FLAAP: An Open Human Activity Recognition (HAR) Dataset for Learning and Finding the Associated Activity Patterns

A significant quantity of research work has been completed to recognize human activities. The majority of the proposed learning algorithms have treated the activity data as the role of fuel in vehicles. The capacity of the learning algorithms to recognize the activity patterns can be improved by the...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 212; pp. 64 - 73
Main Authors Kumar, Prabhat, Suresh, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A significant quantity of research work has been completed to recognize human activities. The majority of the proposed learning algorithms have treated the activity data as the role of fuel in vehicles. The capacity of the learning algorithms to recognize the activity patterns can be improved by the adequate availability of activity data. In this paper, we introduced the FLAAP (Finding and Learning the Associated Activity Patterns) activity dataset and data acquired by using the smartphone (accelerometer and gyroscope) sensors placed at the waist of the subjects while performing the activities. This dataset contains the record of ten activities performed by eight distinct subjects. Between February 1st and May 31st, 2022, millions of raw sensor activity data samples were captured constantly at 100Hz sampling rates. The Human Activity Recognition (HAR) datasets, which keep a record of such activities and report associations in activity patterns (mostly used for recognizing the Activities of Daily Living (ADL)), were lacking. This paucity is addressed by the FLAAP dataset which can be useful in finding the associated patterns in ADL. The obtained experimental findings demonstrate that the learning algorithm Random Forest (RF), which was used, has recognized the activities with around 77.22% accuracy. The applied RF learning algorithm on the FLAAP dataset provides the research gap for the researchers in developing more delicate learning models for enhancing recognition rates. Furthermore, the research community could be particularly interested in examining the learning performance of algorithms while using various data pre-processing techniques, transferring knowledge to target domains, and other techniques.
AbstractList A significant quantity of research work has been completed to recognize human activities. The majority of the proposed learning algorithms have treated the activity data as the role of fuel in vehicles. The capacity of the learning algorithms to recognize the activity patterns can be improved by the adequate availability of activity data. In this paper, we introduced the FLAAP (Finding and Learning the Associated Activity Patterns) activity dataset and data acquired by using the smartphone (accelerometer and gyroscope) sensors placed at the waist of the subjects while performing the activities. This dataset contains the record of ten activities performed by eight distinct subjects. Between February 1st and May 31st, 2022, millions of raw sensor activity data samples were captured constantly at 100Hz sampling rates. The Human Activity Recognition (HAR) datasets, which keep a record of such activities and report associations in activity patterns (mostly used for recognizing the Activities of Daily Living (ADL)), were lacking. This paucity is addressed by the FLAAP dataset which can be useful in finding the associated patterns in ADL. The obtained experimental findings demonstrate that the learning algorithm Random Forest (RF), which was used, has recognized the activities with around 77.22% accuracy. The applied RF learning algorithm on the FLAAP dataset provides the research gap for the researchers in developing more delicate learning models for enhancing recognition rates. Furthermore, the research community could be particularly interested in examining the learning performance of algorithms while using various data pre-processing techniques, transferring knowledge to target domains, and other techniques.
Author Kumar, Prabhat
Suresh, S.
Author_xml – sequence: 1
  givenname: Prabhat
  surname: Kumar
  fullname: Kumar, Prabhat
  email: prabhat.kumar13@bhu.ac.in
– sequence: 2
  givenname: S.
  surname: Suresh
  fullname: Suresh, S.
BookMark eNqFkEFLAzEQhYNUsNb-Ai856mFrstnuJoKHpVorLLQUPYcwydaUNluTWOi_d9cKigedy3sz8A28d456rnEGoUtKRpTQ_GY92vkGwigladpeWuUnqE95USRkTETvhz9DwxDWpB3GuaBFH71Nq7Jc3OLS4fnOODx73yqHS4h2b-MBLw00K2ejbRy-mpXLa3yvogom4rrxuDLKO-tWWDmNp9bpzsdXg8sQGrAqGv39aqFiNN6FC3Raq00wwy8doJfpw_NkllTzx6dJWSVABeNJCgBU1TlnnBbFmKVQUJ4BN6wGoSAjggihM6a1UO2ix8CZpkBzled8nGk2QOz4F3wTgje13Hm7Vf4gKZFdcXItP4uTXXHdsS2upcQvCmxUXf7old38w94dWdPG2lvjZQBrHBhtvYEodWP_5D8A_fSMCA
CitedBy_id crossref_primary_10_1088_1402_4896_ad328c
crossref_primary_10_3233_JIFS_232986
Cites_doi 10.1145/1964897.1964918
10.1016/j.patrec.2021.02.024
10.1023/A:1010933404324
10.3390/s21237853
10.1109/ACCESS.2020.3037715
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2022.10.208
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 73
ExternalDocumentID 10_1016_j_procs_2022_10_208
S1877050922016805
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c1938-2ccc1af6838177532c7184c8e3fc9ac409099d43dd9a409d5c83d1c16a66854d3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:53:19 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Wed May 17 00:04:59 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Activities of Daily Living (ADL)
Smartphone Sensors
Human Activity Recognition (HAR)
Time Series Data
Associated Activity Patterns
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1938-2ccc1af6838177532c7184c8e3fc9ac409099d43dd9a409d5c83d1c16a66854d3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050922016805
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2022_10_208
crossref_citationtrail_10_1016_j_procs_2022_10_208
elsevier_sciencedirect_doi_10_1016_j_procs_2022_10_208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Anguita, Ghio, Oneto, Parra, Reyes-Ortiz (bib0006) 2013
Kwapisz, Weiss, Moore (bib0007) 2011; 12
Stisen, Blunck, Bhattacharya, Prentow, Kjærgaard, Dey, Sonne, Jensen (bib0004) 2015
Garcia-Gonzalez, Rivero, Fernandez-Blanco, Luaces (bib0005) 2020; 20
Demrozi, Pravadelli, Bihorac, Rashidi (bib0002) 2020; 8
Kumar, Suresh (bib0009) 2021
Sikder, al Nahid (bib0001) 2021; 146
A. Logacjov, K. Bach, A. Kongsvold, P.J. Mork. (2021) “HARTH : A Human Activity Recognition Dataset for Machine Learning”, 1–19.
Sztyler, Stuckenschmidt (bib0003) 2016
Breiman (bib0010) 2001; 45
Sztyler (10.1016/j.procs.2022.10.208_bib0003) 2016
Garcia-Gonzalez (10.1016/j.procs.2022.10.208_bib0005) 2020; 20
10.1016/j.procs.2022.10.208_bib0008
Demrozi (10.1016/j.procs.2022.10.208_bib0002) 2020; 8
Sikder (10.1016/j.procs.2022.10.208_bib0001) 2021; 146
Stisen (10.1016/j.procs.2022.10.208_bib0004) 2015
Kwapisz (10.1016/j.procs.2022.10.208_bib0007) 2011; 12
Breiman (10.1016/j.procs.2022.10.208_bib0010) 2001; 45
Anguita (10.1016/j.procs.2022.10.208_bib0006) 2013
Kumar (10.1016/j.procs.2022.10.208_bib0009) 2021
References_xml – volume: 8
  start-page: 210816
  year: 2020
  end-page: 210836
  ident: bib0002
  article-title: Human Activity Recognition Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 11
  ident: bib0009
  article-title: Deep Learning Models for Recognizing the Simple Human Activities Using Smartphone Accelerometer Sensor
  publication-title: IETE J Res
– start-page: 24
  year: 2013
  end-page: 26
  ident: bib0006
  article-title: A Public Domain Dataset for Human Activity Recognition Using Smartphones
  publication-title: 2013 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (Esann)
– year: 2016
  ident: bib0003
  article-title: On-body localization of wearable devices: An investigation of position-aware activity recognition
  publication-title: 2016 IEEE International Conference on Pervasive Computing and Communications, PerCom 2016
– start-page: 127
  year: 2015
  end-page: 140
  ident: bib0004
  article-title: Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition
  publication-title: SenSys 2015 - Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
– volume: 12
  start-page: 74
  year: 2011
  end-page: 82
  ident: bib0007
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explorations Newsletter
– reference: A. Logacjov, K. Bach, A. Kongsvold, P.J. Mork. (2021) “HARTH : A Human Activity Recognition Dataset for Machine Learning”, 1–19.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0010
  article-title: Random Forests
  publication-title: Machine Learning
– volume: 146
  start-page: 46
  year: 2021
  end-page: 54
  ident: bib0001
  article-title: KU-HAR: An open dataset for heterogeneous human activity recognition
  publication-title: Pattern Recognit Lett
– volume: 20
  start-page: 2200
  year: 2020
  ident: bib0005
  article-title: A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors
  publication-title: Sensors 2020
– volume: 20
  start-page: 2200
  year: 2020
  ident: 10.1016/j.procs.2022.10.208_bib0005
  article-title: A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors
  publication-title: Sensors 2020
– volume: 12
  start-page: 74
  year: 2011
  ident: 10.1016/j.procs.2022.10.208_bib0007
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1964897.1964918
– volume: 146
  start-page: 46
  year: 2021
  ident: 10.1016/j.procs.2022.10.208_bib0001
  article-title: KU-HAR: An open dataset for heterogeneous human activity recognition
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2021.02.024
– start-page: 24
  year: 2013
  ident: 10.1016/j.procs.2022.10.208_bib0006
  article-title: A Public Domain Dataset for Human Activity Recognition Using Smartphones
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.procs.2022.10.208_bib0010
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– start-page: 127
  year: 2015
  ident: 10.1016/j.procs.2022.10.208_bib0004
  article-title: Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition
– year: 2016
  ident: 10.1016/j.procs.2022.10.208_bib0003
  article-title: On-body localization of wearable devices: An investigation of position-aware activity recognition
– ident: 10.1016/j.procs.2022.10.208_bib0008
  doi: 10.3390/s21237853
– volume: 8
  start-page: 210816
  year: 2020
  ident: 10.1016/j.procs.2022.10.208_bib0002
  article-title: Human Activity Recognition Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037715
– start-page: 1
  year: 2021
  ident: 10.1016/j.procs.2022.10.208_bib0009
  article-title: Deep Learning Models for Recognizing the Simple Human Activities Using Smartphone Accelerometer Sensor
  publication-title: IETE J Res
SSID ssj0000388917
Score 2.2378676
Snippet A significant quantity of research work has been completed to recognize human activities. The majority of the proposed learning algorithms have treated the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Activities of Daily Living (ADL)
Associated Activity Patterns
Human Activity Recognition (HAR)
Smartphone Sensors
Time Series Data
Title FLAAP: An Open Human Activity Recognition (HAR) Dataset for Learning and Finding the Associated Activity Patterns
URI https://dx.doi.org/10.1016/j.procs.2022.10.208
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw4cQKJsfaUttzKoJgZoGkzsVqVOi4ZQN6D8f-y0HSChHTgmitPKeXyOZX9m7Fj6IAIHhCER3Mlb1TWkAN_IZOaktm1JpdPH7u5Ff-zcTNxJg_XqXBgKq6zu_vJO17d11dOptNmZT6edB9P3PGIvsRDDhK95TG38GCXxTS4XfhZiOwl04V0ab5BATT6kw7wIJ4i227LOKSyaykz-BVA_QCfaYGuVtcjD8oc2WSPNt9h6XYmBVwdzm71Ft2E4vOBhzilChGvXPA-hLA3BR3WU0CznJ_1wdMqvZIHwVXA0WXlFsfrMZa54NNVpLhztQl4vXaq-pxpqPs78Y4eNo-vHXt-oiikYgDYangYAMGUmfKLkwzeKBYhKDvipnUEgAZ95aCsqx1YqkNhQLvi2MsEUUgjfdZS9y5r5LE_3GO8KEJB40pPKcVwrwTdu4nWz1FPg2aYFLWbVGoyhYhqnghevcR1S9hJrtcekdupEtbfY2UJoXhJtLB8u6qWJf-2XGKFgmeD-fwUP2Cq1SvfLIWsW75_pERokRdJmK-Fg9DRo6533BShn3rc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPOjFtxGfe_CgiRX62hZvFW2KAiEICbdmmW0NxhRU_P_ObFvUxHjw2O1O08w-vm8ns98wdiZ9EE0HhCER3Cla1TCkAN9IZeoktm1Jpa-PdXsiGjn3Y3dcYa3yLgylVRZ7f76n6926aKkX3qzPp9P6o-l7HqmXWIhhwicd0xVkAx7Vb2iPb5aBFpI7aerKu2RgkEWpPqTzvAgoSLfbsq4oL5rqTP6GUN9QJ9xk6wVd5EH-R1uskmTbbKMsxcCLlbnDXsNOEPSveZBxShHhOjbPA8hrQ_BBmSY0y_h5FAwu-K1cIH4tOHJWXmisPnGZKR5O9T0XjsSQl2OXqK9P9bUgZ_a-y0bh3bAVGUU1BQOQpOFyAABTpsInTT48pFiAsOSAn9gpNCXgOQ_JonJspZoSH5QLvq1MMIUUwncdZe-xajbLkn3GGwIETDzpSeU4rjXBQ-7Ea6SJp8CzTQtqzCo9GEMhNU4VL17iMqfsOdZuj8nt1Ihur7HLpdE8V9r4u7sohyb-MWFixIK_DA_-a3jKVqNhtxN32r2HQ7ZGb_JYzBGrLt4-kmNkJ4vJiZ59n2BC4DM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FLAAP%3A+An+Open+Human+Activity+Recognition+%28HAR%29+Dataset+for+Learning+and+Finding+the+Associated+Activity+Patterns&rft.jtitle=Procedia+computer+science&rft.au=Kumar%2C+Prabhat&rft.au=Suresh%2C+S.&rft.date=2022&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=212&rft.spage=64&rft.epage=73&rft_id=info:doi/10.1016%2Fj.procs.2022.10.208&rft.externalDocID=S1877050922016805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon