Exploring redox behavior of mixed manganese‒cobalt spinel oxides through in situ analysis

Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn x Co 3‒ x O 4 (MCO, x  = 0‒3) through in situ...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society
Main Authors Adjah‐Tetteh, Christabel, Smith, Kayla S., He, Zizhou, Wang, Yudong, Xu, Nengneng, Zhou, Xiao‐Dong
Format Journal Article
LanguageEnglish
Published 27.07.2025
Online AccessGet full text

Cover

Loading…
Abstract Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn x Co 3‒ x O 4 (MCO, x  = 0‒3) through in situ thermogravimetric and structural analysis to evaluate how the MCO composition affects structure, phase evolution, and redox transition temperatures. Reduction in MCO proceeds via two steps whereas reoxidation of the reduction products (MnO and Co) commonly occurs in a single step. Manganese is seen to reduce the reoxidation temperatures ‐ the spinel peak was first evident at 300°C for x = 2.4 whereas that of x = 0.6 appeared at 400°C . Cobalt‐ and manganese‐rich contents ( x  = 0.6 and 2.4) gave rise to CoO and Mn 2 O 3 secondary phases respectively during reoxidation. These secondary phases were first observed when the temperature reached 500°C, however, such phases diminished with increasing temperature, yielding a single phase at 800°C. In contrast, the mid‐range composition ( x  = 1.8) yields single spinel phases at relatively lower temperatures. We also studied the relationship between composition and morphology of exsolved Co and MnO particles during reduction, which are of importance to catalytic applications. These findings can offer guidelines for designing MCO for catalytic and electrochemical applications.
AbstractList Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that depend on the oxidation states of Mn and Co ions. In this work, we investigated a series of Mn x Co 3‒ x O 4 (MCO, x  = 0‒3) through in situ thermogravimetric and structural analysis to evaluate how the MCO composition affects structure, phase evolution, and redox transition temperatures. Reduction in MCO proceeds via two steps whereas reoxidation of the reduction products (MnO and Co) commonly occurs in a single step. Manganese is seen to reduce the reoxidation temperatures ‐ the spinel peak was first evident at 300°C for x = 2.4 whereas that of x = 0.6 appeared at 400°C . Cobalt‐ and manganese‐rich contents ( x  = 0.6 and 2.4) gave rise to CoO and Mn 2 O 3 secondary phases respectively during reoxidation. These secondary phases were first observed when the temperature reached 500°C, however, such phases diminished with increasing temperature, yielding a single phase at 800°C. In contrast, the mid‐range composition ( x  = 1.8) yields single spinel phases at relatively lower temperatures. We also studied the relationship between composition and morphology of exsolved Co and MnO particles during reduction, which are of importance to catalytic applications. These findings can offer guidelines for designing MCO for catalytic and electrochemical applications.
Author Adjah‐Tetteh, Christabel
Smith, Kayla S.
Xu, Nengneng
Zhou, Xiao‐Dong
He, Zizhou
Wang, Yudong
Author_xml – sequence: 1
  givenname: Christabel
  surname: Adjah‐Tetteh
  fullname: Adjah‐Tetteh, Christabel
  organization: Department of Chemical & Biomolecular Engineering University of Connecticut Storrs Connecticut USA, Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA
– sequence: 2
  givenname: Kayla S.
  surname: Smith
  fullname: Smith, Kayla S.
  organization: Department of Chemical & Biomolecular Engineering University of Connecticut Storrs Connecticut USA, Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA
– sequence: 3
  givenname: Zizhou
  surname: He
  fullname: He, Zizhou
  organization: Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA
– sequence: 4
  givenname: Yudong
  orcidid: 0000-0002-3496-5076
  surname: Wang
  fullname: Wang, Yudong
  organization: Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA
– sequence: 5
  givenname: Nengneng
  surname: Xu
  fullname: Xu, Nengneng
  organization: Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA
– sequence: 6
  givenname: Xiao‐Dong
  surname: Zhou
  fullname: Zhou, Xiao‐Dong
  organization: Department of Chemical & Biomolecular Engineering University of Connecticut Storrs Connecticut USA, Center for Clean Energy Engineering University of Connecticut Storrs Connecticut USA, School of Mechanical, Aerospace, and Manufacturing Engineering University of Connecticut Storrs Connecticut USA, Department of Materials Science and Engineering University of Connecticut Storrs Connecticut USA
BookMark eNot0L1OwzAUBWALFYm2sPAEnpFSfJ0fNyOqCkWqxAITQ3Tt3KSuUruyU5RuPAOPyJPQAmc5OssZvgkbOe-IsVsQMzjlfouGZkqASC_YGPIcEllCMWJjIYRM1FyKKzaJcXuaUM6zMXtfDvvOB-taHqj2A9e0wQ_rA_cN39mBar5D16KjSN-fX8Zr7Hoe99ZRx_1ga4q83wR_aDfcOh5tf-DosDtGG6_ZZYNdpJv_nrK3x-XrYpWsX56eFw_rxEAp-yRXZdZIDZAZVEpijSYFklQIDaSNIiWwllqmUjRz3ei80CoVlJdKkzJFlk7Z3d-vCT7GQE21D3aH4ViBqM4s1Zml-mVJfwDQ91qn
Cites_doi 10.1149/1.1393891
10.1016/S0009-2509(54)80005-4
10.1149/1.2729362
10.1016/j.jallcom.2017.05.221
10.1016/0022-3697(57)90034-3
10.1088/1361-648X/abd573
10.1016/S0040-6031(97)00299-2
10.1007/BF02403408
10.1016/j.electacta.2015.03.032
10.1007/s10008-012-1952-8
10.1016/j.cej.2022.137425
10.1016/j.ijhydene.2006.08.048
10.1021/ic501134y
10.1039/D4MH00285G
10.1002/cssc.201402699
10.1149/2.0541414jes
10.1016/j.jallcom.2022.167645
10.1021/ja210924t
10.1038/s41570-018-0046-2
10.1111/j.1151-2916.1963.tb13790.x
10.1016/j.electacta.2022.141477
10.1016/j.electacta.2014.01.161
10.1039/C8DT04137G
10.1016/j.apsusc.2019.03.085
10.1016/j.ijhydene.2017.08.005
10.1016/j.physb.2014.10.024
10.1149/1945-7111/abae3a
10.1039/C7CY01957B
10.1149/1.1854122
10.1016/j.jssc.2008.11.004
10.1149/1.1990462
10.1016/j.microc.2021.106514
10.1007/s10973-009-0557-7
10.1016/j.ijhydene.2023.01.263
10.1038/ncomms8345
10.1002/celc.201801831
10.1021/acs.inorgchem.1c02379
10.1149/1.3240597
10.1016/j.solidstatesciences.2009.11.018
10.1016/j.apcatb.2010.11.043
10.1016/j.jcat.2005.10.031
10.1016/j.apsusc.2018.01.242
10.1021/acscatal.7b01913
10.1016/j.fuel.2023.129689
10.1021/jacs.6b05958
10.1016/j.ssi.2004.10.004
10.1002/ppsc.201700097
10.3390/app132312702
10.1111/j.1551-2916.2007.01522.x
10.1021/acs.jpcc.6b01440
10.1021/am508766s
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/jace.70103
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
ExternalDocumentID 10_1111_jace_70103
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1OB
1OC
29L
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACBEA
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAP
EBS
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QM1
QN7
R.K
RAX
ROL
RX1
SJN
SUPJJ
TAE
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
YQT
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-c192t-5794f2b114ca772adac31e2e60b1ebc7e70ad2b2320f8bfb56b730e597be7c643
ISSN 0002-7820
IngestDate Wed Jul 30 23:57:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c192t-5794f2b114ca772adac31e2e60b1ebc7e70ad2b2320f8bfb56b730e597be7c643
ORCID 0000-0002-3496-5076
ParticipantIDs crossref_primary_10_1111_jace_70103
PublicationCentury 2000
PublicationDate 2025-07-27
PublicationDateYYYYMMDD 2025-07-27
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-27
  day: 27
PublicationDecade 2020
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2025
References Blanchet MD (e_1_2_6_15_1) 2021; 33
Eseva E (e_1_2_6_11_1) 2024; 357
Habjanič J (e_1_2_6_6_1) 2014; 53
Li C (e_1_2_6_9_1) 2015; 6
Yang S (e_1_2_6_28_1) 2017; 721
Han H (e_1_2_6_38_1) 2016; 120
Vargas MJG (e_1_2_6_24_1) 2007; 7
Zhang X (e_1_2_6_8_1) 2023; 437
Petric A (e_1_2_6_39_1) 2007; 90
Mardare CC (e_1_2_6_25_1) 2009; 156
Naveen AN (e_1_2_6_3_1) 2014; 125
Shahanas T (e_1_2_6_2_1) 2023; 933
Peng L (e_1_2_6_52_1) 2023; 48
Lee S (e_1_2_6_27_1) 2014; 161
Yang Z (e_1_2_6_19_1) 2005; 8
Bordeneuve H (e_1_2_6_41_1) 2009; 182
Bulavchenko OA (e_1_2_6_36_1) 2021; 60
Zhang L (e_1_2_6_30_1) 2019; 6
Zeng L (e_1_2_6_33_1) 2018; 2
Menezes PW (e_1_2_6_7_1) 2015; 8
Christel L (e_1_2_6_47_1) 1997; 306
Zhang Y (e_1_2_6_29_1) 2023; 13
Liang Y (e_1_2_6_14_1) 2012; 134
Chesson DA (e_1_2_6_17_1) 2020; 167
Naka S (e_1_2_6_43_1) 1972; 7
Mars P (e_1_2_6_32_1) 1954; 3
Kumar R (e_1_2_6_5_1) 2019; 481
Bulavchenko OA (e_1_2_6_37_1) 2018; 47
Jing M (e_1_2_6_4_1) 2015; 165
Yang Z (e_1_2_6_21_1) 2005; 152
Redekar R (e_1_2_6_35_1) 2022; 450
Kruk A (e_1_2_6_26_1) 2013; 17
Qaseem A (e_1_2_6_13_1) 2017; 34
Zhu JH (e_1_2_6_18_1) 2017; 42
Wang S (e_1_2_6_31_1) 2015; 7
Zhang N (e_1_2_6_46_1) 2016; 138
Bordeneuve H (e_1_2_6_42_1) 2010; 12
Gac W (e_1_2_6_51_1) 2018; 440
Aukrust E (e_1_2_6_40_1) 1963; 46
Liu M (e_1_2_6_48_1) 2024; 11
Naveen AN (e_1_2_6_45_1) 2015; 457
Manjula N (e_1_2_6_12_1) 2021; 168
Zhang Q (e_1_2_6_10_1) 2011; 102
Bordeneuve H (e_1_2_6_44_1) 2010; 101
Ruiz Puigdollers A (e_1_2_6_34_1) 2017; 7
Wang W (e_1_2_6_50_1) 2018; 8
Yang Z (e_1_2_6_23_1) 2007; 32
McClure DS (e_1_2_6_16_1) 1957; 3
Bezemer G (e_1_2_6_49_1) 2006; 237
Larring Y (e_1_2_6_20_1) 2000; 147
Chen X (e_1_2_6_22_1) 2005; 176
References_xml – volume: 147
  start-page: 3251
  issue: 9
  year: 2000
  ident: e_1_2_6_20_1
  article-title: Spinel and perovskite functional layers between Plansee metallic interconnect (Cr‒5 wt% Fe‒1 wt% Y2O3) and ceramic (La0.85Sr0.15)0.91MnO3 cathode materials for solid oxide fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1393891
– volume: 3
  start-page: 41
  year: 1954
  ident: e_1_2_6_32_1
  article-title: Oxidations carried out by means of vanadium oxide catalysts
  publication-title: Chem Eng Sci
  doi: 10.1016/S0009-2509(54)80005-4
– volume: 7
  start-page: 2399
  issue: 1
  year: 2007
  ident: e_1_2_6_24_1
  article-title: Use of SOFC metallic interconnect coated with spinel protective layers using the APS technology
  publication-title: ECS Trans
  doi: 10.1149/1.2729362
– volume: 721
  start-page: 482
  year: 2017
  ident: e_1_2_6_28_1
  article-title: Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi‐functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.05.221
– volume: 3
  start-page: 311
  issue: 3
  year: 1957
  ident: e_1_2_6_16_1
  article-title: The distribution of transition metal cations in spinels
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(57)90034-3
– volume: 33
  issue: 12
  year: 2021
  ident: e_1_2_6_15_1
  article-title: Electronic and structural properties of single‐crystal Jahn–Teller active Co1+ x Mn2− x O4 thin films
  publication-title: J Phys Condens Matter
  doi: 10.1088/1361-648X/abd573
– volume: 306
  start-page: 51
  issue: 1
  year: 1997
  ident: e_1_2_6_47_1
  article-title: Temperature programmed reduction studies of nickel manganite spinels
  publication-title: Thermochim Acta
  doi: 10.1016/S0040-6031(97)00299-2
– volume: 7
  start-page: 441
  year: 1972
  ident: e_1_2_6_43_1
  article-title: On the formation of solid solution in Co3− x MnxO4 system
  publication-title: J Mater Sci
  doi: 10.1007/BF02403408
– volume: 165
  start-page: 198
  year: 2015
  ident: e_1_2_6_4_1
  article-title: Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.03.032
– volume: 17
  start-page: 993
  year: 2013
  ident: e_1_2_6_26_1
  article-title: Mn–Co spinel protective–conductive coating on AL453 ferritic stainless steel for IT‐SOFC interconnect applications
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-012-1952-8
– volume: 450
  year: 2022
  ident: e_1_2_6_35_1
  article-title: Review on recent advancements in chemically synthesized manganese cobalt oxide (MnCo2O4) and its composites for energy storage application
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137425
– volume: 32
  start-page: 3648
  issue: 16
  year: 2007
  ident: e_1_2_6_23_1
  article-title: (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2006.08.048
– volume: 53
  start-page: 9633
  issue: 18
  year: 2014
  ident: e_1_2_6_6_1
  article-title: A 3D oxalate‐based network as a precursor for the CoMn2O4 spinel: synthesis and structural and magnetic studies
  publication-title: Inorg Chem
  doi: 10.1021/ic501134y
– volume: 11
  start-page: 3316
  year: 2024
  ident: e_1_2_6_48_1
  article-title: Construction of phase‐separated Co/MnO synergistic catalysts and integration onto sponge for rapid removal of multiple contaminants
  publication-title: Materials Horizons
  doi: 10.1039/D4MH00285G
– volume: 8
  start-page: 164
  issue: 1
  year: 2015
  ident: e_1_2_6_7_1
  article-title: Cobalt–manganese‐based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402699
– volume: 161
  issue: 14
  year: 2014
  ident: e_1_2_6_27_1
  article-title: Highly dense Mn‒Co spinel coating for protection of metallic interconnect of solid oxide fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0541414jes
– volume: 933
  year: 2023
  ident: e_1_2_6_2_1
  article-title: Inverse spinel cobalt manganese oxide nanosphere materials as an electrode for high‐performance asymmetric supercapacitor
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2022.167645
– volume: 134
  start-page: 3517
  issue: 7
  year: 2012
  ident: e_1_2_6_14_1
  article-title: Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/ja210924t
– volume: 2
  start-page: 349
  issue: 11
  year: 2018
  ident: e_1_2_6_33_1
  article-title: Metal oxide redox chemistry for chemical looping processes
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-018-0046-2
– volume: 46
  start-page: 511
  issue: 10
  year: 1963
  ident: e_1_2_6_40_1
  article-title: Phase relations in the system cobalt oxide–manganese oxide in air
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1963.tb13790.x
– volume: 437
  year: 2023
  ident: e_1_2_6_8_1
  article-title: Manganese‐doped cobalt spinel oxide as bifunctional oxygen electrocatalyst toward high‐stable rechargeable Zn‐air battery
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2022.141477
– volume: 125
  start-page: 404
  year: 2014
  ident: e_1_2_6_3_1
  article-title: Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2014.01.161
– volume: 47
  start-page: 17153
  issue: 47
  year: 2018
  ident: e_1_2_6_37_1
  article-title: Reduction of double manganese–cobalt oxides: in situ XRD and TPR study
  publication-title: Dalton Trans
  doi: 10.1039/C8DT04137G
– volume: 481
  start-page: 296
  year: 2019
  ident: e_1_2_6_5_1
  article-title: Facile and fast microwave‐assisted formation of reduced graphene oxide‐wrapped manganese cobaltite ternary hybrids as improved supercapacitor electrode material
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.03.085
– volume: 42
  start-page: 24278
  issue: 38
  year: 2017
  ident: e_1_2_6_18_1
  article-title: Cathode‐side electrical contact and contact materials for solid oxide fuel cell stacking: a review
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2017.08.005
– volume: 457
  start-page: 251
  year: 2015
  ident: e_1_2_6_45_1
  article-title: Tailoring structural, optical and magnetic properties of spinel type cobalt oxide (Co3O4) by manganese doping
  publication-title: Physica B
  doi: 10.1016/j.physb.2014.10.024
– volume: 167
  issue: 12
  year: 2020
  ident: e_1_2_6_17_1
  article-title: Effect of off‐stoichiometry on electrical conductivity in Ni‒Fe and Mn‒Co spinel systems
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/abae3a
– volume: 8
  start-page: 480
  issue: 2
  year: 2018
  ident: e_1_2_6_50_1
  article-title: Metallic cobalt modified MnO–C nanocrystalline composites as an efficient bifunctional oxygen electrocatalyst
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY01957B
– volume: 8
  start-page: A168
  issue: 3
  year: 2005
  ident: e_1_2_6_19_1
  article-title: Mn1.5Co1.5O4 spinel protection layers on ferritic stainless steels for SOFC interconnect applications
  publication-title: Electrochem Solid‐State Lett
  doi: 10.1149/1.1854122
– volume: 182
  start-page: 396
  issue: 2
  year: 2009
  ident: e_1_2_6_41_1
  article-title: Structure and electrical properties of single‐phase cobalt manganese oxide spinels Mn3− x Co x O4 sintered classically and by spark plasma sintering (SPS)
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2008.11.004
– volume: 152
  issue: 9
  year: 2005
  ident: e_1_2_6_21_1
  article-title: Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1990462
– volume: 168
  year: 2021
  ident: e_1_2_6_12_1
  article-title: Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4‐nitrophenol detection in toxic tannery waste
  publication-title: Microchem J
  doi: 10.1016/j.microc.2021.106514
– volume: 101
  start-page: 137
  year: 2010
  ident: e_1_2_6_44_1
  article-title: Cation distribution in manganese cobaltite spinels Co3− x Mn x O4 (0 ≤ x ≤ 1) determined by thermal analysis
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-009-0557-7
– volume: 48
  start-page: 19126
  issue: 50
  year: 2023
  ident: e_1_2_6_52_1
  article-title: Efficient MnO and Co nanoparticles coated with N‐doped carbon as a bifunctional electrocatalyst for rechargeable Zn‐air batteries
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.01.263
– volume: 6
  start-page: 7345
  issue: 1
  year: 2015
  ident: e_1_2_6_9_1
  article-title: Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis
  publication-title: Nat Commun
  doi: 10.1038/ncomms8345
– volume: 6
  start-page: 1359
  issue: 5
  year: 2019
  ident: e_1_2_6_30_1
  article-title: Direct electrolysis of CO2 in a symmetrical solid oxide electrolysis cell with spinel MnCo2O4 as electrode
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801831
– volume: 60
  start-page: 16518
  issue: 21
  year: 2021
  ident: e_1_2_6_36_1
  article-title: In situ study of reduction of Mn x Co3– x O4 mixed oxides: the role of manganese content
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.1c02379
– volume: 156
  issue: 12
  year: 2009
  ident: e_1_2_6_25_1
  article-title: Thermally oxidized Mn–Co thin films as protective coatings for SOFC interconnects
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3240597
– volume: 12
  start-page: 379
  issue: 3
  year: 2010
  ident: e_1_2_6_42_1
  article-title: Structural variations and cation distributions in Mn3− x Co x O4 (0 ≤  x ≤ 3) dense ceramics using neutron diffraction data
  publication-title: Solid State Sci
  doi: 10.1016/j.solidstatesciences.2009.11.018
– volume: 102
  start-page: 207
  issue: 1
  year: 2011
  ident: e_1_2_6_10_1
  article-title: Manganese‐promoted cobalt oxide as efficient and stable non‐noble metal catalyst for preferential oxidation of CO in H2 stream
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2010.11.043
– volume: 237
  start-page: 152
  issue: 1
  year: 2006
  ident: e_1_2_6_49_1
  article-title: Investigation of promoter effects of manganese oxide on carbon nanofiber‐supported cobalt catalysts for Fischer–Tropsch synthesis
  publication-title: J Catal
  doi: 10.1016/j.jcat.2005.10.031
– volume: 440
  start-page: 1047
  year: 2018
  ident: e_1_2_6_51_1
  article-title: Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.01.242
– volume: 7
  start-page: 6493
  issue: 10
  year: 2017
  ident: e_1_2_6_34_1
  article-title: Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b01913
– volume: 357
  year: 2024
  ident: e_1_2_6_11_1
  article-title: Cobalt‒manganese spinel structure catalysts for aerobic oxidative desulfurization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129689
– volume: 138
  start-page: 12894
  issue: 39
  year: 2016
  ident: e_1_2_6_46_1
  article-title: Cation‐deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn‐ion battery
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b05958
– volume: 176
  start-page: 425
  issue: 5
  year: 2005
  ident: e_1_2_6_22_1
  article-title: Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties
  publication-title: Solid State Ion
  doi: 10.1016/j.ssi.2004.10.004
– volume: 34
  issue: 10
  year: 2017
  ident: e_1_2_6_13_1
  article-title: Reduced graphene oxide decorated with manganese cobalt oxide as multifunctional material for mechanically rechargeable and hybrid zinc–air batteries
  publication-title: Part Part Syst Charact
  doi: 10.1002/ppsc.201700097
– volume: 13
  issue: 23
  year: 2023
  ident: e_1_2_6_29_1
  article-title: Manganese‒cobalt spinel nanoparticles anchored on carbon nanotubes as bi‐functional catalysts for oxygen reduction and oxygen evolution reactions
  publication-title: Appl Sci
  doi: 10.3390/app132312702
– volume: 90
  start-page: 1515
  issue: 5
  year: 2007
  ident: e_1_2_6_39_1
  article-title: Electrical conductivity and thermal expansion of spinels at elevated temperatures
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1551-2916.2007.01522.x
– volume: 120
  start-page: 13667
  issue: 25
  year: 2016
  ident: e_1_2_6_38_1
  article-title: Effect of high cobalt concentration on hopping motion in cobalt manganese spinel oxide (Co x Mn3– x O4, x ≥ 2.3)
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b01440
– volume: 7
  start-page: 4327
  issue: 7
  year: 2015
  ident: e_1_2_6_31_1
  article-title: Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am508766s
SSID ssj0001984
Score 2.474212
SecondaryResourceType online_first
Snippet Investigating the redox behavior of manganese‒cobalt spinel oxides is essential for optimizing their electrical, catalytic, and electrochemical properties that...
SourceID crossref
SourceType Index Database
Title Exploring redox behavior of mixed manganese‒cobalt spinel oxides through in situ analysis
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKe4FDBQUEFJClcouyWrv5PKIKVIHg0G5REYfV2HHYVG226ibS0hO_gZ_IL2H8ETsCKhUu0W6UbFaZp_Gb8cwbQl6Vhaw45BAzVso44QxiIWUd1wUgHal4WYDud_7wMTs8Sd6dpqehrMh0l3RiIq__2lfyP1bFc2hX3SX7D5b1P4on8DPaF49oYTzeysahgE7Lfq59z73ZNG_WyCUvoP0KesjkUNTApRYA6aLVJdJL5KHrptIiD25aT9NGq6brI3BSJTdQ11E7ShsdqCs9036o_wwFAGew8KUUM11RtAhqBiCUL-3wyZ338O0couNJyM-arZPmerHsQ-LfOqfPfbV0i67LWfBUJ0OtBMDID2ulPrsKOdebspiXtvPyJscOUk1yPZoiLF_Dlv1vq5qvNfRRDt47N_feIVscgwoTgB8FsTFWFskQLOn_5sRsTd2Xf-6Ivox4yOw-2XZWoK8tGh6QDdXukHsjWUn89qlZ9faa1UPyxaOEGpTQASV0WVODEupR8vP7D4sPavFBLT6owwdtWqrxQQd8PCInb9_MDg5jN1IjlkjluzhF91tzgUGwBHwFUIHcZ4qrbCqYEjJX-RQqLpBmT-tC1CLNBC4BCqNOoXKJ7PUx2WyXrXpCaJLIvMrKWhR6pzbJCgVoQsVSke1nac2ekr3hTc0vrXLK_E9bPLvVVbvkboDRc7LZXfXqBZLBTrw0NvwFNS1jOA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+redox+behavior+of+mixed+manganese%E2%80%92cobalt+spinel+oxides+through+in+situ+analysis&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Adjah%E2%80%90Tetteh%2C+Christabel&rft.au=Smith%2C+Kayla+S.&rft.au=He%2C+Zizhou&rft.au=Wang%2C+Yudong&rft.date=2025-07-27&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111%2Fjace.70103&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jace_70103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon