Searching in Symmetric Solution Space for Permutation-Related Optimization Problems
Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theo...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 47; no. 8; pp. 7036 - 7052 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI | 10.1109/TPAMI.2025.3569284 |
Cover
Loading…
Abstract | Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features. |
---|---|
AbstractList | Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features. Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features.Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features. |
Author | Li, Tianyang Liu, Jiyin Meng, Ying Tang, Lixin |
Author_xml | – sequence: 1 givenname: Lixin orcidid: 0000-0002-9950-5169 surname: Tang fullname: Tang, Lixin email: lixintang@mail.neu.edu.cn organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China – sequence: 2 givenname: Tianyang orcidid: 0000-0003-0219-7321 surname: Li fullname: Li, Tianyang email: 1910298@stu.neu.edu.cn organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China – sequence: 3 givenname: Ying orcidid: 0000-0002-9504-3745 surname: Meng fullname: Meng, Ying email: mengying@ise.neu.edu.cn organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China – sequence: 4 givenname: Jiyin orcidid: 0000-0002-2752-5398 surname: Liu fullname: Liu, Jiyin email: j.y.liu@lboro.ac.uk organization: Loughborough Business School, Loughborough University, Loughborough, Leicestershire, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40354215$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkMtOwzAQRS1UBC3wAwihLNmkjMd2Ei8R4iUVURFYR04yAaM8ip0syteT0gKrke6cexdnxiZt1xJjpxzmnIO-fFlePT7MEVDNhYo0JnKPTZFHEGrUOGFT4BGGSYLJIZt5_wHApQJxwA4lCCWRqylLUzKueLftW2DbIF03DfXOFkHa1UNvuzFamYKCqnPBklwz9GaThs9Um57K4GnV28Z-_YTB0nV5TY0_ZvuVqT2d7O4Re729ebm-DxdPdw_XV4uw4Br7UCZAOZRFDKbCUuSkZZ4bQZGOc1QGsNSx5pUcP0UpqqoEQikqgXFUCiVyccQutrsr130O5Pussb6gujYtdYPPBIIQoDDhI3q-Q4e8oTJbOdsYt85-RYwAboHCdd47qv4QDtnGdvZjO9vYzna2x9LZtmSJ6L_AAVAqLb4B94R7wQ |
CODEN | ITPIDJ |
Cites_doi | 10.1016/j.cie.2016.09.026 10.1109/TPAMI.2021.3119406 10.1109/TEVC.2014.2360890 10.1007/s10589-012-9505-8 10.1109/TPAMI.2022.3215933 10.1002/3527607773.ch7 10.1109/TEVC.2003.810761 10.1016/j.knosys.2018.07.045 10.3390/app11146449 10.1109/TEVC.2022.3165987 10.1109/TEVC.2013.2250977 10.1109/TASE.2023.3244331 10.1016/j.jmsy.2012.05.001 10.1007/s42524-020-0126-0 10.1007/s10845-016-1201-6 10.1109/TAC.2022.3201026 10.1109/TPAMI.2024.3352096 10.1016/j.knosys.2022.109570 10.1109/CEC45853.2021.9504692 10.1016/j.asoc.2021.107302 10.1016/j.eswa.2021.114938 10.1109/4235.996017 10.1109/TPAMI.2024.3450850 10.5772/12909 10.1016/j.ins.2019.08.016 10.1016/j.cor.2022.106026 10.1109/CVPRW50498.2020.00359 10.1109/TEVC.2007.892759 10.1016/j.swevo.2020.100673 10.1080/00207543.2021.2013566 10.1016/j.cor.2019.02.009 10.1109/CEC.2017.7969492 10.1145/3583131.3590371 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TPAMI.2025.3569284 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 7052 |
ExternalDocumentID | 40354215 10_1109_TPAMI_2025_3569284 11002459 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Major Program of National Natural Science Foundation of China grantid: 72192830; 72192831 – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B16009 funderid: 10.13039/501100013314 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c192t-480eb0dc70af2d3be94bba3e697b25a02d9791f43becd3ffd0e243f3276d353b3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Wed Jul 02 03:59:01 EDT 2025 Mon Jul 21 06:01:46 EDT 2025 Tue Aug 05 11:59:35 EDT 2025 Wed Aug 27 02:14:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c192t-480eb0dc70af2d3be94bba3e697b25a02d9791f43becd3ffd0e243f3276d353b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2752-5398 0000-0002-9950-5169 0000-0002-9504-3745 0000-0003-0219-7321 |
PMID | 40354215 |
PQID | 3203305281 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3203305281 crossref_primary_10_1109_TPAMI_2025_3569284 ieee_primary_11002459 pubmed_primary_40354215 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref18 Kondor (ref21) Cotton (ref20) 1991 ref24 Kim (ref27) Cohen (ref23) ref25 ref42 Kwon (ref26) ref41 ref43 Drakulic (ref28) Applegate (ref33) 2006; 17 Kondor (ref22) 2008 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Cornwell (ref19) 1997 Wolsey (ref5) 1999; 55 ref40 |
References_xml | – ident: ref40 doi: 10.1016/j.cie.2016.09.026 – ident: ref25 doi: 10.1109/TPAMI.2021.3119406 – ident: ref11 doi: 10.1109/TEVC.2014.2360890 – start-page: 2747 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref21 article-title: On the generalization of equivariance and convolution in neural networks to the action of compact groups – ident: ref7 doi: 10.1007/s10589-012-9505-8 – ident: ref24 doi: 10.1109/TPAMI.2022.3215933 – ident: ref31 doi: 10.1002/3527607773.ch7 – volume-title: Group Theoretical Methods in Machine Learning year: 2008 ident: ref22 – ident: ref43 doi: 10.1109/TEVC.2003.810761 – start-page: 21188 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref26 article-title: POMO: Policy optimization with multiple optima for reinforcement learning – ident: ref15 doi: 10.1016/j.knosys.2018.07.045 – ident: ref8 doi: 10.3390/app11146449 – ident: ref36 doi: 10.1109/TEVC.2022.3165987 – ident: ref10 doi: 10.1109/TEVC.2013.2250977 – ident: ref2 doi: 10.1109/TASE.2023.3244331 – ident: ref4 doi: 10.1016/j.jmsy.2012.05.001 – ident: ref9 doi: 10.1007/s42524-020-0126-0 – volume-title: Chemical Applications of Group Theory year: 1991 ident: ref20 – volume-title: Group Theory in Physics: An Introduction year: 1997 ident: ref19 – ident: ref3 doi: 10.1007/s10845-016-1201-6 – start-page: 1936 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref27 article-title: Sym-NCO: Leveraging symmetricity for neural combinatorial optimization – ident: ref39 doi: 10.1109/TAC.2022.3201026 – ident: ref13 doi: 10.1109/TPAMI.2024.3352096 – ident: ref38 doi: 10.1016/j.knosys.2022.109570 – start-page: 77416 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref28 article-title: BQ-NCO: Bisimulation quotienting for efficient neural combinatorial optimization – ident: ref16 doi: 10.1109/CEC45853.2021.9504692 – ident: ref35 doi: 10.1016/j.asoc.2021.107302 – ident: ref17 doi: 10.1016/j.eswa.2021.114938 – ident: ref42 doi: 10.1109/4235.996017 – ident: ref14 doi: 10.1109/TPAMI.2024.3450850 – ident: ref6 doi: 10.5772/12909 – ident: ref18 doi: 10.1016/j.ins.2019.08.016 – volume: 55 volume-title: Integer and Combinatorial Optimization year: 1999 ident: ref5 – ident: ref12 doi: 10.1016/j.cor.2022.106026 – ident: ref37 doi: 10.1109/CVPRW50498.2020.00359 – ident: ref41 doi: 10.1109/TEVC.2007.892759 – ident: ref29 doi: 10.1016/j.swevo.2020.100673 – ident: ref1 doi: 10.1080/00207543.2021.2013566 – volume: 17 volume-title: The Traveling Salesman Problem: A Computational Study year: 2006 ident: ref33 – ident: ref34 doi: 10.1016/j.cor.2019.02.009 – ident: ref30 doi: 10.1109/CEC.2017.7969492 – start-page: 2990 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref23 article-title: Group equivariant convolutional networks – ident: ref32 doi: 10.1145/3583131.3590371 |
SSID | ssj0014503 |
Score | 2.4833975 |
Snippet | Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7036 |
SubjectTerms | Costs Data mining Finite element analysis Linear programming metaheuristic algorithm Metaheuristics Permutation-related optimization reduced solution space Search problems Space exploration symmetry-based search strategy Training Traveling salesman problems Urban areas |
Title | Searching in Symmetric Solution Space for Permutation-Related Optimization Problems |
URI | https://ieeexplore.ieee.org/document/11002459 https://www.ncbi.nlm.nih.gov/pubmed/40354215 https://www.proquest.com/docview/3203305281 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5WD4se1sfqOr6IsLelx0wq6Z4cRRQVZhyYEbw1nU4aRKZn0enD7q_fStKtsjDgLdDpV-qRr1IvgJ-Vr9LtkRuhgTKROiWR8sFUmXAKCZ4aNP5AfzRObx7k3aN6bJPVQy6Mcy4En7m-HwZfvl2UjT8qO_flzYRUeg3WyHKLyVpvLgOpQhtkgjAk4mRHdBkyXJ_PJhejW7IFheqjSjVp5A34KjkqKXw73A8bUuiwshpshk3negvG3efGWJPnfrM0_fLvf5UcP_0_2_CthZ_sIvLLDnxx9S5sda0dWCvpu7D5oU7hd5jGoGQas6eaTf_M574PV8m6MzU2JcvbMcK_bEKavonu_SQE2jnL7kktzdt8TzaJHWxe9-Dh-mp2eZO03RiSklDgMpFD7gy3ZcaLSlg0TktjCnSpzoxQBRdWZ3pQSbpSWqwqy52QWKHIUosKDe7Der2o3QEwsiqF0aTecOjnE0TCQoiBNA6JNbTtwa-OJPnvWHQjD8YK13mgZe5pmbe07MGeX9r3me2q9uCsI2NOMuMdIUXtFs1rjoIj6TkxHPTgR6Tv290dWxyueOoRbPiXxxjAY1hfvjTuhHDJ0pwGfvwHaYza9A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_amLTBATbGoAw2T9ptSnH97KQ-oglUGO0qtUjcojh2JDQ1RdAc4K_n2U4YmoS0m6U4keP34d_z-wL4Xvkq3R65ERooE6lTEikfTJUJp5DgqUHjL_THk3R0Kc-v1FWbrB5yYZxzIfjM9f0w-PLtsmz8VdmRL28mpNKv4Q0d_FLHdK0np4FUoREygRgScrIkuhwZro_m0-PxGVmDQvVRpZp08jq8lRyVFL4h7rMjKfRYeRluhmPndAsm3YJjtMmffrMy_fLhn1qO__1H72GzBaDsOHLMB3jl6m3Y6po7sFbWt2HjWaXCjzCLYck0Ztc1m90vFr4TV8m6WzU2I9vbMULAbEq6vokO_iSE2jnLfpNiWrQZn2wae9jc7cDl6cn85yhp-zEkJeHAVSKH3Bluy4wXlbBonJbGFOhSnRmhCi6szvSgkvSktFhVljshsUKRpRYVGvwEa_WydnvAyK4URpOCw6GfTyAJCyEG0jgk5tC2Bz86kuQ3sexGHswVrvNAy9zTMm9p2YMdv7V_Z7a72oNvHRlzkhrvCilqt2zuchQcSdOJ4aAHu5G-T293bLH_wle_wrvRfHyRX5xNfn2Gdb-QGBF4AGur28YdEkpZmS-BNx8BEpLeRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+in+Symmetric+Solution+Space+for+Permutation-Related+Optimization+Problems&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tang%2C+Lixin&rft.au=Li%2C+Tianyang&rft.au=Meng%2C+Ying&rft.au=Liu%2C+Jiyin&rft.date=2025-08-01&rft.eissn=1939-3539&rft.volume=47&rft.issue=8&rft.spage=7036&rft_id=info:doi/10.1109%2FTPAMI.2025.3569284&rft_id=info%3Apmid%2F40354215&rft.externalDocID=40354215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |