Exploring redox behavior of mixed manganese‒cobalt spinel oxides through in situ analysis
Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn x Co 3‒ x O 4 (MCO, x = 0‒3) through in situ...
Saved in:
Published in | Journal of the American Ceramic Society |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
27.07.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn x Co 3‒ x O 4 (MCO, x = 0‒3) through in situ thermogravimetric and structural analysis to evaluate how the MCO composition affects structure, phase evolution, and redox transition temperatures. Reduction in MCO proceeds via two steps whereas reoxidation of the reduction products (MnO and Co) commonly occurs in a single step. Manganese is seen to reduce the reoxidation temperatures ‐ the spinel peak was first evident at 300°C for x = 2.4 whereas that of x = 0.6 appeared at 400°C . Cobalt‐ and manganese‐rich contents ( x = 0.6 and 2.4) gave rise to CoO and Mn 2 O 3 secondary phases respectively during reoxidation. These secondary phases were first observed when the temperature reached 500°C, however, such phases diminished with increasing temperature, yielding a single phase at 800°C. In contrast, the mid‐range composition ( x = 1.8) yields single spinel phases at relatively lower temperatures. We also studied the relationship between composition and morphology of exsolved Co and MnO particles during reduction, which are of importance to catalytic applications. These findings can offer guidelines for designing MCO for catalytic and electrochemical applications. |
---|---|
AbstractList | Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn x Co 3‒ x O 4 (MCO, x = 0‒3) through in situ thermogravimetric and structural analysis to evaluate how the MCO composition affects structure, phase evolution, and redox transition temperatures. Reduction in MCO proceeds via two steps whereas reoxidation of the reduction products (MnO and Co) commonly occurs in a single step. Manganese is seen to reduce the reoxidation temperatures ‐ the spinel peak was first evident at 300°C for x = 2.4 whereas that of x = 0.6 appeared at 400°C . Cobalt‐ and manganese‐rich contents ( x = 0.6 and 2.4) gave rise to CoO and Mn 2 O 3 secondary phases respectively during reoxidation. These secondary phases were first observed when the temperature reached 500°C, however, such phases diminished with increasing temperature, yielding a single phase at 800°C. In contrast, the mid‐range composition ( x = 1.8) yields single spinel phases at relatively lower temperatures. We also studied the relationship between composition and morphology of exsolved Co and MnO particles during reduction, which are of importance to catalytic applications. These findings can offer guidelines for designing MCO for catalytic and electrochemical applications. |
Author | Adjah‐Tetteh, Christabel Smith, Kayla S. Xu, Nengneng Zhou, Xiao‐Dong He, Zizhou Wang, Yudong |
Author_xml | – sequence: 1 givenname: Christabel surname: Adjah‐Tetteh fullname: Adjah‐Tetteh, Christabel organization: Department of Chemical & Biomolecular Engineering University of Connecticut Storrs Connecticut USA, Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA – sequence: 2 givenname: Kayla S. surname: Smith fullname: Smith, Kayla S. organization: Department of Chemical & Biomolecular Engineering University of Connecticut Storrs Connecticut USA, Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA – sequence: 3 givenname: Zizhou surname: He fullname: He, Zizhou organization: Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA – sequence: 4 givenname: Yudong orcidid: 0000-0002-3496-5076 surname: Wang fullname: Wang, Yudong organization: Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA – sequence: 5 givenname: Nengneng surname: Xu fullname: Xu, Nengneng organization: Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA – sequence: 6 givenname: Xiao‐Dong surname: Zhou fullname: Zhou, Xiao‐Dong organization: Department of Chemical & Biomolecular Engineering University of Connecticut Storrs Connecticut USA, Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA, School of Mechanical, Aerospace, and Manufacturing Engineering University of Connecticut Storrs Connecticut USA, Department of Materials Science and Engineering University of Connecticut Storrs Connecticut USA |
BookMark | eNot0L1OwzAUBWALFYm2sPAEnpFSfJ0fNyOqCkWqxAITQ3Tt3KSuUruyU5RuPAOPyJPQAmc5OssZvgkbOe-IsVsQMzjlfouGZkqASC_YGPIcEllCMWJjIYRM1FyKKzaJcXuaUM6zMXtfDvvOB-taHqj2A9e0wQ_rA_cN39mBar5D16KjSN-fX8Zr7Hoe99ZRx_1ga4q83wR_aDfcOh5tf-DosDtGG6_ZZYNdpJv_nrK3x-XrYpWsX56eFw_rxEAp-yRXZdZIDZAZVEpijSYFklQIDaSNIiWwllqmUjRz3ei80CoVlJdKkzJFlk7Z3d-vCT7GQE21D3aH4ViBqM4s1Zml-mVJfwDQ91qn |
Cites_doi | 10.1149/1.1393891 10.1016/S0009-2509(54)80005-4 10.1149/1.2729362 10.1016/j.jallcom.2017.05.221 10.1016/0022-3697(57)90034-3 10.1088/1361-648X/abd573 10.1016/S0040-6031(97)00299-2 10.1007/BF02403408 10.1016/j.electacta.2015.03.032 10.1007/s10008-012-1952-8 10.1016/j.cej.2022.137425 10.1016/j.ijhydene.2006.08.048 10.1021/ic501134y 10.1039/D4MH00285G 10.1002/cssc.201402699 10.1149/2.0541414jes 10.1016/j.jallcom.2022.167645 10.1021/ja210924t 10.1038/s41570-018-0046-2 10.1111/j.1151-2916.1963.tb13790.x 10.1016/j.electacta.2022.141477 10.1016/j.electacta.2014.01.161 10.1039/C8DT04137G 10.1016/j.apsusc.2019.03.085 10.1016/j.ijhydene.2017.08.005 10.1016/j.physb.2014.10.024 10.1149/1945-7111/abae3a 10.1039/C7CY01957B 10.1149/1.1854122 10.1016/j.jssc.2008.11.004 10.1149/1.1990462 10.1016/j.microc.2021.106514 10.1007/s10973-009-0557-7 10.1016/j.ijhydene.2023.01.263 10.1038/ncomms8345 10.1002/celc.201801831 10.1021/acs.inorgchem.1c02379 10.1149/1.3240597 10.1016/j.solidstatesciences.2009.11.018 10.1016/j.apcatb.2010.11.043 10.1016/j.jcat.2005.10.031 10.1016/j.apsusc.2018.01.242 10.1021/acscatal.7b01913 10.1016/j.fuel.2023.129689 10.1021/jacs.6b05958 10.1016/j.ssi.2004.10.004 10.1002/ppsc.201700097 10.3390/app132312702 10.1111/j.1551-2916.2007.01522.x 10.1021/acs.jpcc.6b01440 10.1021/am508766s |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1111/jace.70103 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
ExternalDocumentID | 10_1111_jace_70103 |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1OB 1OC 29L 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABJNI ABPVW ACAHQ ACBEA ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAP EBS ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QM1 QN7 R.K RAX ROL RX1 SJN SUPJJ TAE TN5 UB1 UPT V8K W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WXSBR WYISQ XG1 YQT ZZTAW ~02 ~IA ~WT |
ID | FETCH-LOGICAL-c192t-5794f2b114ca772adac31e2e60b1ebc7e70ad2b2320f8bfb56b730e597be7c643 |
ISSN | 0002-7820 |
IngestDate | Wed Jul 30 23:57:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c192t-5794f2b114ca772adac31e2e60b1ebc7e70ad2b2320f8bfb56b730e597be7c643 |
ORCID | 0000-0002-3496-5076 |
ParticipantIDs | crossref_primary_10_1111_jace_70103 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-27 |
PublicationDateYYYYMMDD | 2025-07-27 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 2025 |
References | Blanchet MD (e_1_2_6_15_1) 2021; 33 Eseva E (e_1_2_6_11_1) 2024; 357 Habjanič J (e_1_2_6_6_1) 2014; 53 Li C (e_1_2_6_9_1) 2015; 6 Yang S (e_1_2_6_28_1) 2017; 721 Han H (e_1_2_6_38_1) 2016; 120 Vargas MJG (e_1_2_6_24_1) 2007; 7 Zhang X (e_1_2_6_8_1) 2023; 437 Petric A (e_1_2_6_39_1) 2007; 90 Mardare CC (e_1_2_6_25_1) 2009; 156 Naveen AN (e_1_2_6_3_1) 2014; 125 Shahanas T (e_1_2_6_2_1) 2023; 933 Peng L (e_1_2_6_52_1) 2023; 48 Lee S (e_1_2_6_27_1) 2014; 161 Yang Z (e_1_2_6_19_1) 2005; 8 Bordeneuve H (e_1_2_6_41_1) 2009; 182 Bulavchenko OA (e_1_2_6_36_1) 2021; 60 Zhang L (e_1_2_6_30_1) 2019; 6 Zeng L (e_1_2_6_33_1) 2018; 2 Menezes PW (e_1_2_6_7_1) 2015; 8 Christel L (e_1_2_6_47_1) 1997; 306 Zhang Y (e_1_2_6_29_1) 2023; 13 Liang Y (e_1_2_6_14_1) 2012; 134 Chesson DA (e_1_2_6_17_1) 2020; 167 Naka S (e_1_2_6_43_1) 1972; 7 Mars P (e_1_2_6_32_1) 1954; 3 Kumar R (e_1_2_6_5_1) 2019; 481 Bulavchenko OA (e_1_2_6_37_1) 2018; 47 Jing M (e_1_2_6_4_1) 2015; 165 Yang Z (e_1_2_6_21_1) 2005; 152 Redekar R (e_1_2_6_35_1) 2022; 450 Kruk A (e_1_2_6_26_1) 2013; 17 Qaseem A (e_1_2_6_13_1) 2017; 34 Zhu JH (e_1_2_6_18_1) 2017; 42 Wang S (e_1_2_6_31_1) 2015; 7 Zhang N (e_1_2_6_46_1) 2016; 138 Bordeneuve H (e_1_2_6_42_1) 2010; 12 Gac W (e_1_2_6_51_1) 2018; 440 Aukrust E (e_1_2_6_40_1) 1963; 46 Liu M (e_1_2_6_48_1) 2024; 11 Naveen AN (e_1_2_6_45_1) 2015; 457 Manjula N (e_1_2_6_12_1) 2021; 168 Zhang Q (e_1_2_6_10_1) 2011; 102 Bordeneuve H (e_1_2_6_44_1) 2010; 101 Ruiz Puigdollers A (e_1_2_6_34_1) 2017; 7 Wang W (e_1_2_6_50_1) 2018; 8 Yang Z (e_1_2_6_23_1) 2007; 32 McClure DS (e_1_2_6_16_1) 1957; 3 Bezemer G (e_1_2_6_49_1) 2006; 237 Larring Y (e_1_2_6_20_1) 2000; 147 Chen X (e_1_2_6_22_1) 2005; 176 |
References_xml | – volume: 147 start-page: 3251 issue: 9 year: 2000 ident: e_1_2_6_20_1 article-title: Spinel and perovskite functional layers between Plansee metallic interconnect (Cr‒5 wt% Fe‒1 wt% Y2O3) and ceramic (La0.85Sr0.15)0.91MnO3 cathode materials for solid oxide fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.1393891 – volume: 3 start-page: 41 year: 1954 ident: e_1_2_6_32_1 article-title: Oxidations carried out by means of vanadium oxide catalysts publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(54)80005-4 – volume: 7 start-page: 2399 issue: 1 year: 2007 ident: e_1_2_6_24_1 article-title: Use of SOFC metallic interconnect coated with spinel protective layers using the APS technology publication-title: ECS Trans doi: 10.1149/1.2729362 – volume: 721 start-page: 482 year: 2017 ident: e_1_2_6_28_1 article-title: Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi‐functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.05.221 – volume: 3 start-page: 311 issue: 3 year: 1957 ident: e_1_2_6_16_1 article-title: The distribution of transition metal cations in spinels publication-title: J Phys Chem Solids doi: 10.1016/0022-3697(57)90034-3 – volume: 33 issue: 12 year: 2021 ident: e_1_2_6_15_1 article-title: Electronic and structural properties of single‐crystal Jahn–Teller active Co1+ x Mn2− x O4 thin films publication-title: J Phys Condens Matter doi: 10.1088/1361-648X/abd573 – volume: 306 start-page: 51 issue: 1 year: 1997 ident: e_1_2_6_47_1 article-title: Temperature programmed reduction studies of nickel manganite spinels publication-title: Thermochim Acta doi: 10.1016/S0040-6031(97)00299-2 – volume: 7 start-page: 441 year: 1972 ident: e_1_2_6_43_1 article-title: On the formation of solid solution in Co3− x MnxO4 system publication-title: J Mater Sci doi: 10.1007/BF02403408 – volume: 165 start-page: 198 year: 2015 ident: e_1_2_6_4_1 article-title: Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.03.032 – volume: 17 start-page: 993 year: 2013 ident: e_1_2_6_26_1 article-title: Mn–Co spinel protective–conductive coating on AL453 ferritic stainless steel for IT‐SOFC interconnect applications publication-title: J Solid State Electrochem doi: 10.1007/s10008-012-1952-8 – volume: 450 year: 2022 ident: e_1_2_6_35_1 article-title: Review on recent advancements in chemically synthesized manganese cobalt oxide (MnCo2O4) and its composites for energy storage application publication-title: Chem Eng J doi: 10.1016/j.cej.2022.137425 – volume: 32 start-page: 3648 issue: 16 year: 2007 ident: e_1_2_6_23_1 article-title: (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2006.08.048 – volume: 53 start-page: 9633 issue: 18 year: 2014 ident: e_1_2_6_6_1 article-title: A 3D oxalate‐based network as a precursor for the CoMn2O4 spinel: synthesis and structural and magnetic studies publication-title: Inorg Chem doi: 10.1021/ic501134y – volume: 11 start-page: 3316 year: 2024 ident: e_1_2_6_48_1 article-title: Construction of phase‐separated Co/MnO synergistic catalysts and integration onto sponge for rapid removal of multiple contaminants publication-title: Materials Horizons doi: 10.1039/D4MH00285G – volume: 8 start-page: 164 issue: 1 year: 2015 ident: e_1_2_6_7_1 article-title: Cobalt–manganese‐based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions publication-title: ChemSusChem doi: 10.1002/cssc.201402699 – volume: 161 issue: 14 year: 2014 ident: e_1_2_6_27_1 article-title: Highly dense Mn‒Co spinel coating for protection of metallic interconnect of solid oxide fuel cells publication-title: J Electrochem Soc doi: 10.1149/2.0541414jes – volume: 933 year: 2023 ident: e_1_2_6_2_1 article-title: Inverse spinel cobalt manganese oxide nanosphere materials as an electrode for high‐performance asymmetric supercapacitor publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.167645 – volume: 134 start-page: 3517 issue: 7 year: 2012 ident: e_1_2_6_14_1 article-title: Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts publication-title: J Am Chem Soc doi: 10.1021/ja210924t – volume: 2 start-page: 349 issue: 11 year: 2018 ident: e_1_2_6_33_1 article-title: Metal oxide redox chemistry for chemical looping processes publication-title: Nat Rev Chem doi: 10.1038/s41570-018-0046-2 – volume: 46 start-page: 511 issue: 10 year: 1963 ident: e_1_2_6_40_1 article-title: Phase relations in the system cobalt oxide–manganese oxide in air publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1963.tb13790.x – volume: 437 year: 2023 ident: e_1_2_6_8_1 article-title: Manganese‐doped cobalt spinel oxide as bifunctional oxygen electrocatalyst toward high‐stable rechargeable Zn‐air battery publication-title: Electrochim Acta doi: 10.1016/j.electacta.2022.141477 – volume: 125 start-page: 404 year: 2014 ident: e_1_2_6_3_1 article-title: Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.01.161 – volume: 47 start-page: 17153 issue: 47 year: 2018 ident: e_1_2_6_37_1 article-title: Reduction of double manganese–cobalt oxides: in situ XRD and TPR study publication-title: Dalton Trans doi: 10.1039/C8DT04137G – volume: 481 start-page: 296 year: 2019 ident: e_1_2_6_5_1 article-title: Facile and fast microwave‐assisted formation of reduced graphene oxide‐wrapped manganese cobaltite ternary hybrids as improved supercapacitor electrode material publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.03.085 – volume: 42 start-page: 24278 issue: 38 year: 2017 ident: e_1_2_6_18_1 article-title: Cathode‐side electrical contact and contact materials for solid oxide fuel cell stacking: a review publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2017.08.005 – volume: 457 start-page: 251 year: 2015 ident: e_1_2_6_45_1 article-title: Tailoring structural, optical and magnetic properties of spinel type cobalt oxide (Co3O4) by manganese doping publication-title: Physica B doi: 10.1016/j.physb.2014.10.024 – volume: 167 issue: 12 year: 2020 ident: e_1_2_6_17_1 article-title: Effect of off‐stoichiometry on electrical conductivity in Ni‒Fe and Mn‒Co spinel systems publication-title: J Electrochem Soc doi: 10.1149/1945-7111/abae3a – volume: 8 start-page: 480 issue: 2 year: 2018 ident: e_1_2_6_50_1 article-title: Metallic cobalt modified MnO–C nanocrystalline composites as an efficient bifunctional oxygen electrocatalyst publication-title: Catal Sci Technol doi: 10.1039/C7CY01957B – volume: 8 start-page: A168 issue: 3 year: 2005 ident: e_1_2_6_19_1 article-title: Mn1.5Co1.5O4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications publication-title: Electrochem Solid‐State Lett doi: 10.1149/1.1854122 – volume: 182 start-page: 396 issue: 2 year: 2009 ident: e_1_2_6_41_1 article-title: Structure and electrical properties of single‐phase cobalt manganese oxide spinels Mn3− x Co x O4 sintered classically and by spark plasma sintering (SPS) publication-title: J Solid State Chem doi: 10.1016/j.jssc.2008.11.004 – volume: 152 issue: 9 year: 2005 ident: e_1_2_6_21_1 article-title: Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects publication-title: J Electrochem Soc doi: 10.1149/1.1990462 – volume: 168 year: 2021 ident: e_1_2_6_12_1 article-title: Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4‐nitrophenol detection in toxic tannery waste publication-title: Microchem J doi: 10.1016/j.microc.2021.106514 – volume: 101 start-page: 137 year: 2010 ident: e_1_2_6_44_1 article-title: Cation distribution in manganese cobaltite spinels Co3− x Mn x O4 (0 ≤ x ≤ 1) determined by thermal analysis publication-title: J Therm Anal Calorim doi: 10.1007/s10973-009-0557-7 – volume: 48 start-page: 19126 issue: 50 year: 2023 ident: e_1_2_6_52_1 article-title: Efficient MnO and Co nanoparticles coated with N‐doped carbon as a bifunctional electrocatalyst for rechargeable Zn‐air batteries publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.01.263 – volume: 6 start-page: 7345 issue: 1 year: 2015 ident: e_1_2_6_9_1 article-title: Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis publication-title: Nat Commun doi: 10.1038/ncomms8345 – volume: 6 start-page: 1359 issue: 5 year: 2019 ident: e_1_2_6_30_1 article-title: Direct electrolysis of CO2 in a symmetrical solid oxide electrolysis cell with spinel MnCo2O4 as electrode publication-title: ChemElectroChem doi: 10.1002/celc.201801831 – volume: 60 start-page: 16518 issue: 21 year: 2021 ident: e_1_2_6_36_1 article-title: In situ study of reduction of Mn x Co3– x O4 mixed oxides: the role of manganese content publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.1c02379 – volume: 156 issue: 12 year: 2009 ident: e_1_2_6_25_1 article-title: Thermally oxidized Mn–Co thin films as protective coatings for SOFC interconnects publication-title: J Electrochem Soc doi: 10.1149/1.3240597 – volume: 12 start-page: 379 issue: 3 year: 2010 ident: e_1_2_6_42_1 article-title: Structural variations and cation distributions in Mn3− x Co x O4 (0 ≤ x ≤ 3) dense ceramics using neutron diffraction data publication-title: Solid State Sci doi: 10.1016/j.solidstatesciences.2009.11.018 – volume: 102 start-page: 207 issue: 1 year: 2011 ident: e_1_2_6_10_1 article-title: Manganese‐promoted cobalt oxide as efficient and stable non‐noble metal catalyst for preferential oxidation of CO in H2 stream publication-title: Appl Catal B doi: 10.1016/j.apcatb.2010.11.043 – volume: 237 start-page: 152 issue: 1 year: 2006 ident: e_1_2_6_49_1 article-title: Investigation of promoter effects of manganese oxide on carbon nanofiber‐supported cobalt catalysts for Fischer–Tropsch synthesis publication-title: J Catal doi: 10.1016/j.jcat.2005.10.031 – volume: 440 start-page: 1047 year: 2018 ident: e_1_2_6_51_1 article-title: Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.01.242 – volume: 7 start-page: 6493 issue: 10 year: 2017 ident: e_1_2_6_34_1 article-title: Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies publication-title: ACS Catal doi: 10.1021/acscatal.7b01913 – volume: 357 year: 2024 ident: e_1_2_6_11_1 article-title: Cobalt‒manganese spinel structure catalysts for aerobic oxidative desulfurization publication-title: Fuel doi: 10.1016/j.fuel.2023.129689 – volume: 138 start-page: 12894 issue: 39 year: 2016 ident: e_1_2_6_46_1 article-title: Cation‐deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn‐ion battery publication-title: J Am Chem Soc doi: 10.1021/jacs.6b05958 – volume: 176 start-page: 425 issue: 5 year: 2005 ident: e_1_2_6_22_1 article-title: Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties publication-title: Solid State Ion doi: 10.1016/j.ssi.2004.10.004 – volume: 34 issue: 10 year: 2017 ident: e_1_2_6_13_1 article-title: Reduced graphene oxide decorated with manganese cobalt oxide as multifunctional material for mechanically rechargeable and hybrid zinc–air batteries publication-title: Part Part Syst Charact doi: 10.1002/ppsc.201700097 – volume: 13 issue: 23 year: 2023 ident: e_1_2_6_29_1 article-title: Manganese‒cobalt spinel nanoparticles anchored on carbon nanotubes as bi‐functional catalysts for oxygen reduction and oxygen evolution reactions publication-title: Appl Sci doi: 10.3390/app132312702 – volume: 90 start-page: 1515 issue: 5 year: 2007 ident: e_1_2_6_39_1 article-title: Electrical conductivity and thermal expansion of spinels at elevated temperatures publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2007.01522.x – volume: 120 start-page: 13667 issue: 25 year: 2016 ident: e_1_2_6_38_1 article-title: Effect of high cobalt concentration on hopping motion in cobalt manganese spinel oxide (Co x Mn3– x O4, x ≥ 2.3) publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b01440 – volume: 7 start-page: 4327 issue: 7 year: 2015 ident: e_1_2_6_31_1 article-title: Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light publication-title: ACS Appl Mater Interfaces doi: 10.1021/am508766s |
SSID | ssj0001984 |
Score | 2.474212 |
SecondaryResourceType | online_first |
Snippet | Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that... |
SourceID | crossref |
SourceType | Index Database |
Title | Exploring redox behavior of mixed manganese‒cobalt spinel oxides through in situ analysis |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe4FDBQUEFJClcouyWrv5PKIKVIHg0G5REYfV2HHYVG226ibS0hO_gZ_IL2H8ETsCKhUu0W6UbFaZp_Gb8cwbQl6Vhaw45BAzVso44QxiIWUd1wUgHal4WYDud_7wMTs8Sd6dpqehrMh0l3RiIq__2lfyP1bFc2hX3SX7D5b1P4on8DPaF49oYTzeysahgE7Lfq59z73ZNG_WyCUvoP0KesjkUNTApRYA6aLVJdJL5KHrptIiD25aT9NGq6brI3BSJTdQ11E7ShsdqCs9036o_wwFAGew8KUUM11RtAhqBiCUL-3wyZ338O0couNJyM-arZPmerHsQ-LfOqfPfbV0i67LWfBUJ0OtBMDID2ulPrsKOdebspiXtvPyJscOUk1yPZoiLF_Dlv1vq5qvNfRRDt47N_feIVscgwoTgB8FsTFWFskQLOn_5sRsTd2Xf-6Ivox4yOw-2XZWoK8tGh6QDdXukHsjWUn89qlZ9faa1UPyxaOEGpTQASV0WVODEupR8vP7D4sPavFBLT6owwdtWqrxQQd8PCInb9_MDg5jN1IjlkjluzhF91tzgUGwBHwFUIHcZ4qrbCqYEjJX-RQqLpBmT-tC1CLNBC4BCqNOoXKJ7PUx2WyXrXpCaJLIvMrKWhR6pzbJCgVoQsVSke1nac2ekr3hTc0vrXLK_E9bPLvVVbvkboDRc7LZXfXqBZLBTrw0NvwFNS1jOA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+redox+behavior+of+mixed+manganese%E2%80%92cobalt+spinel+oxides+through+in+situ+analysis&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Adjah%E2%80%90Tetteh%2C+Christabel&rft.au=Smith%2C+Kayla+S.&rft.au=He%2C+Zizhou&rft.au=Wang%2C+Yudong&rft.date=2025-07-27&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111%2Fjace.70103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jace_70103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |