A numerical method for approximating the solution of fuzzy fractional optimal control problems in caputo sense using legendre functions
Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the ambiguity in the initial conditions and the transfer of ambiguity to the solution, it is necessary to use fuzzy mathematics. In this paper, a...
Saved in:
Published in | Journal of intelligent & fuzzy systems Vol. 43; no. 3; pp. 3827 - 3858 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
IOS Press BV
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the ambiguity in the initial conditions and the transfer of ambiguity to the solution, it is necessary to use fuzzy mathematics. In this paper, a numerical method is presented to approximate the solution for a class of Fuzzy Fractional Optimal Control Problems (FFOCPs) using the Legendre basis functions. The fuzzy fractional derivative is described in the Caputo sense. The performance index of an FFOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of Fuzzy Fractional Differential Equations (FFDEs). After obtaining Euler–Lagrange equations for FFOCPs and the necessary and sufficient conditions for the existence of solutions, using the definition of generalized Hukuhara differentiability (types I, II), the problem is considered in two cases. Then the distance function and an approach similar to the variational type along with the Lagrange multiplier method are used to formulate and solve the equations in a system. Time-invariant and time-varying examples are provided to assess the presented method. Numerical results show a similar trend for the state and control variables for various numbers of Legendre polynomials. Also, the convergence of state and control variables for the time-invariant system can be seen, and the same is true for control variables for the time-varying system. |
---|---|
AbstractList | Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the ambiguity in the initial conditions and the transfer of ambiguity to the solution, it is necessary to use fuzzy mathematics. In this paper, a numerical method is presented to approximate the solution for a class of Fuzzy Fractional Optimal Control Problems (FFOCPs) using the Legendre basis functions. The fuzzy fractional derivative is described in the Caputo sense. The performance index of an FFOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of Fuzzy Fractional Differential Equations (FFDEs). After obtaining Euler–Lagrange equations for FFOCPs and the necessary and sufficient conditions for the existence of solutions, using the definition of generalized Hukuhara differentiability (types I, II), the problem is considered in two cases. Then the distance function and an approach similar to the variational type along with the Lagrange multiplier method are used to formulate and solve the equations in a system. Time-invariant and time-varying examples are provided to assess the presented method. Numerical results show a similar trend for the state and control variables for various numbers of Legendre polynomials. Also, the convergence of state and control variables for the time-invariant system can be seen, and the same is true for control variables for the time-varying system. |
Author | Mirvakili, M. Allahviranloo, T. Soltanian, F. |
Author_xml | – sequence: 1 givenname: M. surname: Mirvakili fullname: Mirvakili, M. organization: Department of Mathematics, Payame Noor University (PNU), Tehran, Iran – sequence: 2 givenname: T. surname: Allahviranloo fullname: Allahviranloo, T. organization: Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey – sequence: 3 givenname: F. surname: Soltanian fullname: Soltanian, F. organization: Department of Mathematics, Payame Noor University (PNU), Tehran, Iran |
BookMark | eNotkM1OwzAQhC1UJNrCiRewxBEF_BMnzrGqKBRV4gCcIzdZt6kSO9iORPsCvDYO5bSr1cynnZmhibEGELql5IEzzh9f16v3hFEiJL9AUypzkcgiyydxJ1maUJZmV2jm_YEQmgtGpuhngc3QgWsq1eIOwt7WWFuHVd87-910KjRmh8MesLftEBprsNVYD6fTEWunqvESnbYPUdviyprgbIujedtC53FjcKX6IVjswXjAgx95LezA1A4iyPwh_DW61Kr1cPM_5-hz9fSxfEk2b8_r5WKTVLSgIYFUUpGyPCeaKQWUSc5TTqjMCiYqveUglCpiZlFXdaYK0FKlmSyoJoJGK5-juzM3fvg1gA_lwQ4uRvAli4ycyywdVfdnVeWs9w502buYzx1LSsqx6XJsujw3zX8BPsV0-w |
CitedBy_id | crossref_primary_10_3390_math11143040 |
Cites_doi | 10.1007/978-3-642-14003-7 10.3934/dcdss.2018004 10.1016/j.cnsns.2011.07.005 10.1016/j.ins.2010.11.027 10.1007/978-1-4614-0457-6 10.1016/j.chaos.2014.07.001 10.1016/j.cam.2017.09.039 10.1016/j.cnsns.2020.105312 10.2514/3.20641 10.1142/S1793005721500046 10.1016/j.aml.2010.06.007 10.1007/978-3-642-14574-2 10.1016/j.na.2009.11.029 10.1016/j.cjph.2020.05.006 10.1177/1077546307077467 10.1016/j.camwa.2009.08.006 10.1016/j.na.2007.08.042 10.1016/j.ins.2017.08.094 10.1007/BF02083817 10.1007/s11071-004-3764-6 10.3233/IFS-130831 10.1109/9.192189 |
ContentType | Journal Article |
Copyright | Copyright IOS Press BV 2022 |
Copyright_xml | – notice: Copyright IOS Press BV 2022 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/JIFS-210583 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1875-8967 |
EndPage | 3858 |
ExternalDocumentID | 10_3233_JIFS_210583 |
GroupedDBID | .4S .DC 0R~ 4.4 5GY 8VB AAYXX ABCQX ABDBF ABJNI ACGFS ACPQW ADZMO AEMOZ AENEX AFRHK AKVCP ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF CITATION DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c191t-e481542770f2aae12833430186925cfb3e5aa98965dcd6a9ef8a46891f0518153 |
ISSN | 1064-1246 |
IngestDate | Thu Oct 10 16:03:09 EDT 2024 Fri Aug 23 01:44:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c191t-e481542770f2aae12833430186925cfb3e5aa98965dcd6a9ef8a46891f0518153 |
PQID | 2692738645 |
PQPubID | 2046407 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2692738645 crossref_primary_10_3233_JIFS_210583 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of intelligent & fuzzy systems |
PublicationYear | 2022 |
Publisher | IOS Press BV |
Publisher_xml | – name: IOS Press BV |
References | Nieto (10.3233/JIFS-210583_ref16) 2010; 23 Allahviranloo (10.3233/JIFS-210583_ref30) 2014; 26 Marzban (10.3233/JIFS-210583_ref4) 2021; 114 Skaar (10.3233/JIFS-210583_ref24) 1988; 33 Khader (10.3233/JIFS-210583_ref1) 2012; 14 Lakshmikantham (10.3233/JIFS-210583_ref13) 2008; 69 Bede (10.3233/JIFS-210583_ref31); 230 Agarwal (10.3233/JIFS-210583_ref3) 2018; 339 10.3233/JIFS-210583_ref37 10.3233/JIFS-210583_ref14 10.3233/JIFS-210583_ref36 Salahshour (10.3233/JIFS-210583_ref34) 2012; 17 Agrawal (10.3233/JIFS-210583_ref19) 2007; 13 Manabe (10.3233/JIFS-210583_ref23) 1960; 80 Tricaud (10.3233/JIFS-210583_ref10) 2010; 59 Feng (10.3233/JIFS-210583_ref35) 2020; 66 Bagley (10.3233/JIFS-210583_ref25) 1991; 14 10.3233/JIFS-210583_ref29 Shen (10.3233/JIFS-210583_ref17) 2014; 67 10.3233/JIFS-210583_ref28 Agrawal (10.3233/JIFS-210583_ref26); 272 10.3233/JIFS-210583_ref27 El-Sayed (10.3233/JIFS-210583_ref15) 1996; 35 Farhadinia (10.3233/JIFS-210583_ref32) 2011; 181 10.3233/JIFS-210583_ref22 Agrawal (10.3233/JIFS-210583_ref20) 2004; 38 10.3233/JIFS-210583_ref9 Mizumoto (10.3233/JIFS-210583_ref33) 1976; 7 10.3233/JIFS-210583_ref6 10.3233/JIFS-210583_ref5 |
References_xml | – ident: 10.3233/JIFS-210583_ref9 doi: 10.1007/978-3-642-14003-7 – ident: 10.3233/JIFS-210583_ref27 doi: 10.3934/dcdss.2018004 – volume: 17 start-page: 1372 year: 2012 ident: 10.3233/JIFS-210583_ref34 article-title: Solving fuzzyfractional differential equations by fuzzy Laplace transforms publication-title: Commun Nonlinear Sci Numer Simulat doi: 10.1016/j.cnsns.2011.07.005 contributor: fullname: Salahshour – volume: 181 start-page: 1348 year: 2011 ident: 10.3233/JIFS-210583_ref32 article-title: Necessary optimality conditions for fuzzy variationalproblems publication-title: Information Sciences doi: 10.1016/j.ins.2010.11.027 contributor: fullname: Farhadinia – volume: 114 start-page: 106 year: 2021 ident: 10.3233/JIFS-210583_ref4 article-title: A new fractional orthogonal basis and its applicationin nonlinear delay fractional optimal control problems publication-title: ISATransactions contributor: fullname: Marzban – ident: 10.3233/JIFS-210583_ref5 doi: 10.1007/978-1-4614-0457-6 – volume: 67 start-page: 94 year: 2014 ident: 10.3233/JIFS-210583_ref17 article-title: Analysis on limit cycle offractional-order van der Pol oscillator publication-title: Chaos SolitonsFractals doi: 10.1016/j.chaos.2014.07.001 contributor: fullname: Shen – volume: 339 start-page: 3 year: 2018 ident: 10.3233/JIFS-210583_ref3 article-title: Asurvey on fuzzy fractional differential and optimal control nonlocalevolution equations publication-title: Journal of Computational and AppliedMathematics doi: 10.1016/j.cam.2017.09.039 contributor: fullname: Agarwal – volume: 272 start-page: 368 issue: 2002 ident: 10.3233/JIFS-210583_ref26 article-title: Formulation of Euler–Lagrange equations forfractional variational problems publication-title: Math. Anal. Appl. contributor: fullname: Agrawal – ident: 10.3233/JIFS-210583_ref29 doi: 10.1016/j.cnsns.2020.105312 – volume: 14 start-page: 304 year: 1991 ident: 10.3233/JIFS-210583_ref25 article-title: Fractional order state equations forthe control of viscoelastically damped structures publication-title: Journal ofGuidance, Control, and Dynamics doi: 10.2514/3.20641 contributor: fullname: Bagley – volume: 14 start-page: 287 issue: 3 year: 2012 ident: 10.3233/JIFS-210583_ref1 article-title: An Efcient Numerical Scheme for SolvingFractional Optimal Control Problems publication-title: International Journal ofNonlinear Science contributor: fullname: Khader – ident: 10.3233/JIFS-210583_ref37 doi: 10.1142/S1793005721500046 – volume: 23 start-page: 1248 issue: 10 year: 2010 ident: 10.3233/JIFS-210583_ref16 article-title: Maximum principles for fractional differential equationsderived from Mittag-Leffler functions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.06.007 contributor: fullname: Nieto – volume: 230 start-page: 119 issue: 2013 ident: 10.3233/JIFS-210583_ref31 article-title: Generalized differentiability offuzzy-valued functions publication-title: Fuzzy Sets and Systems contributor: fullname: Bede – ident: 10.3233/JIFS-210583_ref22 – ident: 10.3233/JIFS-210583_ref6 doi: 10.1007/978-3-642-14574-2 – ident: 10.3233/JIFS-210583_ref14 doi: 10.1016/j.na.2009.11.029 – ident: 10.3233/JIFS-210583_ref28 – volume: 66 start-page: 269276 year: 2020 ident: 10.3233/JIFS-210583_ref35 article-title: On overall behavior of Maxwellmechanical model by the combined Caputo fractional derivative publication-title: Chinese Journal of Physics doi: 10.1016/j.cjph.2020.05.006 contributor: fullname: Feng – volume: 13 start-page: 1269 issue: 9–10 year: 2007 ident: 10.3233/JIFS-210583_ref19 article-title: A Hamiltonian Formulation and a DirectNumerical Scheme for Fractional Optimal Control Problems publication-title: Journal of Vibration and Control doi: 10.1177/1077546307077467 contributor: fullname: Agrawal – volume: 7 start-page: 73 year: 1976 ident: 10.3233/JIFS-210583_ref33 publication-title: Systems Comput. Controls contributor: fullname: Mizumoto – volume: 80 start-page: 589 year: 1960 ident: 10.3233/JIFS-210583_ref23 article-title: The non-integer integral and its application to control publication-title: Japanese Institute of Electrical Engineers contributor: fullname: Manabe – volume: 59 start-page: 1644 year: 2010 ident: 10.3233/JIFS-210583_ref10 article-title: An approximate method for numericallysolving fractional order optimal control problems of general form publication-title: Computers and Mathematics with Applications doi: 10.1016/j.camwa.2009.08.006 contributor: fullname: Tricaud – volume: 69 start-page: 2677 year: 2008 ident: 10.3233/JIFS-210583_ref13 article-title: Basic theory of fractionaldifferential equations publication-title: Nonlinear Anal doi: 10.1016/j.na.2007.08.042 contributor: fullname: Lakshmikantham – ident: 10.3233/JIFS-210583_ref36 doi: 10.1016/j.ins.2017.08.094 – volume: 35 start-page: 311 issue: 2 year: 1996 ident: 10.3233/JIFS-210583_ref15 article-title: Fractional-order diffusion-wave equation publication-title: Internat. J. Theoret. Phys. doi: 10.1007/BF02083817 contributor: fullname: El-Sayed – volume: 38 start-page: 323 issue: 1-2 year: 2004 ident: 10.3233/JIFS-210583_ref20 article-title: A general formulation and solution scheme forfractional optimal control problems publication-title: Nonlinear Dynamic doi: 10.1007/s11071-004-3764-6 contributor: fullname: Agrawal – volume: 26 start-page: 1481 year: 2014 ident: 10.3233/JIFS-210583_ref30 article-title: Fuzzy fractionaldifferential equations under generalized fuzzy Caputo derivative publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/IFS-130831 contributor: fullname: Allahviranloo – volume: 33 start-page: 348 year: 1988 ident: 10.3233/JIFS-210583_ref24 article-title: Stability of viscoelasticcontrol systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.192189 contributor: fullname: Skaar |
SSID | ssj0017520 |
Score | 2.301709 |
Snippet | Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 3827 |
SubjectTerms | Ambiguity Approximation Basis functions Differential equations Dynamical systems Euler-Lagrange equation Fractional calculus Fuzzy control Fuzzy sets Initial conditions Lagrange multiplier Legendre functions Numerical analysis Numerical methods Optimal control Performance indices Polynomials Time invariant systems Time varying control systems |
Title | A numerical method for approximating the solution of fuzzy fractional optimal control problems in caputo sense using legendre functions |
URI | https://www.proquest.com/docview/2692738645 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHRHmIQovm0FvkkHj92mNKsUqlcmkq9WatN2sRKThVYleQP8Bv4V8yu7N2HJpD4WJFjnb9mM8z387Og7FTOdIjxWcCtV8hvCDJlZcn-LlHgdQBT2QQa5PvfPU1urgJLm_D217vdydqqa7yodrszSv5H6niOZSryZL9B8m2k-IJ_I3yxSNKGI-PkvFkUNa047JwraApKNLUCf8xN1zU5UI1t2GoYVFvNj8HxYoyGgwXRa3x3ZYJoah112PGBsoqeVcjO13jYlcPautXMH4GEwU5MCZx6-57SHDnbbXPygKMLrzulEi3uYireySxlKR9NWzxh-j8ZuKPy8XSOnOn7V_XywUS2jk5btNh123h-x23BWla5EIekgtXB5vO4eLJSwT152jUM1VxcjDkHV3LE6oq4Oy22eHcZxO4b3zW6eWX9NrD9W1IfXN2K2__ZRHbOEVcIZnhmRmc0eAn7MBHnZb02cHk7Pwsbbes4tCn0hfuuSgZ1Az_2Ln2Lv3Ztf6W0kxfsOdOVDAhYB2yni5fsmedCpWv2K8JtBADghggxGAHYoAQgwZisCzAShq2EAMHMXAQgwZiMC-BIAYWYmAhBg3EoIXYa3aTfp5-uvBc7w5PjcW48rQpAhT4cTwqfCk1siDOAzQmSST8UBU516GUAmUdztQskkIXqBeiRIwLtBI4lL9h_XJZ6rcMcqVxprGQuJIJ0D4nPC8UMi-Vx0KjXjlip80rze6oREu2R3BH7Lh53Zn7hteZj7dj2t4G4bvHzfKePd2i-Zj1q1WtT5CWVvkHB4g_HQOT-A |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+approximating+the+solution+of+fuzzy+fractional+optimal+control+problems+in+caputo+sense+using+legendre+functions&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Mirvakili%2C+M.&rft.au=Allahviranloo%2C+T.&rft.au=Soltanian%2C+F.&rft.date=2022-01-01&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=43&rft.issue=3&rft.spage=3827&rft.epage=3858&rft_id=info:doi/10.3233%2FJIFS-210583&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_210583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |