Down in the dungeons: the hidden role of diatom biofilms and microbial activity in the biogeochemistry of a dynamic estuarine point bar

In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on microphytobenthos in high‐energy sedimentary environments are unusual. The present investigation focuses on the biogeochemistry to a depth of 6 m of a...

Full description

Saved in:
Bibliographic Details
Published inSedimentology
Main Authors Duteil, Thibault, Bourillot, Raphaël, Braissant, Olivier, Henry, Adrien, Franceschi, Michel, Olivier, Marie‐Joelle, Le Roy, Nathalie, Brigaud, Benjamin, Portier, Eric, Visscher, Pieter T
Format Journal Article
LanguageEnglish
Published 24.07.2025
Online AccessGet full text

Cover

Loading…
Abstract In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on microphytobenthos in high‐energy sedimentary environments are unusual. The present investigation focuses on the biogeochemistry to a depth of 6 m of a fluvio‐estuarine point bar from the Garonne channel (SW France) impacted by both tidal current and tidal wave, where three sediment cores were taken. Porewater chemistry was analysed with microelectrodes (pH, oxygen and sulfide), ion chromatography and inductively‐coupled‐plasma spectrometry (for major elements) and colorimetric assays (for iron speciation). Porewater composition was compared to measurements of microbial activity including isothermal calorimetry and metabolic assays using triphenyltetrazolium chloride and fluorescein diacetate to determine the distribution of predominant microbial metabolisms in the sediment. Finally, bulk sediment chemistry was characterized through X‐ray fluorescence core scanning. Sediments are heterolithic, made of decimetre to meter thick alternating sand and mud. The uppermost 60 cm of the point bar sediment show a mostly classical vertical succession of microbial metabolisms: (i) oxygenic photosynthesis occurs mostly in diatom biofilm forming in the uppermost millimetres; (ii) aerobic respiration between 0 cm and 1 cm, (iii) nitrate reduction between 6 cm and 16 cm, partially overlapping (iv) sulfate reduction between 10 cm and 25 cm, (v) manganese oxide reduction below 2 cm and (vi) iron oxide reduction below 16 cm. Measurements of metabolic activity, elevated in areas showing significant geochemical changes, confirmed the impact of microbial metabolism on the composition of pore water. The highest metabolic activity coincides with areas where oxygen, nitrate and sulphate concentrations are decreasing. Hydrolytic activity peaked in the zone of aerobic respiration, possibly in part due to enzymatic degradation of organic matter (e.g., extracellular polymeric substances) produced in surface diatom biofilm. Low concentrations of nitrates and sulfates were measured in sands at 1.3 to 1.6 m and 3.2 m depth, coinciding with a renewed increase in hydrolytic activity and metabolically active cells. Because of the sediment heterolithic composition and the point bar architecture made of laterally accreting layers, subsurface advection of porewater through permeable horizons could explain the local increases of nitrate and sulfate reduction. Impacts of microbial metabolism on early diagenesis were modelled using PHREEQC software and outcomes predicted the potential precipitation of metastable iron and/or sulfides. This was confirmed by X‐ray fluorescence analyses showing a coinciding increase of sulfur, Fe and/or Mn at several depths (e.g., 15 to 60 or 560 to 580 cm). Based on our observations, we propose a biogeochemical model that links microbial metabolisms and early diagenesis to the complex vertical sedimentary architecture of an estuarine point bar. Our results show that high‐energy estuarine point bars are subject to an active biogeochemical cycling of C, S, N, Fe and Mn quite similar to that of intertidal mudflat, but locally altered by the sedimentary architecture of the point bar, resulting in lateral advection of porewater.
AbstractList In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on microphytobenthos in high‐energy sedimentary environments are unusual. The present investigation focuses on the biogeochemistry to a depth of 6 m of a fluvio‐estuarine point bar from the Garonne channel (SW France) impacted by both tidal current and tidal wave, where three sediment cores were taken. Porewater chemistry was analysed with microelectrodes (pH, oxygen and sulfide), ion chromatography and inductively‐coupled‐plasma spectrometry (for major elements) and colorimetric assays (for iron speciation). Porewater composition was compared to measurements of microbial activity including isothermal calorimetry and metabolic assays using triphenyltetrazolium chloride and fluorescein diacetate to determine the distribution of predominant microbial metabolisms in the sediment. Finally, bulk sediment chemistry was characterized through X‐ray fluorescence core scanning. Sediments are heterolithic, made of decimetre to meter thick alternating sand and mud. The uppermost 60 cm of the point bar sediment show a mostly classical vertical succession of microbial metabolisms: (i) oxygenic photosynthesis occurs mostly in diatom biofilm forming in the uppermost millimetres; (ii) aerobic respiration between 0 cm and 1 cm, (iii) nitrate reduction between 6 cm and 16 cm, partially overlapping (iv) sulfate reduction between 10 cm and 25 cm, (v) manganese oxide reduction below 2 cm and (vi) iron oxide reduction below 16 cm. Measurements of metabolic activity, elevated in areas showing significant geochemical changes, confirmed the impact of microbial metabolism on the composition of pore water. The highest metabolic activity coincides with areas where oxygen, nitrate and sulphate concentrations are decreasing. Hydrolytic activity peaked in the zone of aerobic respiration, possibly in part due to enzymatic degradation of organic matter (e.g., extracellular polymeric substances) produced in surface diatom biofilm. Low concentrations of nitrates and sulfates were measured in sands at 1.3 to 1.6 m and 3.2 m depth, coinciding with a renewed increase in hydrolytic activity and metabolically active cells. Because of the sediment heterolithic composition and the point bar architecture made of laterally accreting layers, subsurface advection of porewater through permeable horizons could explain the local increases of nitrate and sulfate reduction. Impacts of microbial metabolism on early diagenesis were modelled using PHREEQC software and outcomes predicted the potential precipitation of metastable iron and/or sulfides. This was confirmed by X‐ray fluorescence analyses showing a coinciding increase of sulfur, Fe and/or Mn at several depths (e.g., 15 to 60 or 560 to 580 cm). Based on our observations, we propose a biogeochemical model that links microbial metabolisms and early diagenesis to the complex vertical sedimentary architecture of an estuarine point bar. Our results show that high‐energy estuarine point bars are subject to an active biogeochemical cycling of C, S, N, Fe and Mn quite similar to that of intertidal mudflat, but locally altered by the sedimentary architecture of the point bar, resulting in lateral advection of porewater.
Author Franceschi, Michel
Henry, Adrien
Olivier, Marie‐Joelle
Braissant, Olivier
Duteil, Thibault
Le Roy, Nathalie
Brigaud, Benjamin
Visscher, Pieter T
Bourillot, Raphaël
Portier, Eric
Author_xml – sequence: 1
  givenname: Thibault
  orcidid: 0009-0008-3494-5949
  surname: Duteil
  fullname: Duteil, Thibault
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France
– sequence: 2
  givenname: Raphaël
  surname: Bourillot
  fullname: Bourillot, Raphaël
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France
– sequence: 3
  givenname: Olivier
  surname: Braissant
  fullname: Braissant, Olivier
  organization: Center for Biomechanics and Biocalorimetry University of Basel c/o Department Biomedical Engineering (DBE), Hegenheimermattweg 167C Allschwil 4123 Switzerland
– sequence: 4
  givenname: Adrien
  surname: Henry
  fullname: Henry, Adrien
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France
– sequence: 5
  givenname: Michel
  surname: Franceschi
  fullname: Franceschi, Michel
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France
– sequence: 6
  givenname: Marie‐Joelle
  surname: Olivier
  fullname: Olivier, Marie‐Joelle
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France
– sequence: 7
  givenname: Nathalie
  surname: Le Roy
  fullname: Le Roy, Nathalie
  organization: Univ. Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805 33600 Pessac France
– sequence: 8
  givenname: Benjamin
  orcidid: 0000-0001-6961-2177
  surname: Brigaud
  fullname: Brigaud, Benjamin
  organization: Université Paris‐Saclay, CNRS, GEOPS 91405 Orsay France, Institut universitaire de France (IUF) 1 rue Descartes Paris 75231 Paris Cedex 05 France
– sequence: 9
  givenname: Eric
  surname: Portier
  fullname: Portier, Eric
  organization: 45‐8 Energy 4, rue François de Curel 57000 Metz France
– sequence: 10
  givenname: Pieter T
  surname: Visscher
  fullname: Visscher, Pieter T
  organization: Department of Marine Sciences and Earth Sciences University of Connecticut Groton CT 06340 USA
BookMark eNo1kEtOAzEMQCNUJNrCghtky2JKPm2mYYfKV6rEpvuRJ_HQoE5SJSloTsC1SQt4Y9myn-w3ISMfPBJyzdmMl7hNaGc1Y1KdkTGXalFJpvmIjEurrlg9VxdkktIHY1zNl3pMvh_Cl6fO07xFag_-HYNPd6dq66xFT2PYIQ0dtQ5y6GnrQud2faLgLe2diaF1sKNgsvt0efhHlbGCMlvsXcpxOAKA2sFDWaGY8gGi80j3wflMW4iX5LyDXcKrvzwlm6fHzeqlWr89v67u15XhmucK0YAQYgFGaIZWK1nzTjC9NLYGDii5VoAMO2Hn5cdW6U4YkEpzsxTA5JTc_GLL3SlF7Jp9dD3EoeGsOQpsisDmJFD-AAbMZ-0
Cites_doi 10.1016/B978-0-444-52019-7.50008-5
10.3389/fmicb.2022.921154
10.1016/j.ecss.2010.07.007
10.1111/j.1574-6976.1998.tb00379.x
10.1016/S0048-9697(97)05441-7
10.2166/wst.2007.510
10.1016/j.palaeo.2015.08.030
10.1016/S0278-4343(00)00022-4
10.1016/j.seares.2016.10.004
10.1016/j.csr.2016.01.017
10.1038/s43247-022-00485-8
10.4319/lo.2011.56.5.1811
10.1016/j.chemgeo.2008.02.001
10.1016/j.soilbio.2005.06.020
10.1111/j.0022-3646.1992.00051.x
10.1016/j.gca.2013.08.013
10.1007/s003670050076
10.1111/1574-6941.12106
10.1016/S0883-2927(99)00090-6
10.1016/0025-3227(83)90015-4
10.1016/j.seares.2016.12.002
10.4319/lo.1984.29.3.0609
10.1007/BF00766706
10.1007/s10533-014-9953-6
10.1016/j.marpetgeo.2020.104225
10.1016/S0016-7037(98)00285-3
10.1111/j.1574-6941.2009.00758.x
10.1016/S0016-7037(97)00016-1
10.4319/lo.1989.34.5.0793
10.1016/S0065-2296(05)40005-1
10.1016/j.ecss.2015.10.009
10.1306/022900701005
10.1016/0012-8252(93)90040-E
10.1007/s10498-018-9333-2
10.1016/j.jfoodeng.2005.05.017
10.1002/lno.10029
10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B
10.1111/1574-6941.12077
10.1128/aem.49.1.1-7.1985
10.1016/j.jssc.2005.11.030
10.1016/0304-4203(94)90105-8
10.4319/lo.1991.36.7.1476
10.1016/0016-7037(88)90335-3
10.1111/j.1574-6941.2008.00614.x
10.3389/fmicb.2018.03343
10.1016/j.gca.2006.02.001
10.1046/j.1365-3091.1999.00196.x
10.1016/S0065-2504(08)60192-0
10.1006/ecss.1999.0598
10.3389/fmicb.2017.00922
10.1016/S1385-1101(99)00021-0
10.3354/meps276037
10.1007/3-540-32144-6_6
10.1016/j.gca.2008.04.013
10.1016/0016-7037(93)90340-3
10.1016/0016-7037(87)90339-5
10.1006/ecss.2001.0844
10.1002/lno.11681
10.1128/aem.52.5.1167-1172.1986
10.1111/j.1472-4669.2007.00117.x
10.1130/G47418.1
10.3354/meps136277
10.1111/j.1365-3091.2004.00649.x
10.4319/lo.2012.57.1.0185
10.1016/j.sedgeo.2011.04.020
10.1016/j.envint.2005.08.010
10.1111/j.1574-6968.1985.tb01129.x
10.1086/670529
10.1007/s10498-019-09351-0
10.1007/s11368-018-2179-9
10.1016/S0304-4203(03)00088-4
10.1007/BF00121631
10.1016/j.tim.2005.07.008
10.1007/s10534-012-9581-3
10.3354/meps203109
10.1111/sed.13198
10.5150/jngcgc.2010.061-M
10.1016/0304-4203(92)90049-G
10.1038/s41579-020-00502-7
10.1016/B978-0-444-52019-7.50009-7
10.1016/j.sedgeo.2005.12.008
10.1002/lno.10271
10.1016/j.gca.2011.03.033
10.1016/j.marchem.2017.01.001
10.1016/0016-7037(86)90411-4
10.1016/j.ecss.2022.108006
10.1002/lno.10544
10.1130/0-8137-2379-5.63
10.1016/B978-0-444-63893-9.00012-5
10.4319/lo.1998.43.8.1796
10.2138/am-1998-11-1236
10.4319/lo.2005.50.1.0113
10.1016/j.tca.2012.12.005
10.1016/j.gca.2005.10.019
10.1016/j.gca.2008.05.001
10.1016/0016-7037(94)90298-4
10.2110/jsr.2020.146
10.1016/j.scitotenv.2022.158952
10.3389/fmicb.2020.547458
10.1016/j.scitotenv.2004.04.003
10.1016/j.gca.2014.12.017
10.3354/ame027285
10.1007/978-981-10-1044-6_10
10.1128/aem.50.2.491-497.1985
10.2475/ajs.283.1.29
10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/sed.70036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1365-3091
ExternalDocumentID 10_1111_sed_70036
GroupedDBID -DZ
-~X
.3N
.GA
05W
0R~
10A
123
1OB
1OC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABJNI
ABPPZ
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TN5
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
ZCA
ZZTAW
~02
~IA
~KM
~WT
ID FETCH-LOGICAL-c191t-eeca2225ac290ed96371f2098cd7a1ae3196ae0ef2d4001b69f2ca3691c82a03
ISSN 0037-0746
IngestDate Thu Jul 31 00:42:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c191t-eeca2225ac290ed96371f2098cd7a1ae3196ae0ef2d4001b69f2ca3691c82a03
ORCID 0009-0008-3494-5949
0000-0001-6961-2177
ParticipantIDs crossref_primary_10_1111_sed_70036
PublicationCentury 2000
PublicationDate 2025-07-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-24
  day: 24
PublicationDecade 2020
PublicationTitle Sedimentology
PublicationYear 2025
References Sorensen J. (e_1_2_8_101_1) 1987; 51
La Croix A.D. (e_1_2_8_73_1) 2015; 440
Chiffoleau J.‐F. (e_1_2_8_34_1) 1994; 47
McKew B.A. (e_1_2_8_80_1) 2013; 84
Gao H. (e_1_2_8_54_1) 2012; 57
Dupraz C. (e_1_2_8_45_1) 2005; 13
e_1_2_8_5_1
Duteil T. (e_1_2_8_48_1) 2022; 13
Migeon S. (e_1_2_8_82_1) 1998; 18
Dupraz C. (e_1_2_8_46_1) 2004; 51
Sagemann J. (e_1_2_8_98_1) 1996; 27
Cabestrero Ó. (e_1_2_8_29_1) 2018; 24
Pereira F. (e_1_2_8_90_1) 2017
Visscher P.T. (e_1_2_8_116_1) 1998; 83
Ghosh D. (e_1_2_8_55_1) 2023; 856
Stecko J.P. (e_1_2_8_102_1) 2000; 15
Gil M.M. (e_1_2_8_56_1) 2006; 76
Marchant H.K. (e_1_2_8_78_1) 2016; 61
Braissant O. (e_1_2_8_23_1) 2012; 555
Visscher P.T. (e_1_2_8_115_1) 1991; 36
Underwood G. (e_1_2_8_110_1) 1999; 29
Gutierrez T. (e_1_2_8_59_1) 2012; 25
O'Sullivan L.A. (e_1_2_8_88_1) 2013; 85
Schäfer J. (e_1_2_8_99_1) 2010; 90
Decho A.W. (e_1_2_8_40_1) 1990; 28
Aller R.C. (e_1_2_8_6_1) 1988; 52
Braissant O. (e_1_2_8_21_1) 2007; 5
Decho A.W. (e_1_2_8_43_1) 2005
Sundby B. (e_1_2_8_105_1) 1986; 50
Baldwin D.S. (e_1_2_8_8_1) 2000; 16
Widdel F. (e_1_2_8_118_1) 1992
De Resseguier A. (e_1_2_8_38_1) 1983; 52
Bhaskar P.V. (e_1_2_8_19_1) 2006; 32
Glud R.N. (e_1_2_8_57_1) 1992; 28
Bonaglia S. (e_1_2_8_20_1) 2014; 119
Schutte C.A. (e_1_2_8_100_1) 2019
Stief P. (e_1_2_8_103_1) 2022; 3
Gagnon V. (e_1_2_8_53_1) 2007; 56
Green V.S. (e_1_2_8_58_1) 2006; 38
Visscher P.T. (e_1_2_8_114_1) 2005
Canfield D.E. (e_1_2_8_30_1) 1993; 57
Audry S. (e_1_2_8_7_1) 2006; 70
Braissant O. (e_1_2_8_22_1) 2009; 67
Cudennec Y. (e_1_2_8_36_1) 2006; 179
Burdige D.J. (e_1_2_8_27_1) 1985; 50
Morelle J. (e_1_2_8_83_1) 2022; 275
Dong L.F. (e_1_2_8_44_1) 2000; 203
Mortimer R.J. (e_1_2_8_84_1) 2004; 276
Fernandes S.O. (e_1_2_8_50_1) 2016; 179
Widerlund A. (e_1_2_8_119_1) 1996; 2
Coynel A. (e_1_2_8_35_1) 2004; 330
Decho A.W. (e_1_2_8_42_1) 2017; 8
Megonigal J.P. (e_1_2_8_81_1) 2003; 8
e_1_2_8_10_1
Mallet C. (e_1_2_8_76_1) 2000; 70
Thamdrup B. (e_1_2_8_106_1) 1994; 58
Visscher P.T. (e_1_2_8_117_1) 2000; 28
Beck M. (e_1_2_8_14_1) 2008; 72
Féniès H. (e_1_2_8_49_1) 1999; 46
Kappler A. (e_1_2_8_70_1) 2021; 19
Robert S. (e_1_2_8_95_1) 2004; 87
Tugel J.B. (e_1_2_8_109_1) 1986; 52
Kraal P. (e_1_2_8_71_1) 2013; 122
Chanvalon A.T. (e_1_2_8_31_1) 2016; 118
Burdige D.J. (e_1_2_8_25_1) 1993; 35
Beckler J.S. (e_1_2_8_16_1) 2015; 152
Duteil T. (e_1_2_8_47_1) 2020; 48
Musial G. (e_1_2_8_85_1) 2012; 279
Beck M. (e_1_2_8_15_1) 2017; 190
Virolle M. (e_1_2_8_113_1) 2021; 91
e_1_2_8_89_1
Revsbech N.P. (e_1_2_8_94_1) 1986; 31
Berne S. (e_1_2_8_18_1) 1993; 63
Cypionka H. (e_1_2_8_37_1) 1985; 31
Jiang L. (e_1_2_8_67_1) 2009; 70
Jones M.E. (e_1_2_8_68_1) 2011; 56
Braissant O. (e_1_2_8_24_1) 2020; 11
McAllister S.M. (e_1_2_8_79_1) 2015; 60
Rouxel O. (e_1_2_8_97_1) 2008; 72
Ahmerkamp S. (e_1_2_8_4_1) 2017; 62
Decho A.W. (e_1_2_8_41_1) 2000; 20
Baumgartner L.K. (e_1_2_8_13_1) 2006; 185
Jalon‐Rojas I. (e_1_2_8_64_1) 2016; 117
Hong Y. (e_1_2_8_62_1) 2019; 9
Reasoner D.J. (e_1_2_8_92_1) 1985; 49
Battley E.H. (e_1_2_8_12_1) 2013; 88
Neumann A. (e_1_2_8_86_1) 2017; 127
R Core Team (e_1_2_8_91_1) 2013
Bartlett R. (e_1_2_8_9_1) 2008; 250
Hulth S. (e_1_2_8_63_1) 1999; 63
e_1_2_8_74_1
Jetten M.S. (e_1_2_8_66_1) 1998; 22
De Winder B. (e_1_2_8_39_1) 1999; 42
Hensen C. (e_1_2_8_60_1) 2006
Jenkins M.C. (e_1_2_8_65_1) 1984; 29
e_1_2_8_69_1
Oldham V.E. (e_1_2_8_87_1) 2019; 25
Abril G. (e_1_2_8_2_1) 2000; 50
Beer D. (e_1_2_8_17_1) 2005; 50
Luther G.W. (e_1_2_8_75_1) 1992; 40
Charette M.A. (e_1_2_8_32_1) 2006; 70
Fiket Ž. (e_1_2_8_51_1) 2019; 19
Virolle M. (e_1_2_8_112_1) 2020; 114
Burdige D.J. (e_1_2_8_26_1) 1983; 283
Underwood G.J. (e_1_2_8_111_1) 2003; 40
Fustic M. (e_1_2_8_52_1) 2024; 71
Kraepiel A.M. (e_1_2_8_72_1) 1997; 61
Holmkvist L. (e_1_2_8_61_1) 2011; 75
Stumm W. (e_1_2_8_104_1) 1996; 2
Burdige D.J. (e_1_2_8_28_1) 2003; 43
Thornton D.C.O. (e_1_2_8_108_1) 2002; 27
Relexans J.C. (e_1_2_8_93_1) 1996; 136
e_1_2_8_96_1
Battin T.J. (e_1_2_8_11_1) 1997; 198
e_1_2_8_77_1
Abril G. (e_1_2_8_3_1) 2002; 54
Chen J.‐J. (e_1_2_8_33_1) 2020; 66
Thode‐Andersen S. (e_1_2_8_107_1) 1989; 34
References_xml – start-page: 71
  volume-title: Geobiology: Objectives, Concepts, Perspectives
  year: 2005
  ident: e_1_2_8_43_1
  doi: 10.1016/B978-0-444-52019-7.50008-5
– volume: 13
  year: 2022
  ident: e_1_2_8_48_1
  article-title: Preservation of exopolymeric substances in estuarine sediments
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.921154
– volume: 90
  start-page: 80
  year: 2010
  ident: e_1_2_8_99_1
  article-title: Mercury methylation in the sediments of a macrotidal estuary (Gironde Estuary, south‐west France)
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2010.07.007
– volume: 22
  start-page: 421
  year: 1998
  ident: e_1_2_8_66_1
  article-title: The anaerobic oxidation of ammonium
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1998.tb00379.x
– volume: 198
  start-page: 51
  year: 1997
  ident: e_1_2_8_11_1
  article-title: Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(97)05441-7
– volume: 56
  start-page: 249
  year: 2007
  ident: e_1_2_8_53_1
  article-title: Influence of macrophyte species on microbial density and activity in constructed wetlands
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2007.510
– volume: 440
  start-page: 66
  year: 2015
  ident: e_1_2_8_73_1
  article-title: Bioturbation trends across the freshwater to brackish‐water transition in rivers
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2015.08.030
– volume: 20
  start-page: 1257
  year: 2000
  ident: e_1_2_8_41_1
  article-title: Microbial biofilms in intertidal systems: an overview
  publication-title: Cont. Shelf Res.
  doi: 10.1016/S0278-4343(00)00022-4
– volume: 118
  start-page: 92
  year: 2016
  ident: e_1_2_8_31_1
  article-title: Manganese, iron and phosphorus cycling in an estuarine mudflat, Loire, France
  publication-title: J. Sea Res.
  doi: 10.1016/j.seares.2016.10.004
– volume: 117
  start-page: 1
  year: 2016
  ident: e_1_2_8_64_1
  article-title: Tracking the turbidity maximum zone in the Loire Estuary (France) based on a long‐term, high‐resolution and high‐frequency monitoring network
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2016.01.017
– ident: e_1_2_8_10_1
– volume: 3
  start-page: 1
  year: 2022
  ident: e_1_2_8_103_1
  article-title: Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-022-00485-8
– volume: 56
  start-page: 1811
  year: 2011
  ident: e_1_2_8_68_1
  article-title: The flux of soluble organic‐iron (III) complexes from sediments represents a source of stable iron (III) to estuarine waters and to the continental shelf
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2011.56.5.1811
– volume: 250
  start-page: 29
  year: 2008
  ident: e_1_2_8_9_1
  article-title: Anoxic nitrification: evidence from Humber Estuary sediments (UK)
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.02.001
– volume: 38
  start-page: 693
  year: 2006
  ident: e_1_2_8_58_1
  article-title: Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.06.020
– volume: 28
  start-page: 51
  year: 1992
  ident: e_1_2_8_57_1
  article-title: Photosynthesis and photosynthesis‐coupled respiration in natural biofilms quantified with oxygen microsensors
  publication-title: J. Phycol.
  doi: 10.1111/j.0022-3646.1992.00051.x
– volume: 122
  start-page: 75
  year: 2013
  ident: e_1_2_8_71_1
  article-title: Iron monosulfide accumulation and pyrite formation in eutrophic estuarine sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.08.013
– volume: 63
  start-page: 780
  year: 1993
  ident: e_1_2_8_18_1
  article-title: Morphology, internal structure, and reversal of asymmetry of large subtidal dunes in the entrance to Gironde Estuary (France)
  publication-title: J. Sed. Res.
– volume: 18
  start-page: 251
  year: 1998
  ident: e_1_2_8_82_1
  article-title: SCOPIX: a new X‐ray imaging system for core analysis
  publication-title: Geo‐Mar. Lett.
  doi: 10.1007/s003670050076
– volume: 85
  start-page: 143
  year: 2013
  ident: e_1_2_8_88_1
  article-title: Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12106
– volume: 15
  start-page: 753
  year: 2000
  ident: e_1_2_8_102_1
  article-title: Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estuary
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(99)00090-6
– volume: 52
  start-page: M19
  year: 1983
  ident: e_1_2_8_38_1
  article-title: A portable coring device for use in the intertidal environment
  publication-title: Mar. Geol.
  doi: 10.1016/0025-3227(83)90015-4
– volume: 127
  start-page: 36
  year: 2017
  ident: e_1_2_8_86_1
  article-title: Empirical model to estimate permeability of surface sediments in the German Bight (North Sea)
  publication-title: J. Sea Res.
  doi: 10.1016/j.seares.2016.12.002
– volume: 29
  start-page: 609
  year: 1984
  ident: e_1_2_8_65_1
  article-title: The coupling of nitrification and denitrification in two estuarine sediments1,2
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1984.29.3.0609
– volume: 27
  start-page: 362
  year: 1996
  ident: e_1_2_8_98_1
  article-title: Pore‐water response on seasonal environmental changes in intertidal sediments of the Weser Estuary, Germany
  publication-title: Environ. Geol.
  doi: 10.1007/BF00766706
– volume: 119
  start-page: 139
  year: 2014
  ident: e_1_2_8_20_1
  article-title: Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-9953-6
– volume: 114
  year: 2020
  ident: e_1_2_8_112_1
  article-title: Facies associations, detrital clay grain coats and mineralogical characterization of the Gironde estuary tidal bars: A modern analogue for deeply buried estuarine sandstone reservoirs
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2020.104225
– volume: 63
  start-page: 49
  year: 1999
  ident: e_1_2_8_63_1
  article-title: Coupled anoxic nitrification/manganese reduction in marine sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00285-3
– volume: 70
  start-page: 249
  year: 2009
  ident: e_1_2_8_67_1
  article-title: Vertical distribution and diversity of sulfate‐reducing prokaryotes in the Pearl River estuarine sediments, Southern China
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00758.x
– volume: 61
  start-page: 1421
  year: 1997
  ident: e_1_2_8_72_1
  article-title: Geochemistry of trace metals in the Gironde estuary
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00016-1
– volume: 34
  start-page: 793
  year: 1989
  ident: e_1_2_8_107_1
  article-title: Sulfate reduction and the formation of 35S‐labeled FeS, FeS2, and S0 in coastal marine sediments
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1989.34.5.0793
– volume: 40
  start-page: 183
  year: 2003
  ident: e_1_2_8_111_1
  article-title: The importance of extracellular carbohydrate productionby marine epipelic diatoms
  publication-title: Adv. Bot. Res.
  doi: 10.1016/S0065-2296(05)40005-1
– volume: 179
  start-page: 39
  year: 2016
  ident: e_1_2_8_50_1
  article-title: Coupling of bacterial nitrification with denitrification and anammox supports N removal in intertidal sediments (Arcachon Bay, France)
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2015.10.009
– volume: 70
  start-page: 1005
  year: 2000
  ident: e_1_2_8_76_1
  article-title: Residual transport model in correlation with sedimentary dynamics over an elongate tidal sandbar in the Gironde Estuary (southwestern France)
  publication-title: J. Sed. Res.
  doi: 10.1306/022900701005
– volume: 35
  start-page: 249
  year: 1993
  ident: e_1_2_8_25_1
  article-title: The biogeochemistry of manganese and iron reduction in marine sediments
  publication-title: Earth Sci. Rev.
  doi: 10.1016/0012-8252(93)90040-E
– volume: 24
  start-page: 79
  year: 2018
  ident: e_1_2_8_29_1
  article-title: Seasonal variability of mineral formation in microbial mats subjected to drying and wetting cycles in alkaline and hypersaline sedimentary environments
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-018-9333-2
– volume: 76
  start-page: 89
  year: 2006
  ident: e_1_2_8_56_1
  article-title: A modified Gompertz model to predict microbial inactivation under time‐varying temperature conditions
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2005.05.017
– volume: 60
  start-page: 329
  year: 2015
  ident: e_1_2_8_79_1
  article-title: Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10029
– volume: 16
  start-page: 457
  year: 2000
  ident: e_1_2_8_8_1
  article-title: The effects of drying and re‐flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis
  publication-title: Regul. Rivers Res. Manag.
  doi: 10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B
– volume: 84
  start-page: 495
  year: 2013
  ident: e_1_2_8_80_1
  article-title: Differences between aerobic and anaerobic degradation of microphytobenthic biofilm‐derived organic matter within intertidal sediments
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12077
– volume: 49
  start-page: 1
  year: 1985
  ident: e_1_2_8_92_1
  article-title: A new medium for the enumeration and subculture of bacteria from potable water
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.49.1.1-7.1985
– volume: 179
  start-page: 716
  year: 2006
  ident: e_1_2_8_36_1
  article-title: The transformation of ferrihydrite into goethite or hematite, revisited
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2005.11.030
– volume: 47
  start-page: 145
  year: 1994
  ident: e_1_2_8_34_1
  article-title: Trace metal distribution, partition and fluxes in the Seine estuary (France) in low discharge regime
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(94)90105-8
– volume: 36
  start-page: 1476
  year: 1991
  ident: e_1_2_8_115_1
  article-title: In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1991.36.7.1476
– volume: 52
  start-page: 751
  year: 1988
  ident: e_1_2_8_6_1
  article-title: Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90335-3
– volume: 67
  start-page: 293
  year: 2009
  ident: e_1_2_8_22_1
  article-title: Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2008.00614.x
– volume: 9
  start-page: 3343
  year: 2019
  ident: e_1_2_8_62_1
  article-title: Vertical stratification of sediment microbial communities along geochemical gradients of a subterranean estuary located at the Gloucester Beach of Virginia, United States
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.03343
– volume: 70
  start-page: 2264
  year: 2006
  ident: e_1_2_8_7_1
  article-title: Early diagenesis of trace metals (Cd, Cu, Co, Ni, U, Mo, and V) in the freshwater reaches of a macrotidal estuary
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.02.001
– volume: 46
  start-page: 1
  year: 1999
  ident: e_1_2_8_49_1
  article-title: Intertidal clay‐drape couplets (Gironde Estuary, France)
  publication-title: Sedimentology
  doi: 10.1046/j.1365-3091.1999.00196.x
– volume: 29
  start-page: 93
  year: 1999
  ident: e_1_2_8_110_1
  article-title: Primary production by phytoplankton and microphytobenthos in estuaries
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/S0065-2504(08)60192-0
– volume: 50
  start-page: 703
  year: 2000
  ident: e_1_2_8_2_1
  article-title: Transient, Tidal Time‐scale, Nitrogen Transformations in an Estuarine Turbidity Maximum—Fluid Mud System (The Gironde, South‐west France)
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1006/ecss.1999.0598
– volume: 8
  start-page: 922
  year: 2017
  ident: e_1_2_8_42_1
  article-title: Microbial extracellular polymeric substances (EPSs) in ocean systems
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00922
– volume: 42
  start-page: 131
  year: 1999
  ident: e_1_2_8_39_1
  article-title: Carbohydrate secretion by phototrophic communities in tidal sediments
  publication-title: J. Sea Res.
  doi: 10.1016/S1385-1101(99)00021-0
– volume: 276
  start-page: 37
  year: 2004
  ident: e_1_2_8_84_1
  article-title: Anoxic nitrification in marine sediments
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps276037
– start-page: 207
  volume-title: Marine Geochemistry
  year: 2006
  ident: e_1_2_8_60_1
  doi: 10.1007/3-540-32144-6_6
– volume: 72
  start-page: 2822
  year: 2008
  ident: e_1_2_8_14_1
  article-title: Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.04.013
– volume: 57
  start-page: 3867
  year: 1993
  ident: e_1_2_8_30_1
  article-title: The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(93)90340-3
– volume: 51
  start-page: 1583
  year: 1987
  ident: e_1_2_8_101_1
  article-title: Early diagenesis in sediments from Danish coastal waters: microbial activity and Mn‐Fe‐S geochemistry
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(87)90339-5
– volume: 54
  start-page: 241
  year: 2002
  ident: e_1_2_8_3_1
  article-title: Behaviour of organic carbon in nine contrasting European estuaries
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1006/ecss.2001.0844
– volume: 2
  start-page: 178
  year: 1996
  ident: e_1_2_8_104_1
  article-title: An Introduction Emphasizing Chemical Equilibria in Natural Waters
  publication-title: Aquat. Chem.
– volume: 66
  start-page: 1281
  year: 2020
  ident: e_1_2_8_33_1
  article-title: Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a mosaic of estuarine benthic habitats
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.11681
– volume: 52
  start-page: 1167
  year: 1986
  ident: e_1_2_8_109_1
  article-title: Microbial iron reduction by enrichment cultures isolated from Estuarine Sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.52.5.1167-1172.1986
– volume: 5
  start-page: 401
  year: 2007
  ident: e_1_2_8_21_1
  article-title: Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2007.00117.x
– volume: 48
  start-page: 1012
  year: 2020
  ident: e_1_2_8_47_1
  article-title: Experimental formation of clay‐coated sand grains using diatom biofilm exopolymers
  publication-title: Geology
  doi: 10.1130/G47418.1
– ident: e_1_2_8_89_1
– volume: 136
  start-page: 277
  year: 1996
  ident: e_1_2_8_93_1
  article-title: Measurement of the respiratory electron transport system (ETS) activity in marine sediments: state‐of‐the‐art and interpretation. I. Methodology and review of literature data
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps136277
– volume: 51
  start-page: 745
  year: 2004
  ident: e_1_2_8_46_1
  article-title: Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)
  publication-title: Sedimentology
  doi: 10.1111/j.1365-3091.2004.00649.x
– volume: 57
  start-page: 185
  year: 2012
  ident: e_1_2_8_54_1
  article-title: Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2012.57.1.0185
– volume: 279
  start-page: 156
  year: 2012
  ident: e_1_2_8_85_1
  article-title: Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada)
  publication-title: Sed. Geol.
  doi: 10.1016/j.sedgeo.2011.04.020
– volume: 32
  start-page: 191
  year: 2006
  ident: e_1_2_8_19_1
  article-title: Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food‐chain
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2005.08.010
– volume: 31
  start-page: 39
  year: 1985
  ident: e_1_2_8_37_1
  article-title: Survival of sulfate‐reducing bacteria after oxygen stress, and growth in sulfate‐free oxygen‐sulfide gradients
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1985.tb01129.x
– volume: 88
  start-page: 69
  year: 2013
  ident: e_1_2_8_12_1
  article-title: A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation
  publication-title: Q. Rev. Biol.
  doi: 10.1086/670529
– volume: 25
  start-page: 3
  year: 2019
  ident: e_1_2_8_87_1
  article-title: The Speciation and Mobility of Mn and Fe in Estuarine Sediments
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-019-09351-0
– volume: 19
  start-page: 2048
  year: 2019
  ident: e_1_2_8_51_1
  article-title: Pore water geochemistry and diagenesis of estuary sediments—an example of the Zrmanja River estuary (Adriatic coast, Croatia)
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-018-2179-9
– volume: 87
  start-page: 1
  year: 2004
  ident: e_1_2_8_95_1
  article-title: Metal mobilization in the Gironde Estuary (France): the role of the soft mud layer in the maximum turbidity zone
  publication-title: Mar. Chem.
  doi: 10.1016/S0304-4203(03)00088-4
– volume: 2
  start-page: 185
  year: 1996
  ident: e_1_2_8_119_1
  article-title: Redox cycling of iron and manganese in sediments of the Kalix River estuary, Northern Sweden
  publication-title: Aquat. Geochem.
  doi: 10.1007/BF00121631
– volume: 13
  start-page: 429
  year: 2005
  ident: e_1_2_8_45_1
  article-title: Microbial lithification in marine stromatolites and hypersaline mats
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2005.07.008
– volume: 25
  start-page: 1185
  year: 2012
  ident: e_1_2_8_59_1
  article-title: Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton
  publication-title: Biometals
  doi: 10.1007/s10534-012-9581-3
– volume: 203
  start-page: 109
  year: 2000
  ident: e_1_2_8_44_1
  article-title: Denitrification in sediments of the River Colne estuary, England
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps203109
– volume: 71
  start-page: 1922
  year: 2024
  ident: e_1_2_8_52_1
  article-title: A typical point bar with atypical strata in the McMurray Formation, Alberta, Canada: floods, tides and high suspended sediment concentrations
  publication-title: Sedimentology
  doi: 10.1111/sed.13198
– ident: e_1_2_8_77_1
  doi: 10.5150/jngcgc.2010.061-M
– volume: 40
  start-page: 81
  year: 1992
  ident: e_1_2_8_75_1
  article-title: Seasonal iron cycling in the salt‐marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(92)90049-G
– volume: 31
  start-page: 293
  year: 1986
  ident: e_1_2_8_94_1
  article-title: Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data
  publication-title: Limnol. Oceanogr.
– volume: 19
  start-page: 360
  year: 2021
  ident: e_1_2_8_70_1
  article-title: An evolving view on biogeochemical cycling of iron
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-00502-7
– start-page: 87
  volume-title: Geobiology: Objectives, Concepts, Perspectives, Elsevier
  year: 2005
  ident: e_1_2_8_114_1
  doi: 10.1016/B978-0-444-52019-7.50009-7
– volume: 185
  start-page: 131
  year: 2006
  ident: e_1_2_8_13_1
  article-title: Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries
  publication-title: Sed. Geol.
  doi: 10.1016/j.sedgeo.2005.12.008
– volume: 61
  start-page: 1033
  year: 2016
  ident: e_1_2_8_78_1
  article-title: Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10271
– volume: 8
  start-page: 317
  year: 2003
  ident: e_1_2_8_81_1
  article-title: Anaerobic metabolism: linkages to trace gases and aerobic processes
  publication-title: Biogeochemistry
– volume: 75
  start-page: 3581
  year: 2011
  ident: e_1_2_8_61_1
  article-title: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.03.033
– volume: 190
  start-page: 35
  year: 2017
  ident: e_1_2_8_15_1
  article-title: The drivers of biogeochemistry in beach ecosystems: a cross‐shore transect from the dunes to the low‐water line
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2017.01.001
– volume: 50
  start-page: 1281
  year: 1986
  ident: e_1_2_8_105_1
  article-title: The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment‐water interface
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(86)90411-4
– volume: 275
  year: 2022
  ident: e_1_2_8_83_1
  article-title: Microphytobenthos as a source of labile organic matter for denitrifying microbes
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2022.108006
– volume: 62
  start-page: 1935
  year: 2017
  ident: e_1_2_8_4_1
  article-title: Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10544
– ident: e_1_2_8_69_1
  doi: 10.1130/0-8137-2379-5.63
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_8_91_1
– ident: e_1_2_8_96_1
– start-page: 407
  volume-title: Coastal Wetlands
  year: 2019
  ident: e_1_2_8_100_1
  doi: 10.1016/B978-0-444-63893-9.00012-5
– volume: 43
  start-page: 1796
  year: 2003
  ident: e_1_2_8_28_1
  article-title: The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1998.43.8.1796
– volume: 28
  start-page: 73
  year: 1990
  ident: e_1_2_8_40_1
  article-title: Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes
  publication-title: Oceanogr. Mar. Biol. Annu. Rev.
– ident: e_1_2_8_74_1
– volume: 83
  start-page: 1482
  year: 1998
  ident: e_1_2_8_116_1
  article-title: Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling
  publication-title: Am. Mineral.
  doi: 10.2138/am-1998-11-1236
– volume: 50
  start-page: 113
  year: 2005
  ident: e_1_2_8_17_1
  article-title: Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt‐Rømø basin, Wadden Sea
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2005.50.1.0113
– volume: 555
  start-page: 64
  year: 2012
  ident: e_1_2_8_23_1
  article-title: Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2012.12.005
– volume: 70
  start-page: 811
  year: 2006
  ident: e_1_2_8_32_1
  article-title: Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.10.019
– volume: 72
  start-page: 3413
  year: 2008
  ident: e_1_2_8_97_1
  article-title: Iron isotope fractionation in subterranean estuaries
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.05.001
– volume: 58
  start-page: 5115
  year: 1994
  ident: e_1_2_8_106_1
  article-title: Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90298-4
– ident: e_1_2_8_5_1
– volume: 91
  start-page: 812
  year: 2021
  ident: e_1_2_8_113_1
  article-title: Preservation and distribution of detrital clay coats in a modern estuarine heterolithic point bar in the Gironde estuary (Bordeaux, France)
  publication-title: J. Sed. Res.
  doi: 10.2110/jsr.2020.146
– volume: 856
  year: 2023
  ident: e_1_2_8_55_1
  article-title: Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow‐lake biogeochemistry and alluvial geomorphology
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158952
– volume: 11
  year: 2020
  ident: e_1_2_8_24_1
  article-title: A review of methods to determine viability, vitality, and metabolic rates in microbiology
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.547458
– volume: 330
  start-page: 233
  year: 2004
  ident: e_1_2_8_35_1
  article-title: Sampling frequency and accuracy of SPM flux estimates in two contrasted drainage basins
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2004.04.003
– volume: 152
  start-page: 72
  year: 2015
  ident: e_1_2_8_16_1
  article-title: The origin, composition, and reactivity of dissolved iron (III) complexes in coastal organic‐and iron‐rich sediments
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2014.12.017
– volume: 27
  start-page: 285
  year: 2002
  ident: e_1_2_8_108_1
  article-title: Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK)
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame027285
– start-page: 153
  volume-title: Marine Pollution and Microbial Remediation
  year: 2017
  ident: e_1_2_8_90_1
  doi: 10.1007/978-981-10-1044-6_10
– start-page: 3352
  volume-title: The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications
  year: 1992
  ident: e_1_2_8_118_1
– volume: 50
  start-page: 491
  year: 1985
  ident: e_1_2_8_27_1
  article-title: Microbial manganese reduction by enrichment cultures from coastal marine sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.50.2.491-497.1985
– volume: 283
  start-page: 20
  year: 1983
  ident: e_1_2_8_26_1
  article-title: A pore water/solid phase diagenetic model for manganese in marine sediments
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.283.1.29
– volume: 28
  start-page: 919
  year: 2000
  ident: e_1_2_8_117_1
  article-title: Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites
  publication-title: Geology
  doi: 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2
SSID ssj0016489
Score 2.4367895
SecondaryResourceType online_first
Snippet In many estuaries, biogeochemical investigations have often focused on transient diatom biofilms that form on low‐energy intertidal flats. Studies on...
SourceID crossref
SourceType Index Database
Title Down in the dungeons: the hidden role of diatom biofilms and microbial activity in the biogeochemistry of a dynamic estuarine point bar
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFsGXUqtitZZBfFtSksnm5lvXrRZBhXYLfVvmFjawmyxr9qH9A_5tz8lcNlaFti8hCclJyPlybnMuhHwI01BqHusgKmUejFiWBIUoswA0YaISJeGXQkfx2_f0_Gr09Tq5HgxuellLm1acyNt_1pU8hqtwDviKVbIP4KwnCidgH_gLW-AwbO_F4wm40C5RUcFfq-FBLlFjjr1Bap89iAM5muVQVDiie2kaMy-rrgsTdguQdoiEJQaXATHphsGZIkplhtcPQY8ArtA6XTVV3Q4FX_dN3EtQhxhy_CNeP9m0Nto8nVeCbxY-22aMqwCLRdMpgwu-mvNu7X7sMz_Gaw7g4KY_wo9FhYp8G8G1JRanCvs190MYLMHYqKmcdmI5xnipjUVqI4kx_S4OzSiv_8j5n1qdZNhRZ6vM3AL-HR3nMw-dzwO3zrpbn5BdBh4GDr-YXPjOY-BE5sZzsm9mm1JhEph_as-U6dkk032yZ50JemqQ8ZwMdH1Ann7phjXfvCC_EB-0qimwlDp8fOyODDooooM2JTXooA4dFNBBPTqoQ4cjdQcdSIBTiw7q0UE7dFBAx0sy_Xw2_XQe2MEbgQT3vQ20lhzjAFyyItQKZHQWlSwscqkyHnGNYpvrUJdMgQqIRFqUTPI4LSKZMx7Gr8hO3dT6NaHpSBa6LHieSTEqYyZUwRQQkyLS8NX1IXnvPuFsZdqrzP5i0Zv7XPSWPNtC64jstOuNfgf2YiuOO87-Bkj7ctI
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Down+in+the+dungeons%3A+the+hidden+role+of+diatom+biofilms+and+microbial+activity+in+the+biogeochemistry+of+a+dynamic+estuarine+point+bar&rft.jtitle=Sedimentology&rft.au=Duteil%2C+Thibault&rft.au=Bourillot%2C+Rapha%C3%ABl&rft.au=Braissant%2C+Olivier&rft.au=Henry%2C+Adrien&rft.date=2025-07-24&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111%2Fsed.70036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sed_70036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon