Down in the dungeons: the hidden role of diatom biofilms and microbial activity in the biogeochemistry of a dynamic estuarine point bar
In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on microphytobenthos in high‐energy sedimentary environments are unusual. The present investigation focuses on the biogeochemistry to a depth of 6 m of a...
Saved in:
Published in | Sedimentology |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
24.07.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on microphytobenthos in high‐energy sedimentary environments are unusual. The present investigation focuses on the biogeochemistry to a depth of 6 m of a fluvio‐estuarine point bar from the Garonne channel (SW France) impacted by both tidal current and tidal wave, where three sediment cores were taken. Porewater chemistry was analysed with microelectrodes (pH, oxygen and sulfide), ion chromatography and inductively‐coupled‐plasma spectrometry (for major elements) and colorimetric assays (for iron speciation). Porewater composition was compared to measurements of microbial activity including isothermal calorimetry and metabolic assays using triphenyltetrazolium chloride and fluorescein diacetate to determine the distribution of predominant microbial metabolisms in the sediment. Finally, bulk sediment chemistry was characterized through X‐ray fluorescence core scanning. Sediments are heterolithic, made of decimetre to meter thick alternating sand and mud. The uppermost 60 cm of the point bar sediment show a mostly classical vertical succession of microbial metabolisms: (i) oxygenic photosynthesis occurs mostly in diatom biofilm forming in the uppermost millimetres; (ii) aerobic respiration between 0 cm and 1 cm, (iii) nitrate reduction between 6 cm and 16 cm, partially overlapping (iv) sulfate reduction between 10 cm and 25 cm, (v) manganese oxide reduction below 2 cm and (vi) iron oxide reduction below 16 cm. Measurements of metabolic activity, elevated in areas showing significant geochemical changes, confirmed the impact of microbial metabolism on the composition of pore water. The highest metabolic activity coincides with areas where oxygen, nitrate and sulphate concentrations are decreasing. Hydrolytic activity peaked in the zone of aerobic respiration, possibly in part due to enzymatic degradation of organic matter (e.g., extracellular polymeric substances) produced in surface diatom biofilm. Low concentrations of nitrates and sulfates were measured in sands at 1.3 to 1.6 m and 3.2 m depth, coinciding with a renewed increase in hydrolytic activity and metabolically active cells. Because of the sediment heterolithic composition and the point bar architecture made of laterally accreting layers, subsurface advection of porewater through permeable horizons could explain the local increases of nitrate and sulfate reduction. Impacts of microbial metabolism on early diagenesis were modelled using PHREEQC software and outcomes predicted the potential precipitation of metastable iron and/or sulfides. This was confirmed by X‐ray fluorescence analyses showing a coinciding increase of sulfur, Fe and/or Mn at several depths (e.g., 15 to 60 or 560 to 580 cm). Based on our observations, we propose a biogeochemical model that links microbial metabolisms and early diagenesis to the complex vertical sedimentary architecture of an estuarine point bar. Our results show that high‐energy estuarine point bars are subject to an active biogeochemical cycling of C, S, N, Fe and Mn quite similar to that of intertidal mudflat, but locally altered by the sedimentary architecture of the point bar, resulting in lateral advection of porewater. |
---|---|
AbstractList | In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on microphytobenthos in high‐energy sedimentary environments are unusual. The present investigation focuses on the biogeochemistry to a depth of 6 m of a fluvio‐estuarine point bar from the Garonne channel (SW France) impacted by both tidal current and tidal wave, where three sediment cores were taken. Porewater chemistry was analysed with microelectrodes (pH, oxygen and sulfide), ion chromatography and inductively‐coupled‐plasma spectrometry (for major elements) and colorimetric assays (for iron speciation). Porewater composition was compared to measurements of microbial activity including isothermal calorimetry and metabolic assays using triphenyltetrazolium chloride and fluorescein diacetate to determine the distribution of predominant microbial metabolisms in the sediment. Finally, bulk sediment chemistry was characterized through X‐ray fluorescence core scanning. Sediments are heterolithic, made of decimetre to meter thick alternating sand and mud. The uppermost 60 cm of the point bar sediment show a mostly classical vertical succession of microbial metabolisms: (i) oxygenic photosynthesis occurs mostly in diatom biofilm forming in the uppermost millimetres; (ii) aerobic respiration between 0 cm and 1 cm, (iii) nitrate reduction between 6 cm and 16 cm, partially overlapping (iv) sulfate reduction between 10 cm and 25 cm, (v) manganese oxide reduction below 2 cm and (vi) iron oxide reduction below 16 cm. Measurements of metabolic activity, elevated in areas showing significant geochemical changes, confirmed the impact of microbial metabolism on the composition of pore water. The highest metabolic activity coincides with areas where oxygen, nitrate and sulphate concentrations are decreasing. Hydrolytic activity peaked in the zone of aerobic respiration, possibly in part due to enzymatic degradation of organic matter (e.g., extracellular polymeric substances) produced in surface diatom biofilm. Low concentrations of nitrates and sulfates were measured in sands at 1.3 to 1.6 m and 3.2 m depth, coinciding with a renewed increase in hydrolytic activity and metabolically active cells. Because of the sediment heterolithic composition and the point bar architecture made of laterally accreting layers, subsurface advection of porewater through permeable horizons could explain the local increases of nitrate and sulfate reduction. Impacts of microbial metabolism on early diagenesis were modelled using PHREEQC software and outcomes predicted the potential precipitation of metastable iron and/or sulfides. This was confirmed by X‐ray fluorescence analyses showing a coinciding increase of sulfur, Fe and/or Mn at several depths (e.g., 15 to 60 or 560 to 580 cm). Based on our observations, we propose a biogeochemical model that links microbial metabolisms and early diagenesis to the complex vertical sedimentary architecture of an estuarine point bar. Our results show that high‐energy estuarine point bars are subject to an active biogeochemical cycling of C, S, N, Fe and Mn quite similar to that of intertidal mudflat, but locally altered by the sedimentary architecture of the point bar, resulting in lateral advection of porewater. |
Author | Franceschi, Michel Henry, Adrien Olivier, Marie‐Joelle Braissant, Olivier Duteil, Thibault Le Roy, Nathalie Brigaud, Benjamin Visscher, Pieter T Bourillot, Raphaël Portier, Eric |
Author_xml | – sequence: 1 givenname: Thibault orcidid: 0009-0008-3494-5949 surname: Duteil fullname: Duteil, Thibault organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France – sequence: 2 givenname: Raphaël surname: Bourillot fullname: Bourillot, Raphaël organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France – sequence: 3 givenname: Olivier surname: Braissant fullname: Braissant, Olivier organization: Center for Biomechanics and Biocalorimetry University of Basel c/o Department Biomedical Engineering (DBE), Hegenheimermattweg 167C Allschwil 4123 Switzerland – sequence: 4 givenname: Adrien surname: Henry fullname: Henry, Adrien organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France – sequence: 5 givenname: Michel surname: Franceschi fullname: Franceschi, Michel organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France – sequence: 6 givenname: Marie‐Joelle surname: Olivier fullname: Olivier, Marie‐Joelle organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France – sequence: 7 givenname: Nathalie surname: Le Roy fullname: Le Roy, Nathalie organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France – sequence: 8 givenname: Benjamin orcidid: 0000-0001-6961-2177 surname: Brigaud fullname: Brigaud, Benjamin organization: Université Paris‐Saclay, CNRS, GEOPS 91405 Orsay France, Institut universitaire de France (IUF) 1 rue Descartes Paris 75231 Paris Cedex 05 France – sequence: 9 givenname: Eric surname: Portier fullname: Portier, Eric organization: 45‐8 Energy 4, rue François de Curel 57000 Metz France – sequence: 10 givenname: Pieter T surname: Visscher fullname: Visscher, Pieter T organization: Department of Marine Sciences and Earth Sciences University of Connecticut Groton CT 06340 USA |
BookMark | eNo1kEtOAzEMQCNUJNrCghtky2JKPm2mYYfKV6rEpvuRJ_HQoE5SJSloTsC1SQt4Y9myn-w3ISMfPBJyzdmMl7hNaGc1Y1KdkTGXalFJpvmIjEurrlg9VxdkktIHY1zNl3pMvh_Cl6fO07xFag_-HYNPd6dq66xFT2PYIQ0dtQ5y6GnrQud2faLgLe2diaF1sKNgsvt0efhHlbGCMlvsXcpxOAKA2sFDWaGY8gGi80j3wflMW4iX5LyDXcKrvzwlm6fHzeqlWr89v67u15XhmucK0YAQYgFGaIZWK1nzTjC9NLYGDii5VoAMO2Hn5cdW6U4YkEpzsxTA5JTc_GLL3SlF7Jp9dD3EoeGsOQpsisDmJFD-AAbMZ-0 |
Cites_doi | 10.1016/B978-0-444-52019-7.50008-5 10.3389/fmicb.2022.921154 10.1016/j.ecss.2010.07.007 10.1111/j.1574-6976.1998.tb00379.x 10.1016/S0048-9697(97)05441-7 10.2166/wst.2007.510 10.1016/j.palaeo.2015.08.030 10.1016/S0278-4343(00)00022-4 10.1016/j.seares.2016.10.004 10.1016/j.csr.2016.01.017 10.1038/s43247-022-00485-8 10.4319/lo.2011.56.5.1811 10.1016/j.chemgeo.2008.02.001 10.1016/j.soilbio.2005.06.020 10.1111/j.0022-3646.1992.00051.x 10.1016/j.gca.2013.08.013 10.1007/s003670050076 10.1111/1574-6941.12106 10.1016/S0883-2927(99)00090-6 10.1016/0025-3227(83)90015-4 10.1016/j.seares.2016.12.002 10.4319/lo.1984.29.3.0609 10.1007/BF00766706 10.1007/s10533-014-9953-6 10.1016/j.marpetgeo.2020.104225 10.1016/S0016-7037(98)00285-3 10.1111/j.1574-6941.2009.00758.x 10.1016/S0016-7037(97)00016-1 10.4319/lo.1989.34.5.0793 10.1016/S0065-2296(05)40005-1 10.1016/j.ecss.2015.10.009 10.1306/022900701005 10.1016/0012-8252(93)90040-E 10.1007/s10498-018-9333-2 10.1016/j.jfoodeng.2005.05.017 10.1002/lno.10029 10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B 10.1111/1574-6941.12077 10.1128/aem.49.1.1-7.1985 10.1016/j.jssc.2005.11.030 10.1016/0304-4203(94)90105-8 10.4319/lo.1991.36.7.1476 10.1016/0016-7037(88)90335-3 10.1111/j.1574-6941.2008.00614.x 10.3389/fmicb.2018.03343 10.1016/j.gca.2006.02.001 10.1046/j.1365-3091.1999.00196.x 10.1016/S0065-2504(08)60192-0 10.1006/ecss.1999.0598 10.3389/fmicb.2017.00922 10.1016/S1385-1101(99)00021-0 10.3354/meps276037 10.1007/3-540-32144-6_6 10.1016/j.gca.2008.04.013 10.1016/0016-7037(93)90340-3 10.1016/0016-7037(87)90339-5 10.1006/ecss.2001.0844 10.1002/lno.11681 10.1128/aem.52.5.1167-1172.1986 10.1111/j.1472-4669.2007.00117.x 10.1130/G47418.1 10.3354/meps136277 10.1111/j.1365-3091.2004.00649.x 10.4319/lo.2012.57.1.0185 10.1016/j.sedgeo.2011.04.020 10.1016/j.envint.2005.08.010 10.1111/j.1574-6968.1985.tb01129.x 10.1086/670529 10.1007/s10498-019-09351-0 10.1007/s11368-018-2179-9 10.1016/S0304-4203(03)00088-4 10.1007/BF00121631 10.1016/j.tim.2005.07.008 10.1007/s10534-012-9581-3 10.3354/meps203109 10.1111/sed.13198 10.5150/jngcgc.2010.061-M 10.1016/0304-4203(92)90049-G 10.1038/s41579-020-00502-7 10.1016/B978-0-444-52019-7.50009-7 10.1016/j.sedgeo.2005.12.008 10.1002/lno.10271 10.1016/j.gca.2011.03.033 10.1016/j.marchem.2017.01.001 10.1016/0016-7037(86)90411-4 10.1016/j.ecss.2022.108006 10.1002/lno.10544 10.1130/0-8137-2379-5.63 10.1016/B978-0-444-63893-9.00012-5 10.4319/lo.1998.43.8.1796 10.2138/am-1998-11-1236 10.4319/lo.2005.50.1.0113 10.1016/j.tca.2012.12.005 10.1016/j.gca.2005.10.019 10.1016/j.gca.2008.05.001 10.1016/0016-7037(94)90298-4 10.2110/jsr.2020.146 10.1016/j.scitotenv.2022.158952 10.3389/fmicb.2020.547458 10.1016/j.scitotenv.2004.04.003 10.1016/j.gca.2014.12.017 10.3354/ame027285 10.1007/978-981-10-1044-6_10 10.1128/aem.50.2.491-497.1985 10.2475/ajs.283.1.29 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1111/sed.70036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1365-3091 |
ExternalDocumentID | 10_1111_sed_70036 |
GroupedDBID | -DZ -~X .3N .GA 05W 0R~ 10A 123 1OB 1OC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABJNI ABPPZ ABPVW ACAHQ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 ZCA ZZTAW ~02 ~IA ~KM ~WT |
ID | FETCH-LOGICAL-c191t-eeca2225ac290ed96371f2098cd7a1ae3196ae0ef2d4001b69f2ca3691c82a03 |
ISSN | 0037-0746 |
IngestDate | Thu Jul 31 00:42:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c191t-eeca2225ac290ed96371f2098cd7a1ae3196ae0ef2d4001b69f2ca3691c82a03 |
ORCID | 0009-0008-3494-5949 0000-0001-6961-2177 |
ParticipantIDs | crossref_primary_10_1111_sed_70036 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-24 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Sedimentology |
PublicationYear | 2025 |
References | Sorensen J. (e_1_2_8_101_1) 1987; 51 La Croix A.D. (e_1_2_8_73_1) 2015; 440 Chiffoleau J.‐F. (e_1_2_8_34_1) 1994; 47 McKew B.A. (e_1_2_8_80_1) 2013; 84 Gao H. (e_1_2_8_54_1) 2012; 57 Dupraz C. (e_1_2_8_45_1) 2005; 13 e_1_2_8_5_1 Duteil T. (e_1_2_8_48_1) 2022; 13 Migeon S. (e_1_2_8_82_1) 1998; 18 Dupraz C. (e_1_2_8_46_1) 2004; 51 Sagemann J. (e_1_2_8_98_1) 1996; 27 Cabestrero Ó. (e_1_2_8_29_1) 2018; 24 Pereira F. (e_1_2_8_90_1) 2017 Visscher P.T. (e_1_2_8_116_1) 1998; 83 Ghosh D. (e_1_2_8_55_1) 2023; 856 Stecko J.P. (e_1_2_8_102_1) 2000; 15 Gil M.M. (e_1_2_8_56_1) 2006; 76 Marchant H.K. (e_1_2_8_78_1) 2016; 61 Braissant O. (e_1_2_8_23_1) 2012; 555 Visscher P.T. (e_1_2_8_115_1) 1991; 36 Underwood G. (e_1_2_8_110_1) 1999; 29 Gutierrez T. (e_1_2_8_59_1) 2012; 25 O'Sullivan L.A. (e_1_2_8_88_1) 2013; 85 Schäfer J. (e_1_2_8_99_1) 2010; 90 Decho A.W. (e_1_2_8_40_1) 1990; 28 Aller R.C. (e_1_2_8_6_1) 1988; 52 Braissant O. (e_1_2_8_21_1) 2007; 5 Decho A.W. (e_1_2_8_43_1) 2005 Sundby B. (e_1_2_8_105_1) 1986; 50 Baldwin D.S. (e_1_2_8_8_1) 2000; 16 Widdel F. (e_1_2_8_118_1) 1992 De Resseguier A. (e_1_2_8_38_1) 1983; 52 Bhaskar P.V. (e_1_2_8_19_1) 2006; 32 Glud R.N. (e_1_2_8_57_1) 1992; 28 Bonaglia S. (e_1_2_8_20_1) 2014; 119 Schutte C.A. (e_1_2_8_100_1) 2019 Stief P. (e_1_2_8_103_1) 2022; 3 Gagnon V. (e_1_2_8_53_1) 2007; 56 Green V.S. (e_1_2_8_58_1) 2006; 38 Visscher P.T. (e_1_2_8_114_1) 2005 Canfield D.E. (e_1_2_8_30_1) 1993; 57 Audry S. (e_1_2_8_7_1) 2006; 70 Braissant O. (e_1_2_8_22_1) 2009; 67 Cudennec Y. (e_1_2_8_36_1) 2006; 179 Burdige D.J. (e_1_2_8_27_1) 1985; 50 Morelle J. (e_1_2_8_83_1) 2022; 275 Dong L.F. (e_1_2_8_44_1) 2000; 203 Mortimer R.J. (e_1_2_8_84_1) 2004; 276 Fernandes S.O. (e_1_2_8_50_1) 2016; 179 Widerlund A. (e_1_2_8_119_1) 1996; 2 Coynel A. (e_1_2_8_35_1) 2004; 330 Decho A.W. (e_1_2_8_42_1) 2017; 8 Megonigal J.P. (e_1_2_8_81_1) 2003; 8 e_1_2_8_10_1 Mallet C. (e_1_2_8_76_1) 2000; 70 Thamdrup B. (e_1_2_8_106_1) 1994; 58 Visscher P.T. (e_1_2_8_117_1) 2000; 28 Beck M. (e_1_2_8_14_1) 2008; 72 Féniès H. (e_1_2_8_49_1) 1999; 46 Kappler A. (e_1_2_8_70_1) 2021; 19 Robert S. (e_1_2_8_95_1) 2004; 87 Tugel J.B. (e_1_2_8_109_1) 1986; 52 Kraal P. (e_1_2_8_71_1) 2013; 122 Chanvalon A.T. (e_1_2_8_31_1) 2016; 118 Burdige D.J. (e_1_2_8_25_1) 1993; 35 Beckler J.S. (e_1_2_8_16_1) 2015; 152 Duteil T. (e_1_2_8_47_1) 2020; 48 Musial G. (e_1_2_8_85_1) 2012; 279 Beck M. (e_1_2_8_15_1) 2017; 190 Virolle M. (e_1_2_8_113_1) 2021; 91 e_1_2_8_89_1 Revsbech N.P. (e_1_2_8_94_1) 1986; 31 Berne S. (e_1_2_8_18_1) 1993; 63 Cypionka H. (e_1_2_8_37_1) 1985; 31 Jiang L. (e_1_2_8_67_1) 2009; 70 Jones M.E. (e_1_2_8_68_1) 2011; 56 Braissant O. (e_1_2_8_24_1) 2020; 11 McAllister S.M. (e_1_2_8_79_1) 2015; 60 Rouxel O. (e_1_2_8_97_1) 2008; 72 Ahmerkamp S. (e_1_2_8_4_1) 2017; 62 Decho A.W. (e_1_2_8_41_1) 2000; 20 Baumgartner L.K. (e_1_2_8_13_1) 2006; 185 Jalon‐Rojas I. (e_1_2_8_64_1) 2016; 117 Hong Y. (e_1_2_8_62_1) 2019; 9 Reasoner D.J. (e_1_2_8_92_1) 1985; 49 Battley E.H. (e_1_2_8_12_1) 2013; 88 Neumann A. (e_1_2_8_86_1) 2017; 127 R Core Team (e_1_2_8_91_1) 2013 Bartlett R. (e_1_2_8_9_1) 2008; 250 Hulth S. (e_1_2_8_63_1) 1999; 63 e_1_2_8_74_1 Jetten M.S. (e_1_2_8_66_1) 1998; 22 De Winder B. (e_1_2_8_39_1) 1999; 42 Hensen C. (e_1_2_8_60_1) 2006 Jenkins M.C. (e_1_2_8_65_1) 1984; 29 e_1_2_8_69_1 Oldham V.E. (e_1_2_8_87_1) 2019; 25 Abril G. (e_1_2_8_2_1) 2000; 50 Beer D. (e_1_2_8_17_1) 2005; 50 Luther G.W. (e_1_2_8_75_1) 1992; 40 Charette M.A. (e_1_2_8_32_1) 2006; 70 Fiket Ž. (e_1_2_8_51_1) 2019; 19 Virolle M. (e_1_2_8_112_1) 2020; 114 Burdige D.J. (e_1_2_8_26_1) 1983; 283 Underwood G.J. (e_1_2_8_111_1) 2003; 40 Fustic M. (e_1_2_8_52_1) 2024; 71 Kraepiel A.M. (e_1_2_8_72_1) 1997; 61 Holmkvist L. (e_1_2_8_61_1) 2011; 75 Stumm W. (e_1_2_8_104_1) 1996; 2 Burdige D.J. (e_1_2_8_28_1) 2003; 43 Thornton D.C.O. (e_1_2_8_108_1) 2002; 27 Relexans J.C. (e_1_2_8_93_1) 1996; 136 e_1_2_8_96_1 Battin T.J. (e_1_2_8_11_1) 1997; 198 e_1_2_8_77_1 Abril G. (e_1_2_8_3_1) 2002; 54 Chen J.‐J. (e_1_2_8_33_1) 2020; 66 Thode‐Andersen S. (e_1_2_8_107_1) 1989; 34 |
References_xml | – start-page: 71 volume-title: Geobiology: Objectives, Concepts, Perspectives year: 2005 ident: e_1_2_8_43_1 doi: 10.1016/B978-0-444-52019-7.50008-5 – volume: 13 year: 2022 ident: e_1_2_8_48_1 article-title: Preservation of exopolymeric substances in estuarine sediments publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.921154 – volume: 90 start-page: 80 year: 2010 ident: e_1_2_8_99_1 article-title: Mercury methylation in the sediments of a macrotidal estuary (Gironde Estuary, south‐west France) publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2010.07.007 – volume: 22 start-page: 421 year: 1998 ident: e_1_2_8_66_1 article-title: The anaerobic oxidation of ammonium publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1998.tb00379.x – volume: 198 start-page: 51 year: 1997 ident: e_1_2_8_11_1 article-title: Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(97)05441-7 – volume: 56 start-page: 249 year: 2007 ident: e_1_2_8_53_1 article-title: Influence of macrophyte species on microbial density and activity in constructed wetlands publication-title: Water Sci. Technol. doi: 10.2166/wst.2007.510 – volume: 440 start-page: 66 year: 2015 ident: e_1_2_8_73_1 article-title: Bioturbation trends across the freshwater to brackish‐water transition in rivers publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2015.08.030 – volume: 20 start-page: 1257 year: 2000 ident: e_1_2_8_41_1 article-title: Microbial biofilms in intertidal systems: an overview publication-title: Cont. Shelf Res. doi: 10.1016/S0278-4343(00)00022-4 – volume: 118 start-page: 92 year: 2016 ident: e_1_2_8_31_1 article-title: Manganese, iron and phosphorus cycling in an estuarine mudflat, Loire, France publication-title: J. Sea Res. doi: 10.1016/j.seares.2016.10.004 – volume: 117 start-page: 1 year: 2016 ident: e_1_2_8_64_1 article-title: Tracking the turbidity maximum zone in the Loire Estuary (France) based on a long‐term, high‐resolution and high‐frequency monitoring network publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2016.01.017 – ident: e_1_2_8_10_1 – volume: 3 start-page: 1 year: 2022 ident: e_1_2_8_103_1 article-title: Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems publication-title: Commun. Earth Environ. doi: 10.1038/s43247-022-00485-8 – volume: 56 start-page: 1811 year: 2011 ident: e_1_2_8_68_1 article-title: The flux of soluble organic‐iron (III) complexes from sediments represents a source of stable iron (III) to estuarine waters and to the continental shelf publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2011.56.5.1811 – volume: 250 start-page: 29 year: 2008 ident: e_1_2_8_9_1 article-title: Anoxic nitrification: evidence from Humber Estuary sediments (UK) publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.02.001 – volume: 38 start-page: 693 year: 2006 ident: e_1_2_8_58_1 article-title: Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.06.020 – volume: 28 start-page: 51 year: 1992 ident: e_1_2_8_57_1 article-title: Photosynthesis and photosynthesis‐coupled respiration in natural biofilms quantified with oxygen microsensors publication-title: J. Phycol. doi: 10.1111/j.0022-3646.1992.00051.x – volume: 122 start-page: 75 year: 2013 ident: e_1_2_8_71_1 article-title: Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.08.013 – volume: 63 start-page: 780 year: 1993 ident: e_1_2_8_18_1 article-title: Morphology, internal structure, and reversal of asymmetry of large subtidal dunes in the entrance to Gironde Estuary (France) publication-title: J. Sed. Res. – volume: 18 start-page: 251 year: 1998 ident: e_1_2_8_82_1 article-title: SCOPIX: a new X‐ray imaging system for core analysis publication-title: Geo‐Mar. Lett. doi: 10.1007/s003670050076 – volume: 85 start-page: 143 year: 2013 ident: e_1_2_8_88_1 article-title: Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12106 – volume: 15 start-page: 753 year: 2000 ident: e_1_2_8_102_1 article-title: Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estuary publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(99)00090-6 – volume: 52 start-page: M19 year: 1983 ident: e_1_2_8_38_1 article-title: A portable coring device for use in the intertidal environment publication-title: Mar. Geol. doi: 10.1016/0025-3227(83)90015-4 – volume: 127 start-page: 36 year: 2017 ident: e_1_2_8_86_1 article-title: Empirical model to estimate permeability of surface sediments in the German Bight (North Sea) publication-title: J. Sea Res. doi: 10.1016/j.seares.2016.12.002 – volume: 29 start-page: 609 year: 1984 ident: e_1_2_8_65_1 article-title: The coupling of nitrification and denitrification in two estuarine sediments1,2 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1984.29.3.0609 – volume: 27 start-page: 362 year: 1996 ident: e_1_2_8_98_1 article-title: Pore‐water response on seasonal environmental changes in intertidal sediments of the Weser Estuary, Germany publication-title: Environ. Geol. doi: 10.1007/BF00766706 – volume: 119 start-page: 139 year: 2014 ident: e_1_2_8_20_1 article-title: Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns publication-title: Biogeochemistry doi: 10.1007/s10533-014-9953-6 – volume: 114 year: 2020 ident: e_1_2_8_112_1 article-title: Facies associations, detrital clay grain coats and mineralogical characterization of the Gironde estuary tidal bars: A modern analogue for deeply buried estuarine sandstone reservoirs publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2020.104225 – volume: 63 start-page: 49 year: 1999 ident: e_1_2_8_63_1 article-title: Coupled anoxic nitrification/manganese reduction in marine sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00285-3 – volume: 70 start-page: 249 year: 2009 ident: e_1_2_8_67_1 article-title: Vertical distribution and diversity of sulfate‐reducing prokaryotes in the Pearl River estuarine sediments, Southern China publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2009.00758.x – volume: 61 start-page: 1421 year: 1997 ident: e_1_2_8_72_1 article-title: Geochemistry of trace metals in the Gironde estuary publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00016-1 – volume: 34 start-page: 793 year: 1989 ident: e_1_2_8_107_1 article-title: Sulfate reduction and the formation of 35S‐labeled FeS, FeS2, and S0 in coastal marine sediments publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1989.34.5.0793 – volume: 40 start-page: 183 year: 2003 ident: e_1_2_8_111_1 article-title: The importance of extracellular carbohydrate productionby marine epipelic diatoms publication-title: Adv. Bot. Res. doi: 10.1016/S0065-2296(05)40005-1 – volume: 179 start-page: 39 year: 2016 ident: e_1_2_8_50_1 article-title: Coupling of bacterial nitrification with denitrification and anammox supports N removal in intertidal sediments (Arcachon Bay, France) publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2015.10.009 – volume: 70 start-page: 1005 year: 2000 ident: e_1_2_8_76_1 article-title: Residual transport model in correlation with sedimentary dynamics over an elongate tidal sandbar in the Gironde Estuary (southwestern France) publication-title: J. Sed. Res. doi: 10.1306/022900701005 – volume: 35 start-page: 249 year: 1993 ident: e_1_2_8_25_1 article-title: The biogeochemistry of manganese and iron reduction in marine sediments publication-title: Earth Sci. Rev. doi: 10.1016/0012-8252(93)90040-E – volume: 24 start-page: 79 year: 2018 ident: e_1_2_8_29_1 article-title: Seasonal variability of mineral formation in microbial mats subjected to drying and wetting cycles in alkaline and hypersaline sedimentary environments publication-title: Aquat. Geochem. doi: 10.1007/s10498-018-9333-2 – volume: 76 start-page: 89 year: 2006 ident: e_1_2_8_56_1 article-title: A modified Gompertz model to predict microbial inactivation under time‐varying temperature conditions publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2005.05.017 – volume: 60 start-page: 329 year: 2015 ident: e_1_2_8_79_1 article-title: Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10029 – volume: 16 start-page: 457 year: 2000 ident: e_1_2_8_8_1 article-title: The effects of drying and re‐flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis publication-title: Regul. Rivers Res. Manag. doi: 10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B – volume: 84 start-page: 495 year: 2013 ident: e_1_2_8_80_1 article-title: Differences between aerobic and anaerobic degradation of microphytobenthic biofilm‐derived organic matter within intertidal sediments publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12077 – volume: 49 start-page: 1 year: 1985 ident: e_1_2_8_92_1 article-title: A new medium for the enumeration and subculture of bacteria from potable water publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.49.1.1-7.1985 – volume: 179 start-page: 716 year: 2006 ident: e_1_2_8_36_1 article-title: The transformation of ferrihydrite into goethite or hematite, revisited publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.11.030 – volume: 47 start-page: 145 year: 1994 ident: e_1_2_8_34_1 article-title: Trace metal distribution, partition and fluxes in the Seine estuary (France) in low discharge regime publication-title: Mar. Chem. doi: 10.1016/0304-4203(94)90105-8 – volume: 36 start-page: 1476 year: 1991 ident: e_1_2_8_115_1 article-title: In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1991.36.7.1476 – volume: 52 start-page: 751 year: 1988 ident: e_1_2_8_6_1 article-title: Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90335-3 – volume: 67 start-page: 293 year: 2009 ident: e_1_2_8_22_1 article-title: Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2008.00614.x – volume: 9 start-page: 3343 year: 2019 ident: e_1_2_8_62_1 article-title: Vertical stratification of sediment microbial communities along geochemical gradients of a subterranean estuary located at the Gloucester Beach of Virginia, United States publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.03343 – volume: 70 start-page: 2264 year: 2006 ident: e_1_2_8_7_1 article-title: Early diagenesis of trace metals (Cd, Cu, Co, Ni, U, Mo, and V) in the freshwater reaches of a macrotidal estuary publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.02.001 – volume: 46 start-page: 1 year: 1999 ident: e_1_2_8_49_1 article-title: Intertidal clay‐drape couplets (Gironde Estuary, France) publication-title: Sedimentology doi: 10.1046/j.1365-3091.1999.00196.x – volume: 29 start-page: 93 year: 1999 ident: e_1_2_8_110_1 article-title: Primary production by phytoplankton and microphytobenthos in estuaries publication-title: Adv. Ecol. Res. doi: 10.1016/S0065-2504(08)60192-0 – volume: 50 start-page: 703 year: 2000 ident: e_1_2_8_2_1 article-title: Transient, Tidal Time‐scale, Nitrogen Transformations in an Estuarine Turbidity Maximum—Fluid Mud System (The Gironde, South‐west France) publication-title: Estuar. Coast. Shelf Sci. doi: 10.1006/ecss.1999.0598 – volume: 8 start-page: 922 year: 2017 ident: e_1_2_8_42_1 article-title: Microbial extracellular polymeric substances (EPSs) in ocean systems publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00922 – volume: 42 start-page: 131 year: 1999 ident: e_1_2_8_39_1 article-title: Carbohydrate secretion by phototrophic communities in tidal sediments publication-title: J. Sea Res. doi: 10.1016/S1385-1101(99)00021-0 – volume: 276 start-page: 37 year: 2004 ident: e_1_2_8_84_1 article-title: Anoxic nitrification in marine sediments publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps276037 – start-page: 207 volume-title: Marine Geochemistry year: 2006 ident: e_1_2_8_60_1 doi: 10.1007/3-540-32144-6_6 – volume: 72 start-page: 2822 year: 2008 ident: e_1_2_8_14_1 article-title: Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.04.013 – volume: 57 start-page: 3867 year: 1993 ident: e_1_2_8_30_1 article-title: The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(93)90340-3 – volume: 51 start-page: 1583 year: 1987 ident: e_1_2_8_101_1 article-title: Early diagenesis in sediments from Danish coastal waters: microbial activity and Mn‐Fe‐S geochemistry publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(87)90339-5 – volume: 54 start-page: 241 year: 2002 ident: e_1_2_8_3_1 article-title: Behaviour of organic carbon in nine contrasting European estuaries publication-title: Estuar. Coast. Shelf Sci. doi: 10.1006/ecss.2001.0844 – volume: 2 start-page: 178 year: 1996 ident: e_1_2_8_104_1 article-title: An Introduction Emphasizing Chemical Equilibria in Natural Waters publication-title: Aquat. Chem. – volume: 66 start-page: 1281 year: 2020 ident: e_1_2_8_33_1 article-title: Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a mosaic of estuarine benthic habitats publication-title: Limnol. Oceanogr. doi: 10.1002/lno.11681 – volume: 52 start-page: 1167 year: 1986 ident: e_1_2_8_109_1 article-title: Microbial iron reduction by enrichment cultures isolated from Estuarine Sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.52.5.1167-1172.1986 – volume: 5 start-page: 401 year: 2007 ident: e_1_2_8_21_1 article-title: Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals publication-title: Geobiology doi: 10.1111/j.1472-4669.2007.00117.x – volume: 48 start-page: 1012 year: 2020 ident: e_1_2_8_47_1 article-title: Experimental formation of clay‐coated sand grains using diatom biofilm exopolymers publication-title: Geology doi: 10.1130/G47418.1 – ident: e_1_2_8_89_1 – volume: 136 start-page: 277 year: 1996 ident: e_1_2_8_93_1 article-title: Measurement of the respiratory electron transport system (ETS) activity in marine sediments: state‐of‐the‐art and interpretation. I. Methodology and review of literature data publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps136277 – volume: 51 start-page: 745 year: 2004 ident: e_1_2_8_46_1 article-title: Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas) publication-title: Sedimentology doi: 10.1111/j.1365-3091.2004.00649.x – volume: 57 start-page: 185 year: 2012 ident: e_1_2_8_54_1 article-title: Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2012.57.1.0185 – volume: 279 start-page: 156 year: 2012 ident: e_1_2_8_85_1 article-title: Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada) publication-title: Sed. Geol. doi: 10.1016/j.sedgeo.2011.04.020 – volume: 32 start-page: 191 year: 2006 ident: e_1_2_8_19_1 article-title: Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food‐chain publication-title: Environ. Int. doi: 10.1016/j.envint.2005.08.010 – volume: 31 start-page: 39 year: 1985 ident: e_1_2_8_37_1 article-title: Survival of sulfate‐reducing bacteria after oxygen stress, and growth in sulfate‐free oxygen‐sulfide gradients publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1985.tb01129.x – volume: 88 start-page: 69 year: 2013 ident: e_1_2_8_12_1 article-title: A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation publication-title: Q. Rev. Biol. doi: 10.1086/670529 – volume: 25 start-page: 3 year: 2019 ident: e_1_2_8_87_1 article-title: The Speciation and Mobility of Mn and Fe in Estuarine Sediments publication-title: Aquat. Geochem. doi: 10.1007/s10498-019-09351-0 – volume: 19 start-page: 2048 year: 2019 ident: e_1_2_8_51_1 article-title: Pore water geochemistry and diagenesis of estuary sediments—an example of the Zrmanja River estuary (Adriatic coast, Croatia) publication-title: J. Soils Sediments doi: 10.1007/s11368-018-2179-9 – volume: 87 start-page: 1 year: 2004 ident: e_1_2_8_95_1 article-title: Metal mobilization in the Gironde Estuary (France): the role of the soft mud layer in the maximum turbidity zone publication-title: Mar. Chem. doi: 10.1016/S0304-4203(03)00088-4 – volume: 2 start-page: 185 year: 1996 ident: e_1_2_8_119_1 article-title: Redox cycling of iron and manganese in sediments of the Kalix River estuary, Northern Sweden publication-title: Aquat. Geochem. doi: 10.1007/BF00121631 – volume: 13 start-page: 429 year: 2005 ident: e_1_2_8_45_1 article-title: Microbial lithification in marine stromatolites and hypersaline mats publication-title: Trends Microbiol. doi: 10.1016/j.tim.2005.07.008 – volume: 25 start-page: 1185 year: 2012 ident: e_1_2_8_59_1 article-title: Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton publication-title: Biometals doi: 10.1007/s10534-012-9581-3 – volume: 203 start-page: 109 year: 2000 ident: e_1_2_8_44_1 article-title: Denitrification in sediments of the River Colne estuary, England publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps203109 – volume: 71 start-page: 1922 year: 2024 ident: e_1_2_8_52_1 article-title: A typical point bar with atypical strata in the McMurray Formation, Alberta, Canada: floods, tides and high suspended sediment concentrations publication-title: Sedimentology doi: 10.1111/sed.13198 – ident: e_1_2_8_77_1 doi: 10.5150/jngcgc.2010.061-M – volume: 40 start-page: 81 year: 1992 ident: e_1_2_8_75_1 article-title: Seasonal iron cycling in the salt‐marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively publication-title: Mar. Chem. doi: 10.1016/0304-4203(92)90049-G – volume: 31 start-page: 293 year: 1986 ident: e_1_2_8_94_1 article-title: Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data publication-title: Limnol. Oceanogr. – volume: 19 start-page: 360 year: 2021 ident: e_1_2_8_70_1 article-title: An evolving view on biogeochemical cycling of iron publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00502-7 – start-page: 87 volume-title: Geobiology: Objectives, Concepts, Perspectives, Elsevier year: 2005 ident: e_1_2_8_114_1 doi: 10.1016/B978-0-444-52019-7.50009-7 – volume: 185 start-page: 131 year: 2006 ident: e_1_2_8_13_1 article-title: Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries publication-title: Sed. Geol. doi: 10.1016/j.sedgeo.2005.12.008 – volume: 61 start-page: 1033 year: 2016 ident: e_1_2_8_78_1 article-title: Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10271 – volume: 8 start-page: 317 year: 2003 ident: e_1_2_8_81_1 article-title: Anaerobic metabolism: linkages to trace gases and aerobic processes publication-title: Biogeochemistry – volume: 75 start-page: 3581 year: 2011 ident: e_1_2_8_61_1 article-title: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.03.033 – volume: 190 start-page: 35 year: 2017 ident: e_1_2_8_15_1 article-title: The drivers of biogeochemistry in beach ecosystems: a cross‐shore transect from the dunes to the low‐water line publication-title: Mar. Chem. doi: 10.1016/j.marchem.2017.01.001 – volume: 50 start-page: 1281 year: 1986 ident: e_1_2_8_105_1 article-title: The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment‐water interface publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(86)90411-4 – volume: 275 year: 2022 ident: e_1_2_8_83_1 article-title: Microphytobenthos as a source of labile organic matter for denitrifying microbes publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2022.108006 – volume: 62 start-page: 1935 year: 2017 ident: e_1_2_8_4_1 article-title: Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10544 – ident: e_1_2_8_69_1 doi: 10.1130/0-8137-2379-5.63 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_8_91_1 – ident: e_1_2_8_96_1 – start-page: 407 volume-title: Coastal Wetlands year: 2019 ident: e_1_2_8_100_1 doi: 10.1016/B978-0-444-63893-9.00012-5 – volume: 43 start-page: 1796 year: 2003 ident: e_1_2_8_28_1 article-title: The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1998.43.8.1796 – volume: 28 start-page: 73 year: 1990 ident: e_1_2_8_40_1 article-title: Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes publication-title: Oceanogr. Mar. Biol. Annu. Rev. – ident: e_1_2_8_74_1 – volume: 83 start-page: 1482 year: 1998 ident: e_1_2_8_116_1 article-title: Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling publication-title: Am. Mineral. doi: 10.2138/am-1998-11-1236 – volume: 50 start-page: 113 year: 2005 ident: e_1_2_8_17_1 article-title: Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt‐Rømø basin, Wadden Sea publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2005.50.1.0113 – volume: 555 start-page: 64 year: 2012 ident: e_1_2_8_23_1 article-title: Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data publication-title: Thermochim. Acta doi: 10.1016/j.tca.2012.12.005 – volume: 70 start-page: 811 year: 2006 ident: e_1_2_8_32_1 article-title: Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.10.019 – volume: 72 start-page: 3413 year: 2008 ident: e_1_2_8_97_1 article-title: Iron isotope fractionation in subterranean estuaries publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.05.001 – volume: 58 start-page: 5115 year: 1994 ident: e_1_2_8_106_1 article-title: Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90298-4 – ident: e_1_2_8_5_1 – volume: 91 start-page: 812 year: 2021 ident: e_1_2_8_113_1 article-title: Preservation and distribution of detrital clay coats in a modern estuarine heterolithic point bar in the Gironde estuary (Bordeaux, France) publication-title: J. Sed. Res. doi: 10.2110/jsr.2020.146 – volume: 856 year: 2023 ident: e_1_2_8_55_1 article-title: Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow‐lake biogeochemistry and alluvial geomorphology publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158952 – volume: 11 year: 2020 ident: e_1_2_8_24_1 article-title: A review of methods to determine viability, vitality, and metabolic rates in microbiology publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.547458 – volume: 330 start-page: 233 year: 2004 ident: e_1_2_8_35_1 article-title: Sampling frequency and accuracy of SPM flux estimates in two contrasted drainage basins publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2004.04.003 – volume: 152 start-page: 72 year: 2015 ident: e_1_2_8_16_1 article-title: The origin, composition, and reactivity of dissolved iron (III) complexes in coastal organic‐and iron‐rich sediments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2014.12.017 – volume: 27 start-page: 285 year: 2002 ident: e_1_2_8_108_1 article-title: Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK) publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame027285 – start-page: 153 volume-title: Marine Pollution and Microbial Remediation year: 2017 ident: e_1_2_8_90_1 doi: 10.1007/978-981-10-1044-6_10 – start-page: 3352 volume-title: The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications year: 1992 ident: e_1_2_8_118_1 – volume: 50 start-page: 491 year: 1985 ident: e_1_2_8_27_1 article-title: Microbial manganese reduction by enrichment cultures from coastal marine sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.50.2.491-497.1985 – volume: 283 start-page: 20 year: 1983 ident: e_1_2_8_26_1 article-title: A pore water/solid phase diagenetic model for manganese in marine sediments publication-title: Am. J. Sci. doi: 10.2475/ajs.283.1.29 – volume: 28 start-page: 919 year: 2000 ident: e_1_2_8_117_1 article-title: Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites publication-title: Geology doi: 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2 |
SSID | ssj0016489 |
Score | 2.4367895 |
SecondaryResourceType | online_first |
Snippet | In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on... |
SourceID | crossref |
SourceType | Index Database |
Title | Down in the dungeons: the hidden role of diatom biofilms and microbial activity in the biogeochemistry of a dynamic estuarine point bar |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFsGXUqtitZZBfFtSksnm5lvXrRZBhXYLfVvmFjawmyxr9qH9A_5tz8lcNlaFti8hCclJyPlybnMuhHwI01BqHusgKmUejFiWBIUoswA0YaISJeGXQkfx2_f0_Gr09Tq5HgxuellLm1acyNt_1pU8hqtwDviKVbIP4KwnCidgH_gLW-AwbO_F4wm40C5RUcFfq-FBLlFjjr1Bap89iAM5muVQVDiie2kaMy-rrgsTdguQdoiEJQaXATHphsGZIkplhtcPQY8ArtA6XTVV3Q4FX_dN3EtQhxhy_CNeP9m0Nto8nVeCbxY-22aMqwCLRdMpgwu-mvNu7X7sMz_Gaw7g4KY_wo9FhYp8G8G1JRanCvs190MYLMHYqKmcdmI5xnipjUVqI4kx_S4OzSiv_8j5n1qdZNhRZ6vM3AL-HR3nMw-dzwO3zrpbn5BdBh4GDr-YXPjOY-BE5sZzsm9mm1JhEph_as-U6dkk032yZ50JemqQ8ZwMdH1Ann7phjXfvCC_EB-0qimwlDp8fOyODDooooM2JTXooA4dFNBBPTqoQ4cjdQcdSIBTiw7q0UE7dFBAx0sy_Xw2_XQe2MEbgQT3vQ20lhzjAFyyItQKZHQWlSwscqkyHnGNYpvrUJdMgQqIRFqUTPI4LSKZMx7Gr8hO3dT6NaHpSBa6LHieSTEqYyZUwRQQkyLS8NX1IXnvPuFsZdqrzP5i0Zv7XPSWPNtC64jstOuNfgf2YiuOO87-Bkj7ctI |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Down+in+the+dungeons%3A+the+hidden+role+of+diatom+biofilms+and+microbial+activity+in+the+biogeochemistry+of+a+dynamic+estuarine+point+bar&rft.jtitle=Sedimentology&rft.au=Duteil%2C+Thibault&rft.au=Bourillot%2C+Rapha%C3%ABl&rft.au=Braissant%2C+Olivier&rft.au=Henry%2C+Adrien&rft.date=2025-07-24&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111%2Fsed.70036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sed_70036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon |