A numerical method for approximating the solution of fuzzy fractional optimal control problems in caputo sense using legendre functions

Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the ambiguity in the initial conditions and the transfer of ambiguity to the solution, it is necessary to use fuzzy mathematics. In this paper, a...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 43; no. 3; pp. 3827 - 3858
Main Authors Mirvakili, M., Allahviranloo, T., Soltanian, F.
Format Journal Article
LanguageEnglish
Published Amsterdam IOS Press BV 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the ambiguity in the initial conditions and the transfer of ambiguity to the solution, it is necessary to use fuzzy mathematics. In this paper, a numerical method is presented to approximate the solution for a class of Fuzzy Fractional Optimal Control Problems (FFOCPs) using the Legendre basis functions. The fuzzy fractional derivative is described in the Caputo sense. The performance index of an FFOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of Fuzzy Fractional Differential Equations (FFDEs). After obtaining Euler–Lagrange equations for FFOCPs and the necessary and sufficient conditions for the existence of solutions, using the definition of generalized Hukuhara differentiability (types I, II), the problem is considered in two cases. Then the distance function and an approach similar to the variational type along with the Lagrange multiplier method are used to formulate and solve the equations in a system. Time-invariant and time-varying examples are provided to assess the presented method. Numerical results show a similar trend for the state and control variables for various numbers of Legendre polynomials. Also, the convergence of state and control variables for the time-invariant system can be seen, and the same is true for control variables for the time-varying system.
AbstractList Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the ambiguity in the initial conditions and the transfer of ambiguity to the solution, it is necessary to use fuzzy mathematics. In this paper, a numerical method is presented to approximate the solution for a class of Fuzzy Fractional Optimal Control Problems (FFOCPs) using the Legendre basis functions. The fuzzy fractional derivative is described in the Caputo sense. The performance index of an FFOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of Fuzzy Fractional Differential Equations (FFDEs). After obtaining Euler–Lagrange equations for FFOCPs and the necessary and sufficient conditions for the existence of solutions, using the definition of generalized Hukuhara differentiability (types I, II), the problem is considered in two cases. Then the distance function and an approach similar to the variational type along with the Lagrange multiplier method are used to formulate and solve the equations in a system. Time-invariant and time-varying examples are provided to assess the presented method. Numerical results show a similar trend for the state and control variables for various numbers of Legendre polynomials. Also, the convergence of state and control variables for the time-invariant system can be seen, and the same is true for control variables for the time-varying system.
Author Mirvakili, M.
Allahviranloo, T.
Soltanian, F.
Author_xml – sequence: 1
  givenname: M.
  surname: Mirvakili
  fullname: Mirvakili, M.
  organization: Department of Mathematics, Payame Noor University (PNU), Tehran, Iran
– sequence: 2
  givenname: T.
  surname: Allahviranloo
  fullname: Allahviranloo, T.
  organization: Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
– sequence: 3
  givenname: F.
  surname: Soltanian
  fullname: Soltanian, F.
  organization: Department of Mathematics, Payame Noor University (PNU), Tehran, Iran
BookMark eNotkM1OwzAQhC1UJNrCiRewxBEF_BMnzrGqKBRV4gCcIzdZt6kSO9iORPsCvDYO5bSr1cynnZmhibEGELql5IEzzh9f16v3hFEiJL9AUypzkcgiyydxJ1maUJZmV2jm_YEQmgtGpuhngc3QgWsq1eIOwt7WWFuHVd87-910KjRmh8MesLftEBprsNVYD6fTEWunqvESnbYPUdviyprgbIujedtC53FjcKX6IVjswXjAgx95LezA1A4iyPwh_DW61Kr1cPM_5-hz9fSxfEk2b8_r5WKTVLSgIYFUUpGyPCeaKQWUSc5TTqjMCiYqveUglCpiZlFXdaYK0FKlmSyoJoJGK5-juzM3fvg1gA_lwQ4uRvAli4ycyywdVfdnVeWs9w502buYzx1LSsqx6XJsujw3zX8BPsV0-w
CitedBy_id crossref_primary_10_3390_math11143040
Cites_doi 10.1007/978-3-642-14003-7
10.3934/dcdss.2018004
10.1016/j.cnsns.2011.07.005
10.1016/j.ins.2010.11.027
10.1007/978-1-4614-0457-6
10.1016/j.chaos.2014.07.001
10.1016/j.cam.2017.09.039
10.1016/j.cnsns.2020.105312
10.2514/3.20641
10.1142/S1793005721500046
10.1016/j.aml.2010.06.007
10.1007/978-3-642-14574-2
10.1016/j.na.2009.11.029
10.1016/j.cjph.2020.05.006
10.1177/1077546307077467
10.1016/j.camwa.2009.08.006
10.1016/j.na.2007.08.042
10.1016/j.ins.2017.08.094
10.1007/BF02083817
10.1007/s11071-004-3764-6
10.3233/IFS-130831
10.1109/9.192189
ContentType Journal Article
Copyright Copyright IOS Press BV 2022
Copyright_xml – notice: Copyright IOS Press BV 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-210583
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 3858
ExternalDocumentID 10_3233_JIFS_210583
GroupedDBID .4S
.DC
0R~
4.4
5GY
8VB
AAYXX
ABCQX
ABDBF
ABJNI
ACGFS
ACPQW
ADZMO
AEMOZ
AENEX
AFRHK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
CITATION
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c191t-e481542770f2aae12833430186925cfb3e5aa98965dcd6a9ef8a46891f0518153
ISSN 1064-1246
IngestDate Thu Oct 10 16:03:09 EDT 2024
Fri Aug 23 01:44:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c191t-e481542770f2aae12833430186925cfb3e5aa98965dcd6a9ef8a46891f0518153
PQID 2692738645
PQPubID 2046407
PageCount 32
ParticipantIDs proquest_journals_2692738645
crossref_primary_10_3233_JIFS_210583
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2022
Publisher IOS Press BV
Publisher_xml – name: IOS Press BV
References Nieto (10.3233/JIFS-210583_ref16) 2010; 23
Allahviranloo (10.3233/JIFS-210583_ref30) 2014; 26
Marzban (10.3233/JIFS-210583_ref4) 2021; 114
Skaar (10.3233/JIFS-210583_ref24) 1988; 33
Khader (10.3233/JIFS-210583_ref1) 2012; 14
Lakshmikantham (10.3233/JIFS-210583_ref13) 2008; 69
Bede (10.3233/JIFS-210583_ref31); 230
Agarwal (10.3233/JIFS-210583_ref3) 2018; 339
10.3233/JIFS-210583_ref37
10.3233/JIFS-210583_ref14
10.3233/JIFS-210583_ref36
Salahshour (10.3233/JIFS-210583_ref34) 2012; 17
Agrawal (10.3233/JIFS-210583_ref19) 2007; 13
Manabe (10.3233/JIFS-210583_ref23) 1960; 80
Tricaud (10.3233/JIFS-210583_ref10) 2010; 59
Feng (10.3233/JIFS-210583_ref35) 2020; 66
Bagley (10.3233/JIFS-210583_ref25) 1991; 14
10.3233/JIFS-210583_ref29
Shen (10.3233/JIFS-210583_ref17) 2014; 67
10.3233/JIFS-210583_ref28
Agrawal (10.3233/JIFS-210583_ref26); 272
10.3233/JIFS-210583_ref27
El-Sayed (10.3233/JIFS-210583_ref15) 1996; 35
Farhadinia (10.3233/JIFS-210583_ref32) 2011; 181
10.3233/JIFS-210583_ref22
Agrawal (10.3233/JIFS-210583_ref20) 2004; 38
10.3233/JIFS-210583_ref9
Mizumoto (10.3233/JIFS-210583_ref33) 1976; 7
10.3233/JIFS-210583_ref6
10.3233/JIFS-210583_ref5
References_xml – ident: 10.3233/JIFS-210583_ref9
  doi: 10.1007/978-3-642-14003-7
– ident: 10.3233/JIFS-210583_ref27
  doi: 10.3934/dcdss.2018004
– volume: 17
  start-page: 1372
  year: 2012
  ident: 10.3233/JIFS-210583_ref34
  article-title: Solving fuzzyfractional differential equations by fuzzy Laplace transforms
  publication-title: Commun Nonlinear Sci Numer Simulat
  doi: 10.1016/j.cnsns.2011.07.005
  contributor:
    fullname: Salahshour
– volume: 181
  start-page: 1348
  year: 2011
  ident: 10.3233/JIFS-210583_ref32
  article-title: Necessary optimality conditions for fuzzy variationalproblems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.11.027
  contributor:
    fullname: Farhadinia
– volume: 114
  start-page: 106
  year: 2021
  ident: 10.3233/JIFS-210583_ref4
  article-title: A new fractional orthogonal basis and its applicationin nonlinear delay fractional optimal control problems
  publication-title: ISATransactions
  contributor:
    fullname: Marzban
– ident: 10.3233/JIFS-210583_ref5
  doi: 10.1007/978-1-4614-0457-6
– volume: 67
  start-page: 94
  year: 2014
  ident: 10.3233/JIFS-210583_ref17
  article-title: Analysis on limit cycle offractional-order van der Pol oscillator
  publication-title: Chaos SolitonsFractals
  doi: 10.1016/j.chaos.2014.07.001
  contributor:
    fullname: Shen
– volume: 339
  start-page: 3
  year: 2018
  ident: 10.3233/JIFS-210583_ref3
  article-title: Asurvey on fuzzy fractional differential and optimal control nonlocalevolution equations
  publication-title: Journal of Computational and AppliedMathematics
  doi: 10.1016/j.cam.2017.09.039
  contributor:
    fullname: Agarwal
– volume: 272
  start-page: 368
  issue: 2002
  ident: 10.3233/JIFS-210583_ref26
  article-title: Formulation of Euler–Lagrange equations forfractional variational problems
  publication-title: Math. Anal. Appl.
  contributor:
    fullname: Agrawal
– ident: 10.3233/JIFS-210583_ref29
  doi: 10.1016/j.cnsns.2020.105312
– volume: 14
  start-page: 304
  year: 1991
  ident: 10.3233/JIFS-210583_ref25
  article-title: Fractional order state equations forthe control of viscoelastically damped structures
  publication-title: Journal ofGuidance, Control, and Dynamics
  doi: 10.2514/3.20641
  contributor:
    fullname: Bagley
– volume: 14
  start-page: 287
  issue: 3
  year: 2012
  ident: 10.3233/JIFS-210583_ref1
  article-title: An Efcient Numerical Scheme for SolvingFractional Optimal Control Problems
  publication-title: International Journal ofNonlinear Science
  contributor:
    fullname: Khader
– ident: 10.3233/JIFS-210583_ref37
  doi: 10.1142/S1793005721500046
– volume: 23
  start-page: 1248
  issue: 10
  year: 2010
  ident: 10.3233/JIFS-210583_ref16
  article-title: Maximum principles for fractional differential equationsderived from Mittag-Leffler functions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.06.007
  contributor:
    fullname: Nieto
– volume: 230
  start-page: 119
  issue: 2013
  ident: 10.3233/JIFS-210583_ref31
  article-title: Generalized differentiability offuzzy-valued functions
  publication-title: Fuzzy Sets and Systems
  contributor:
    fullname: Bede
– ident: 10.3233/JIFS-210583_ref22
– ident: 10.3233/JIFS-210583_ref6
  doi: 10.1007/978-3-642-14574-2
– ident: 10.3233/JIFS-210583_ref14
  doi: 10.1016/j.na.2009.11.029
– ident: 10.3233/JIFS-210583_ref28
– volume: 66
  start-page: 269276
  year: 2020
  ident: 10.3233/JIFS-210583_ref35
  article-title: On overall behavior of Maxwellmechanical model by the combined Caputo fractional derivative
  publication-title: Chinese Journal of Physics
  doi: 10.1016/j.cjph.2020.05.006
  contributor:
    fullname: Feng
– volume: 13
  start-page: 1269
  issue: 9–10
  year: 2007
  ident: 10.3233/JIFS-210583_ref19
  article-title: A Hamiltonian Formulation and a DirectNumerical Scheme for Fractional Optimal Control Problems
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546307077467
  contributor:
    fullname: Agrawal
– volume: 7
  start-page: 73
  year: 1976
  ident: 10.3233/JIFS-210583_ref33
  publication-title: Systems Comput. Controls
  contributor:
    fullname: Mizumoto
– volume: 80
  start-page: 589
  year: 1960
  ident: 10.3233/JIFS-210583_ref23
  article-title: The non-integer integral and its application to control
  publication-title: Japanese Institute of Electrical Engineers
  contributor:
    fullname: Manabe
– volume: 59
  start-page: 1644
  year: 2010
  ident: 10.3233/JIFS-210583_ref10
  article-title: An approximate method for numericallysolving fractional order optimal control problems of general form
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2009.08.006
  contributor:
    fullname: Tricaud
– volume: 69
  start-page: 2677
  year: 2008
  ident: 10.3233/JIFS-210583_ref13
  article-title: Basic theory of fractionaldifferential equations
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2007.08.042
  contributor:
    fullname: Lakshmikantham
– ident: 10.3233/JIFS-210583_ref36
  doi: 10.1016/j.ins.2017.08.094
– volume: 35
  start-page: 311
  issue: 2
  year: 1996
  ident: 10.3233/JIFS-210583_ref15
  article-title: Fractional-order diffusion-wave equation
  publication-title: Internat. J. Theoret. Phys.
  doi: 10.1007/BF02083817
  contributor:
    fullname: El-Sayed
– volume: 38
  start-page: 323
  issue: 1-2
  year: 2004
  ident: 10.3233/JIFS-210583_ref20
  article-title: A general formulation and solution scheme forfractional optimal control problems
  publication-title: Nonlinear Dynamic
  doi: 10.1007/s11071-004-3764-6
  contributor:
    fullname: Agrawal
– volume: 26
  start-page: 1481
  year: 2014
  ident: 10.3233/JIFS-210583_ref30
  article-title: Fuzzy fractionaldifferential equations under generalized fuzzy Caputo derivative
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/IFS-130831
  contributor:
    fullname: Allahviranloo
– volume: 33
  start-page: 348
  year: 1988
  ident: 10.3233/JIFS-210583_ref24
  article-title: Stability of viscoelasticcontrol systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.192189
  contributor:
    fullname: Skaar
SSID ssj0017520
Score 2.301709
Snippet Fractional order differential equations accurately model dynamic systems and processes. In some of the fractional optimal control problems (FOCPs), due to the...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 3827
SubjectTerms Ambiguity
Approximation
Basis functions
Differential equations
Dynamical systems
Euler-Lagrange equation
Fractional calculus
Fuzzy control
Fuzzy sets
Initial conditions
Lagrange multiplier
Legendre functions
Numerical analysis
Numerical methods
Optimal control
Performance indices
Polynomials
Time invariant systems
Time varying control systems
Title A numerical method for approximating the solution of fuzzy fractional optimal control problems in caputo sense using legendre functions
URI https://www.proquest.com/docview/2692738645
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHRHmIQovm0FvkkHj92mNKsUqlcmkq9WatN2sRKThVYleQP8Bv4V8yu7N2HJpD4WJFjnb9mM8z387Og7FTOdIjxWcCtV8hvCDJlZcn-LlHgdQBT2QQa5PvfPU1urgJLm_D217vdydqqa7yodrszSv5H6niOZSryZL9B8m2k-IJ_I3yxSNKGI-PkvFkUNa047JwraApKNLUCf8xN1zU5UI1t2GoYVFvNj8HxYoyGgwXRa3x3ZYJoah112PGBsoqeVcjO13jYlcPautXMH4GEwU5MCZx6-57SHDnbbXPygKMLrzulEi3uYireySxlKR9NWzxh-j8ZuKPy8XSOnOn7V_XywUS2jk5btNh123h-x23BWla5EIekgtXB5vO4eLJSwT152jUM1VxcjDkHV3LE6oq4Oy22eHcZxO4b3zW6eWX9NrD9W1IfXN2K2__ZRHbOEVcIZnhmRmc0eAn7MBHnZb02cHk7Pwsbbes4tCn0hfuuSgZ1Az_2Ln2Lv3Ztf6W0kxfsOdOVDAhYB2yni5fsmedCpWv2K8JtBADghggxGAHYoAQgwZisCzAShq2EAMHMXAQgwZiMC-BIAYWYmAhBg3EoIXYa3aTfp5-uvBc7w5PjcW48rQpAhT4cTwqfCk1siDOAzQmSST8UBU516GUAmUdztQskkIXqBeiRIwLtBI4lL9h_XJZ6rcMcqVxprGQuJIJ0D4nPC8UMi-Vx0KjXjlip80rze6oREu2R3BH7Lh53Zn7hteZj7dj2t4G4bvHzfKePd2i-Zj1q1WtT5CWVvkHB4g_HQOT-A
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+approximating+the+solution+of+fuzzy+fractional+optimal+control+problems+in+caputo+sense+using+legendre+functions&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Mirvakili%2C+M.&rft.au=Allahviranloo%2C+T.&rft.au=Soltanian%2C+F.&rft.date=2022-01-01&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=43&rft.issue=3&rft.spage=3827&rft.epage=3858&rft_id=info:doi/10.3233%2FJIFS-210583&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_210583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon