Searching in Symmetric Solution Space for Permutation-Related Optimization Problems

Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 47; no. 8; pp. 7036 - 7052
Main Authors Tang, Lixin, Li, Tianyang, Meng, Ying, Liu, Jiyin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2025
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2025.3569284

Cover

Loading…
Abstract Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features.
AbstractList Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features.
Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features.Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take permutation-related combinatorial optimization problems as a starting point and explore the symmetric structure of its solution space through group theory. From a new perspective of group action, we discover that the meaningful symmetric feature within the solution space is subject to two conditions regarding the form of objective function and the number of objects to be permuted. To exploit the symmetric features, we design a half-solution-space search strategy for various search operators, which are commonly used for permutation-related combinatorial optimization problems. The half-solution-space search strategy can make these operators explore more promising regions without additional computational effort. When the condition of object number for symmetry is unsatisfied, we propose two dimension mapping approaches to construct the symmetric feature, making the half-solution-space search strategy applicable. We evaluate the proposed strategy on three classes of popular 68 benchmark instances, including the single row facility layout problem (SRFLP), traveling salesman problem (TSP), and multi-objective traveling salesman problem (MOTSP). Experimental results show that algorithms embedded with the half-solution-space search strategy can achieve a more competitive performance than those not exploiting the symmetric features.
Author Li, Tianyang
Liu, Jiyin
Meng, Ying
Tang, Lixin
Author_xml – sequence: 1
  givenname: Lixin
  orcidid: 0000-0002-9950-5169
  surname: Tang
  fullname: Tang, Lixin
  email: lixintang@mail.neu.edu.cn
  organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Tianyang
  orcidid: 0000-0003-0219-7321
  surname: Li
  fullname: Li, Tianyang
  email: 1910298@stu.neu.edu.cn
  organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Ying
  orcidid: 0000-0002-9504-3745
  surname: Meng
  fullname: Meng, Ying
  email: mengying@ise.neu.edu.cn
  organization: National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Jiyin
  orcidid: 0000-0002-2752-5398
  surname: Liu
  fullname: Liu, Jiyin
  email: j.y.liu@lboro.ac.uk
  organization: Loughborough Business School, Loughborough University, Loughborough, Leicestershire, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40354215$$D View this record in MEDLINE/PubMed
BookMark eNpFkMtOwzAQRS1UBC3wAwihLNmkjMd2Ei8R4iUVURFYR04yAaM8ip0syteT0gKrke6cexdnxiZt1xJjpxzmnIO-fFlePT7MEVDNhYo0JnKPTZFHEGrUOGFT4BGGSYLJIZt5_wHApQJxwA4lCCWRqylLUzKueLftW2DbIF03DfXOFkHa1UNvuzFamYKCqnPBklwz9GaThs9Um57K4GnV28Z-_YTB0nV5TY0_ZvuVqT2d7O4Re729ebm-DxdPdw_XV4uw4Br7UCZAOZRFDKbCUuSkZZ4bQZGOc1QGsNSx5pUcP0UpqqoEQikqgXFUCiVyccQutrsr130O5Pussb6gujYtdYPPBIIQoDDhI3q-Q4e8oTJbOdsYt85-RYwAboHCdd47qv4QDtnGdvZjO9vYzna2x9LZtmSJ6L_AAVAqLb4B94R7wQ
CODEN ITPIDJ
Cites_doi 10.1016/j.cie.2016.09.026
10.1109/TPAMI.2021.3119406
10.1109/TEVC.2014.2360890
10.1007/s10589-012-9505-8
10.1109/TPAMI.2022.3215933
10.1002/3527607773.ch7
10.1109/TEVC.2003.810761
10.1016/j.knosys.2018.07.045
10.3390/app11146449
10.1109/TEVC.2022.3165987
10.1109/TEVC.2013.2250977
10.1109/TASE.2023.3244331
10.1016/j.jmsy.2012.05.001
10.1007/s42524-020-0126-0
10.1007/s10845-016-1201-6
10.1109/TAC.2022.3201026
10.1109/TPAMI.2024.3352096
10.1016/j.knosys.2022.109570
10.1109/CEC45853.2021.9504692
10.1016/j.asoc.2021.107302
10.1016/j.eswa.2021.114938
10.1109/4235.996017
10.1109/TPAMI.2024.3450850
10.5772/12909
10.1016/j.ins.2019.08.016
10.1016/j.cor.2022.106026
10.1109/CVPRW50498.2020.00359
10.1109/TEVC.2007.892759
10.1016/j.swevo.2020.100673
10.1080/00207543.2021.2013566
10.1016/j.cor.2019.02.009
10.1109/CEC.2017.7969492
10.1145/3583131.3590371
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2025.3569284
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 7052
ExternalDocumentID 40354215
10_1109_TPAMI_2025_3569284
11002459
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Major Program of National Natural Science Foundation of China
  grantid: 72192830; 72192831
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B16009
  funderid: 10.13039/501100013314
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c192t-480eb0dc70af2d3be94bba3e697b25a02d9791f43becd3ffd0e243f3276d353b3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Wed Jul 02 03:59:01 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Tue Aug 05 11:59:35 EDT 2025
Wed Aug 27 02:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c192t-480eb0dc70af2d3be94bba3e697b25a02d9791f43becd3ffd0e243f3276d353b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2752-5398
0000-0002-9950-5169
0000-0002-9504-3745
0000-0003-0219-7321
PMID 40354215
PQID 3203305281
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3203305281
crossref_primary_10_1109_TPAMI_2025_3569284
ieee_primary_11002459
pubmed_primary_40354215
PublicationCentury 2000
PublicationDate 2025-Aug
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Kondor (ref21)
Cotton (ref20) 1991
ref24
Kim (ref27)
Cohen (ref23)
ref25
ref42
Kwon (ref26)
ref41
ref43
Drakulic (ref28)
Applegate (ref33) 2006; 17
Kondor (ref22) 2008
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Cornwell (ref19) 1997
Wolsey (ref5) 1999; 55
ref40
References_xml – ident: ref40
  doi: 10.1016/j.cie.2016.09.026
– ident: ref25
  doi: 10.1109/TPAMI.2021.3119406
– ident: ref11
  doi: 10.1109/TEVC.2014.2360890
– start-page: 2747
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: On the generalization of equivariance and convolution in neural networks to the action of compact groups
– ident: ref7
  doi: 10.1007/s10589-012-9505-8
– ident: ref24
  doi: 10.1109/TPAMI.2022.3215933
– ident: ref31
  doi: 10.1002/3527607773.ch7
– volume-title: Group Theoretical Methods in Machine Learning
  year: 2008
  ident: ref22
– ident: ref43
  doi: 10.1109/TEVC.2003.810761
– start-page: 21188
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref26
  article-title: POMO: Policy optimization with multiple optima for reinforcement learning
– ident: ref15
  doi: 10.1016/j.knosys.2018.07.045
– ident: ref8
  doi: 10.3390/app11146449
– ident: ref36
  doi: 10.1109/TEVC.2022.3165987
– ident: ref10
  doi: 10.1109/TEVC.2013.2250977
– ident: ref2
  doi: 10.1109/TASE.2023.3244331
– ident: ref4
  doi: 10.1016/j.jmsy.2012.05.001
– ident: ref9
  doi: 10.1007/s42524-020-0126-0
– volume-title: Chemical Applications of Group Theory
  year: 1991
  ident: ref20
– volume-title: Group Theory in Physics: An Introduction
  year: 1997
  ident: ref19
– ident: ref3
  doi: 10.1007/s10845-016-1201-6
– start-page: 1936
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Sym-NCO: Leveraging symmetricity for neural combinatorial optimization
– ident: ref39
  doi: 10.1109/TAC.2022.3201026
– ident: ref13
  doi: 10.1109/TPAMI.2024.3352096
– ident: ref38
  doi: 10.1016/j.knosys.2022.109570
– start-page: 77416
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref28
  article-title: BQ-NCO: Bisimulation quotienting for efficient neural combinatorial optimization
– ident: ref16
  doi: 10.1109/CEC45853.2021.9504692
– ident: ref35
  doi: 10.1016/j.asoc.2021.107302
– ident: ref17
  doi: 10.1016/j.eswa.2021.114938
– ident: ref42
  doi: 10.1109/4235.996017
– ident: ref14
  doi: 10.1109/TPAMI.2024.3450850
– ident: ref6
  doi: 10.5772/12909
– ident: ref18
  doi: 10.1016/j.ins.2019.08.016
– volume: 55
  volume-title: Integer and Combinatorial Optimization
  year: 1999
  ident: ref5
– ident: ref12
  doi: 10.1016/j.cor.2022.106026
– ident: ref37
  doi: 10.1109/CVPRW50498.2020.00359
– ident: ref41
  doi: 10.1109/TEVC.2007.892759
– ident: ref29
  doi: 10.1016/j.swevo.2020.100673
– ident: ref1
  doi: 10.1080/00207543.2021.2013566
– volume: 17
  volume-title: The Traveling Salesman Problem: A Computational Study
  year: 2006
  ident: ref33
– ident: ref34
  doi: 10.1016/j.cor.2019.02.009
– ident: ref30
  doi: 10.1109/CEC.2017.7969492
– start-page: 2990
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref23
  article-title: Group equivariant convolutional networks
– ident: ref32
  doi: 10.1145/3583131.3590371
SSID ssj0014503
Score 2.4833975
Snippet Symmetry is a widespread phenomenon in nature. Recognizing symmetry can minimize redundancy to improve computing efficiency. In this paper, we take...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7036
SubjectTerms Costs
Data mining
Finite element analysis
Linear programming
metaheuristic algorithm
Metaheuristics
Permutation-related optimization
reduced solution space
Search problems
Space exploration
symmetry-based search strategy
Training
Traveling salesman problems
Urban areas
Title Searching in Symmetric Solution Space for Permutation-Related Optimization Problems
URI https://ieeexplore.ieee.org/document/11002459
https://www.ncbi.nlm.nih.gov/pubmed/40354215
https://www.proquest.com/docview/3203305281
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC5WD4se1sfqOr6IsLelx0wq6Z4cRRQVZhyYEbw1nU4aRKZn0enD7q_fStKtsjDgLdDpV-qRr1IvgJ-Vr9LtkRuhgTKROiWR8sFUmXAKCZ4aNP5AfzRObx7k3aN6bJPVQy6Mcy4En7m-HwZfvl2UjT8qO_flzYRUeg3WyHKLyVpvLgOpQhtkgjAk4mRHdBkyXJ_PJhejW7IFheqjSjVp5A34KjkqKXw73A8bUuiwshpshk3negvG3efGWJPnfrM0_fLvf5UcP_0_2_CthZ_sIvLLDnxx9S5sda0dWCvpu7D5oU7hd5jGoGQas6eaTf_M574PV8m6MzU2JcvbMcK_bEKavonu_SQE2jnL7kktzdt8TzaJHWxe9-Dh-mp2eZO03RiSklDgMpFD7gy3ZcaLSlg0TktjCnSpzoxQBRdWZ3pQSbpSWqwqy52QWKHIUosKDe7Der2o3QEwsiqF0aTecOjnE0TCQoiBNA6JNbTtwa-OJPnvWHQjD8YK13mgZe5pmbe07MGeX9r3me2q9uCsI2NOMuMdIUXtFs1rjoIj6TkxHPTgR6Tv290dWxyueOoRbPiXxxjAY1hfvjTuhHDJ0pwGfvwHaYza9A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_amLTBATbGoAw2T9ptSnH97KQ-oglUGO0qtUjcojh2JDQ1RdAc4K_n2U4YmoS0m6U4keP34d_z-wL4Xvkq3R65ERooE6lTEikfTJUJp5DgqUHjL_THk3R0Kc-v1FWbrB5yYZxzIfjM9f0w-PLtsmz8VdmRL28mpNKv4Q0d_FLHdK0np4FUoREygRgScrIkuhwZro_m0-PxGVmDQvVRpZp08jq8lRyVFL4h7rMjKfRYeRluhmPndAsm3YJjtMmffrMy_fLhn1qO__1H72GzBaDsOHLMB3jl6m3Y6po7sFbWt2HjWaXCjzCLYck0Ztc1m90vFr4TV8m6WzU2I9vbMULAbEq6vokO_iSE2jnLfpNiWrQZn2wae9jc7cDl6cn85yhp-zEkJeHAVSKH3Bluy4wXlbBonJbGFOhSnRmhCi6szvSgkvSktFhVljshsUKRpRYVGvwEa_WydnvAyK4URpOCw6GfTyAJCyEG0jgk5tC2Bz86kuQ3sexGHswVrvNAy9zTMm9p2YMdv7V_Z7a72oNvHRlzkhrvCilqt2zuchQcSdOJ4aAHu5G-T293bLH_wle_wrvRfHyRX5xNfn2Gdb-QGBF4AGur28YdEkpZmS-BNx8BEpLeRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+in+Symmetric+Solution+Space+for+Permutation-Related+Optimization+Problems&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tang%2C+Lixin&rft.au=Li%2C+Tianyang&rft.au=Meng%2C+Ying&rft.au=Liu%2C+Jiyin&rft.date=2025-08-01&rft.eissn=1939-3539&rft.volume=47&rft.issue=8&rft.spage=7036&rft_id=info:doi/10.1109%2FTPAMI.2025.3569284&rft_id=info%3Apmid%2F40354215&rft.externalDocID=40354215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon