDKEtMJILR1nWK9aRXvrNJOOGKF6zreE91rzjouuGBLJC69JsWcEzh5TH5U6SQJlmcN8iD_NMizBnnRMKEPFxSmfV8ekszGQzBgfQJTpI3-_5If1KZxkg
Cites_doi 10.1145/2556195.2556252
10.2307/2527883
10.1093/biomet/25.3-4.285
10.1109/TSMCC.2007.900656
10.1287/ijoc.1120.0519
10.1023/A:1008349927281
10.1080/17477778.2022.2046520
10.1109/TAC.2012.2195931
10.1002/nav.20408
10.1287/opre.2016.1581
10.1145/2630066
10.1016/j.automatica.2023.111042
10.1002/nav.21871
10.1136/annrheumdis-2012-201601
10.1109/WSC.2016.7822146
10.1287/opre.2019.1911
10.1145/268437.268501
10.1016/j.automatica.2017.03.019
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2025.112223
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_automatica_2025_112223
S0005109825001153
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72371214; 72331004
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XPP
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c193t-f3c35b48e8dc638ebebad1c78e126f7a39c6a47dabf8f1d8f77491b9b43748483
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Sun Jul 06 05:02:35 EDT 2025
Sat Apr 26 15:42:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Top-two algorithm
Rate of posterior convergence
Best feasible arm identification
Thompson sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c193t-f3c35b48e8dc638ebebad1c78e126f7a39c6a47dabf8f1d8f77491b9b43748483
ParticipantIDs crossref_primary_10_1016_j_automatica_2025_112223
elsevier_sciencedirect_doi_10_1016_j_automatica_2025_112223
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Lin, Yücesan, Chick (b7) 2000; 10
Pasupathy, Hunter, Pujowidianto, Lee, Chen (b26) 2014; 25
Chen, H. C., Dai, L., Chen, C. H., & Yücesan, E. (1997). New development of optimal computing budget allocation for discrete event simulation. In
Goodwin, Xu, Celik, Chen (b14) 2024; 18
Gao, S., Xiao, H., Zhou, E., & Chen, W. (2016). Optimal computing budget allocation with input uncertainty. In
Yang, Gao, Ho (b32) 2024; 36
Thompson (b31) 1933; 25
Gopalan, Mannor, Mansour (b15) 2014
Kawale, Bui, Kveton, Tran-Thanh, Chawla (b22) 2015; 28
Lee, Pujowidianto, Li, Chen, Yap (b24) 2012; 57
Yang, Gao, Li, Wang (b33) 2025
Andradóttir, Kim (b3) 2010; 57
Gao, Chen, Shi (b9) 2017; 65
(pp. 173–182).
(pp. 839–846).
Kandasamy, K., Krishnamurthy, A., Schneider, J., & Póczos, B. (2018). Parallelised Bayesian optimization via Thompson sampling. In
(pp. 133–142).
Even-Dar, Mannor, Mansour, Mahadevan (b8) 2006; 7
Lee, Chen, Chew, Li, Pujowidianto, Zhang (b23) 2010; 7
Hunter, Pasupathy (b18) 2013; 25
Qin, C., Klabjan, D., & Russo, D. (2017). Improving the expected improvement algorithm. In
Sankararaman, Slivkins (b29) 2018
He, Chick, Chen (b17) 2007; 37
Li, Gao (b25) 2023; 153
Bechhofer (b4) 1958; 14
Bechhofer, Dunnett, Sobel (b5) 1954; 41
Katz-Samuels, Scott (b21) 2019
(pp. 5387–5397).
Agrawal, S., & Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs. In
Genovese, Durez, Richards, Supronik, Dokoupilova, Mazurov (b12) 2013; 72
Agarwal, D., Long, B., Traupman, J., Xin, D., & Zhang, L. (2014). Laser: A scalable response prediction platform for online advertising. In
Russo (b28) 2020; 68
Shi, Gao, Xiao, Chen (b30) 2019; 66
Katz-Samuels, Scott (b20) 2018
Gao, Xiao, Zhou, Chen (b11) 2017; 81
(pp. 127–135).
Graepel, Candela, Borchert, Herbrich (b16) 2010
(pp. 334–341).
Glynn, Juneja (b13) 2004; Vol. 1
Pasupathy (10.1016/j.automatica.2025.112223_b26) 2014; 25
Graepel (10.1016/j.automatica.2025.112223_b16) 2010
Hunter (10.1016/j.automatica.2025.112223_b18) 2013; 25
Thompson (10.1016/j.automatica.2025.112223_b31) 1933; 25
Andradóttir (10.1016/j.automatica.2025.112223_b3) 2010; 57
Lee (10.1016/j.automatica.2025.112223_b23) 2010; 7
10.1016/j.automatica.2025.112223_b27
Bechhofer (10.1016/j.automatica.2025.112223_b4) 1958; 14
Katz-Samuels (10.1016/j.automatica.2025.112223_b20) 2018
He (10.1016/j.automatica.2025.112223_b17) 2007; 37
Yang (10.1016/j.automatica.2025.112223_b33) 2025
Sankararaman (10.1016/j.automatica.2025.112223_b29) 2018
Goodwin (10.1016/j.automatica.2025.112223_b14) 2024; 18
10.1016/j.automatica.2025.112223_b19
Kawale (10.1016/j.automatica.2025.112223_b22) 2015; 28
Shi (10.1016/j.automatica.2025.112223_b30) 2019; 66
Chen (10.1016/j.automatica.2025.112223_b7) 2000; 10
Li (10.1016/j.automatica.2025.112223_b25) 2023; 153
10.1016/j.automatica.2025.112223_b10
Genovese (10.1016/j.automatica.2025.112223_b12) 2013; 72
Russo (10.1016/j.automatica.2025.112223_b28) 2020; 68
Gao (10.1016/j.automatica.2025.112223_b11) 2017; 81
Katz-Samuels (10.1016/j.automatica.2025.112223_b21) 2019
10.1016/j.automatica.2025.112223_b2
10.1016/j.automatica.2025.112223_b1
10.1016/j.automatica.2025.112223_b6
Yang (10.1016/j.automatica.2025.112223_b32) 2024; 36
Lee (10.1016/j.automatica.2025.112223_b24) 2012; 57
Gao (10.1016/j.automatica.2025.112223_b9) 2017; 65
Bechhofer (10.1016/j.automatica.2025.112223_b5) 1954; 41
Glynn (10.1016/j.automatica.2025.112223_b13) 2004; Vol. 1
Gopalan (10.1016/j.automatica.2025.112223_b15) 2014
Even-Dar (10.1016/j.automatica.2025.112223_b8) 2006; 7
References_xml – volume: 28
  year: 2015
  ident: b22
  article-title: Efficient thompson sampling for online matrix-factorization recommendation
  publication-title: Advances in Neural Information Processing Systems
– volume: 25
  start-page: 527
  year: 2013
  end-page: 542
  ident: b18
  article-title: Optimal sampling laws for stochastically constrained simulation optimization on finite sets
  publication-title: INFORMS Journal on Computing
– reference: (pp. 133–142).
– volume: 37
  start-page: 951
  year: 2007
  end-page: 961
  ident: b17
  article-title: Opportunity cost and OCBA selection procedures in ordinal optimization for a fixed number of alternative systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 25
  start-page: 285
  year: 1933
  end-page: 294
  ident: b31
  article-title: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
  publication-title: Biometrika
– volume: 41
  start-page: 170
  year: 1954
  end-page: 176
  ident: b5
  article-title: A tow-sample multiple decision procedure for ranking means of normal populations with a common unknown variance
  publication-title: Biometrika
– volume: 81
  start-page: 30
  year: 2017
  end-page: 36
  ident: b11
  article-title: Robust ranking and selection with optimal computing budget allocation
  publication-title: Automatica
– volume: 153
  year: 2023
  ident: b25
  article-title: Convergence rate analysis for optimal computing budget allocation algorithms
  publication-title: Automatica
– reference: (pp. 334–341).
– volume: 7
  year: 2006
  ident: b8
  article-title: Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems.
  publication-title: Journal of Machine Learning Research
– start-page: 1760
  year: 2018
  end-page: 1770
  ident: b29
  article-title: Combinatorial semi-bandits with knapsacks
  publication-title: International conference on artificial intelligence and statistics
– volume: 65
  start-page: 787
  year: 2017
  end-page: 803
  ident: b9
  article-title: A new budget allocation framework for the expected opportunity cost
  publication-title: Operations Research
– volume: 10
  start-page: 251
  year: 2000
  end-page: 270
  ident: b7
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: Discrete Event Dynamic Systems: Theory and Applications
– reference: Agarwal, D., Long, B., Traupman, J., Xin, D., & Zhang, L. (2014). Laser: A scalable response prediction platform for online advertising. In
– volume: 57
  start-page: 2940
  year: 2012
  end-page: 2945
  ident: b24
  article-title: Approximate simulation budget allocation for selecting the best design in the presence of stochastic constraints
  publication-title: IEEE Transactions on Automatic Control
– volume: 66
  start-page: 648
  year: 2019
  end-page: 662
  ident: b30
  article-title: A worst-case formulation for constrained ranking and selection with input uncertainty
  publication-title: Naval Research Logistics
– reference: Chen, H. C., Dai, L., Chen, C. H., & Yücesan, E. (1997). New development of optimal computing budget allocation for discrete event simulation. In
– reference: Qin, C., Klabjan, D., & Russo, D. (2017). Improving the expected improvement algorithm. In
– volume: 57
  start-page: 403
  year: 2010
  end-page: 421
  ident: b3
  article-title: Fully sequential procedures for comparing constrained systems via simulation
  publication-title: Naval Research Logistics
– start-page: 100
  year: 2014
  end-page: 108
  ident: b15
  article-title: Thompson sampling for complex online problems
  publication-title: International conference on machine learning
– volume: 36
  start-page: 61747
  year: 2024
  end-page: 61758
  ident: b32
  article-title: Improving the knowledge gradient algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  start-page: 408
  year: 1958
  end-page: 429
  ident: b4
  article-title: A sequential multiple-decision procedure for selecting the best one of several normal populations with a common unknown variance, and its use with various experimental designs
  publication-title: Biometrics
– reference: Kandasamy, K., Krishnamurthy, A., Schneider, J., & Póczos, B. (2018). Parallelised Bayesian optimization via Thompson sampling. In
– reference: (pp. 127–135).
– volume: 68
  start-page: 1625
  year: 2020
  end-page: 1647
  ident: b28
  article-title: Simple Bayesian algorithms for best arm identification
  publication-title: Operations Research
– year: 2025
  ident: b33
  article-title: Stochastically constrained best arm identification with thompson sampling
– reference: Gao, S., Xiao, H., Zhou, E., & Chen, W. (2016). Optimal computing budget allocation with input uncertainty. In
– volume: 7
  start-page: 19
  year: 2010
  end-page: 31
  ident: b23
  article-title: A review of optimal computing budget allocation algorithms for simulation optimization problem
  publication-title: International Journal of Operations Research
– year: 2010
  ident: b16
  article-title: Webscale Bayesian click-through rate prediction for sponsored search advertising in Microsoft’s Bing search engine
– reference: Agrawal, S., & Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs. In
– volume: 18
  start-page: 47
  year: 2024
  end-page: 64
  ident: b14
  article-title: Real-time digital twin-based optimization with predictive simulation learning
  publication-title: Journal of Simulation
– start-page: 1593
  year: 2019
  end-page: 1601
  ident: b21
  article-title: Top feasible arm identification
  publication-title: The 22nd international conference on artificial intelligence and statistics
– reference: (pp. 173–182).
– volume: 72
  start-page: 863
  year: 2013
  end-page: 869
  ident: b12
  article-title: Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study
  publication-title: Annals of the Rheumatic Diseases
– start-page: 2535
  year: 2018
  end-page: 2543
  ident: b20
  article-title: Feasible arm identification
  publication-title: International conference on machine learning
– volume: Vol. 1
  year: 2004
  ident: b13
  article-title: A large deviations perspective on ordinal optimization
  publication-title: Proceedings of the 2004 winter simulation conference, 2004
– reference: (pp. 5387–5397).
– volume: 25
  start-page: 1
  year: 2014
  end-page: 26
  ident: b26
  article-title: Stochastically constrained ranking and selection via SCORE
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
– reference: (pp. 839–846).
– volume: 28
  year: 2015
  ident: 10.1016/j.automatica.2025.112223_b22
  article-title: Efficient thompson sampling for online matrix-factorization recommendation
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 61747
  year: 2024
  ident: 10.1016/j.automatica.2025.112223_b32
  article-title: Improving the knowledge gradient algorithm
  publication-title: Advances in Neural Information Processing Systems
– year: 2010
  ident: 10.1016/j.automatica.2025.112223_b16
– ident: 10.1016/j.automatica.2025.112223_b1
  doi: 10.1145/2556195.2556252
– volume: 14
  start-page: 408
  issue: 3
  year: 1958
  ident: 10.1016/j.automatica.2025.112223_b4
  article-title: A sequential multiple-decision procedure for selecting the best one of several normal populations with a common unknown variance, and its use with various experimental designs
  publication-title: Biometrics
  doi: 10.2307/2527883
– start-page: 2535
  year: 2018
  ident: 10.1016/j.automatica.2025.112223_b20
  article-title: Feasible arm identification
– volume: 25
  start-page: 285
  issue: 3–4
  year: 1933
  ident: 10.1016/j.automatica.2025.112223_b31
  article-title: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
  publication-title: Biometrika
  doi: 10.1093/biomet/25.3-4.285
– volume: 37
  start-page: 951
  issue: 5
  year: 2007
  ident: 10.1016/j.automatica.2025.112223_b17
  article-title: Opportunity cost and OCBA selection procedures in ordinal optimization for a fixed number of alternative systems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2007.900656
– ident: 10.1016/j.automatica.2025.112223_b27
– start-page: 1593
  year: 2019
  ident: 10.1016/j.automatica.2025.112223_b21
  article-title: Top feasible arm identification
– volume: 25
  start-page: 527
  issue: 3
  year: 2013
  ident: 10.1016/j.automatica.2025.112223_b18
  article-title: Optimal sampling laws for stochastically constrained simulation optimization on finite sets
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1120.0519
– volume: 10
  start-page: 251
  year: 2000
  ident: 10.1016/j.automatica.2025.112223_b7
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: Discrete Event Dynamic Systems: Theory and Applications
  doi: 10.1023/A:1008349927281
– year: 2025
  ident: 10.1016/j.automatica.2025.112223_b33
– volume: 18
  start-page: 47
  issue: 1
  year: 2024
  ident: 10.1016/j.automatica.2025.112223_b14
  article-title: Real-time digital twin-based optimization with predictive simulation learning
  publication-title: Journal of Simulation
  doi: 10.1080/17477778.2022.2046520
– volume: 57
  start-page: 2940
  issue: 11
  year: 2012
  ident: 10.1016/j.automatica.2025.112223_b24
  article-title: Approximate simulation budget allocation for selecting the best design in the presence of stochastic constraints
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2012.2195931
– ident: 10.1016/j.automatica.2025.112223_b19
– volume: 57
  start-page: 403
  issue: 5
  year: 2010
  ident: 10.1016/j.automatica.2025.112223_b3
  article-title: Fully sequential procedures for comparing constrained systems via simulation
  publication-title: Naval Research Logistics
  doi: 10.1002/nav.20408
– volume: 65
  start-page: 787
  issue: 3
  year: 2017
  ident: 10.1016/j.automatica.2025.112223_b9
  article-title: A new budget allocation framework for the expected opportunity cost
  publication-title: Operations Research
  doi: 10.1287/opre.2016.1581
– volume: 25
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.automatica.2025.112223_b26
  article-title: Stochastically constrained ranking and selection via SCORE
  publication-title: ACM Transactions on Modeling and Computer Simulation (TOMACS)
  doi: 10.1145/2630066
– start-page: 100
  year: 2014
  ident: 10.1016/j.automatica.2025.112223_b15
  article-title: Thompson sampling for complex online problems
– volume: 153
  year: 2023
  ident: 10.1016/j.automatica.2025.112223_b25
  article-title: Convergence rate analysis for optimal computing budget allocation algorithms
  publication-title: Automatica
  doi: 10.1016/j.automatica.2023.111042
– volume: 66
  start-page: 648
  issue: 8
  year: 2019
  ident: 10.1016/j.automatica.2025.112223_b30
  article-title: A worst-case formulation for constrained ranking and selection with input uncertainty
  publication-title: Naval Research Logistics
  doi: 10.1002/nav.21871
– volume: 41
  start-page: 170
  issue: 1–2
  year: 1954
  ident: 10.1016/j.automatica.2025.112223_b5
  article-title: A tow-sample multiple decision procedure for ranking means of normal populations with a common unknown variance
  publication-title: Biometrika
– volume: 72
  start-page: 863
  issue: 6
  year: 2013
  ident: 10.1016/j.automatica.2025.112223_b12
  article-title: Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study
  publication-title: Annals of the Rheumatic Diseases
  doi: 10.1136/annrheumdis-2012-201601
– ident: 10.1016/j.automatica.2025.112223_b10
  doi: 10.1109/WSC.2016.7822146
– volume: Vol. 1
  year: 2004
  ident: 10.1016/j.automatica.2025.112223_b13
  article-title: A large deviations perspective on ordinal optimization
– start-page: 1760
  year: 2018
  ident: 10.1016/j.automatica.2025.112223_b29
  article-title: Combinatorial semi-bandits with knapsacks
– volume: 68
  start-page: 1625
  issue: 6
  year: 2020
  ident: 10.1016/j.automatica.2025.112223_b28
  article-title: Simple Bayesian algorithms for best arm identification
  publication-title: Operations Research
  doi: 10.1287/opre.2019.1911
– ident: 10.1016/j.automatica.2025.112223_b6
  doi: 10.1145/268437.268501
– volume: 7
  start-page: 19
  issue: 2
  year: 2010
  ident: 10.1016/j.automatica.2025.112223_b23
  article-title: A review of optimal computing budget allocation algorithms for simulation optimization problem
  publication-title: International Journal of Operations Research
– volume: 81
  start-page: 30
  year: 2017
  ident: 10.1016/j.automatica.2025.112223_b11
  article-title: Robust ranking and selection with optimal computing budget allocation
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.03.019
– ident: 10.1016/j.automatica.2025.112223_b2
– volume: 7
  issue: 6
  year: 2006
  ident: 10.1016/j.automatica.2025.112223_b8
  article-title: Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems.
  publication-title: Journal of Machine Learning Research
SSID ssj0004182
Score 2.4760277
Snippet We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112223
SubjectTerms Best feasible arm identification
Rate of posterior convergence
Thompson sampling
Top-two algorithm
Title Stochastically constrained best arm identification with Thompson sampling
URI https://dx.doi.org/10.1016/j.automatica.2025.112223
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KvehB_MRWLXvwGmuym2QXT6VYWsVetNBb2I-sVjQtbXrw4m93Jx-0guDBYwIL4c1m5s3y5i3AFXNtRGiV9QRFU20hjSe0DTxq3GawwU2kLE4jP46j4YTdT8NpA_r1LAzKKqvcX-b0IltXb7oVmt3FbIYzvrihhGtxCl6Djp-Mxeiff_21kXkwn5eO4YXjpuCVmqfUeMl1Pi-cUdGBKAhxniYI6O8laqvsDA5gv-KLpFd-0iE00uwI9rZcBI9h9JTP9atcFafS759EI-XDmx9SQ5RL-kQuP8jMVLKgIhIEj19JLQYhK4m68uzlBCaDu-f-0KtuSPC0I165Z6mmoWI85Ua7H8kFREnj65infhDZWFKhI8liI5Xl1jfcOrInfCUUQ9cZxukpNLN5lp4BoYHBymRjHXFGVSgdFYtlmEbWuI5Msxb4NSjJojTCSGqF2FuyATJBIJMSyBbc1uglP4KauHz95-r2v1afwy4-laquC2jmy3V66fhDrjrFBunATm_0MBx_Ay9Jx2c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMgAD4inK0wNrKImdxBYTqqhaaLvQSt0sP2IogrRq04GF346dh1okJAbWRJaiz5e776zvPgNcE9tGhEYaj2Fnqs2E9pgygYe1DQYT3EbSuGnk_iDqjMjjOBzXoFXNwjhZZZn7i5yeZ-vySbNEszmbTNyMrwsoZlucnNfgDdgkIY5daN98rXQexKeFZXhuucloKecpRF5imU1za1RnQRSEbqAmCPDvNWqt7rT3YLckjOi--KZ9qCXpAeys2QgeQvc5m6pXsciPpd8_kXKcz139kGgkbdZHYv6BJrrUBeVbgdz5K6rUIGghnLA8fTmCUfth2Op45RUJnrLMK_MMVjiUhCZUK_sn2R2RQvsqpokfRCYWmKlIkFgLaajxNTWW7TFfMkmc7Qyh-Bjq6TRNTgDhQLvSZGIVUYJlKCwXi0WYREbblkyRBvgVKHxWOGHwSiL2xldAcgckL4BswF2FHv-xq9wm7D9Xn_5r9RVsdYb9Hu91B09nsO3eFBKvc6hn82VyYclEJi_zYPkGBjrI_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastically+constrained+best+arm+identification+with+Thompson+sampling&rft.jtitle=Automatica+%28Oxford%29&rft.au=Yang%2C+Le&rft.au=Gao%2C+Siyang&rft.au=Li%2C+Cheng&rft.au=Wang%2C+Yi&rft.date=2025-06-01&rft.issn=0005-1098&rft.volume=176&rft.spage=112223&rft_id=info:doi/10.1016%2Fj.automatica.2025.112223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2025_112223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon