A Novel NICU Sleep State Stratification: Multiperspective Features, Adaptive Feature Selection and Ensemble Model
The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction m...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 72; no. 9; pp. 2684 - 2697 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\theta</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula> brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates. |
---|---|
AbstractList | The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on α, β, θ, and δ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on α, β, θ, and δ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates. The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on $\alpha$, $\beta$, $\theta$, and $\delta$ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates. The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\theta</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula> brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates. |
Author | Subasi, Abdulhamit Chen, Wei Xu, Yan Chen, Chen Westerlund, Tomi Irfan, Muhammad Wang, Laishuan Tang, Zhenning |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0009-0005-4326-932X surname: Irfan fullname: Irfan, Muhammad organization: Center for Intelligent Medical Electronics, Fudan University, China – sequence: 2 givenname: Abdulhamit orcidid: 0000-0001-7630-4084 surname: Subasi fullname: Subasi, Abdulhamit organization: University at Albany, USA – sequence: 3 givenname: Zhenning orcidid: 0009-0004-1098-6130 surname: Tang fullname: Tang, Zhenning organization: Center for Intelligent Medical Electronics, Fudan University, China – sequence: 4 givenname: Laishuan orcidid: 0000-0003-0527-8186 surname: Wang fullname: Wang, Laishuan email: laishuanwang@163.com organization: Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China – sequence: 5 givenname: Yan surname: Xu fullname: Xu, Yan organization: Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, China – sequence: 6 givenname: Chen orcidid: 0000-0001-7587-3314 surname: Chen fullname: Chen, Chen organization: Human Phenome Institute, Fudan University, China – sequence: 7 givenname: Tomi orcidid: 0000-0002-1793-2694 surname: Westerlund fullname: Westerlund, Tomi organization: University of Turku, Finland – sequence: 8 givenname: Wei orcidid: 0000-0003-3720-718X surname: Chen fullname: Chen, Wei email: wei.chenbme@sydney.edu.au organization: School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40067725$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkU9Lw0AQxRdRtFY_gCCyRw-m7uyfZNdbLa0KbT20PYc1mUBkm43ZpOC3N6VVvLxhht8bmHmX5LTyFRJyA2wEwMzj-nkxHXHG1UgoaZSWJ2QASumIKwGnZMAY6MhwIy_IZQiffSu1jM_JhWQsThKuBuRrTJd-h44u3yYbunKINV21tsVeG9uWRZn16qsnuuhcW9bYhBqzttwhnaFtuwbDAx3ntv4_oit0e8hX1FY5nVYBtx8O6cLn6K7IWWFdwOtjHZLNbLqevEbz95e3yXgeZWCgjXIpDdfImbVGCIWABc8VcCG0tHFhjEpkZoSKE-xv0VBYyRUKyaAohFSJGJL7w9668V8dhjbdliFD52yFvgupgCQWErTRPXp3RLuPLeZp3ZRb23ynv2_qATgAWeNDaLD4Q4Cl-yjSfRTpPor0GEXvuT14SkT8xxvQcQLiB1UGgxA |
CODEN | IEBEAX |
Cites_doi | 10.1016/B978-0-12-817461-6.00004-4 10.1007/s10916-009-9406-2 10.1186/s13104-020-05343-4 10.1016/j.smrv.2010.11.002 10.1016/j.smrv.2019.07.007 10.1109/JBHI.2021.3101117 10.1016/j.bspc.2016.09.007 10.1155/2014/730218 10.3109/15513819109065465 10.1016/j.dsp.2018.02.020 10.1109/JSEN.2019.2896308 10.3390/app132212403 10.1109/ACCESS.2024.3365570 10.1038/s41598-023-50653-9 10.1097/ANC.0b013e3182653899 10.1109/JSEN.2021.3097392 10.1016/j.clinph.2022.08.022 10.32604/cmc.2022.020318 10.3390/machines11121055 10.1109/TII.2022.3167470 10.1088/1741-2552/aca2de 10.32604/cmc.2023.041970 10.1023/A:1015075101937 10.32604/sdhm.2021.012751 10.1088/1741-2552/aadc1f 10.1109/TNSRE.2023.3264797 10.1109/JBHI.2021.3073632 10.1007/978-3-031-36258-3_30 10.1109/ACCESS.2023.3346059 10.1016/j.bspc.2021.102648 10.1016/j.dsp.2023.103938 10.1109/ACCESS.2020.3028182 10.1109/TNSRE.2017.2721116 10.1109/TSP.2013.2265222 10.1088/1741-2552/ab965a 10.1109/TNSRE.2023.3266876 10.1016/j.heliyon.2023.e22195 10.1109/JIOT.2023.3283037 10.1088/1741-2552/ab5469 10.1109/JSEN.2018.2883497 10.1007/s11517-020-02169-x 10.1016/j.knosys.2017.05.005 10.1109/ICDSP.2018.8631817 10.1007/s12652-023-04715-5 10.1016/j.acap.2017.07.002 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TBME.2025.3549584 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2697 |
ExternalDocumentID | 40067725 10_1109_TBME_2025_3549584 10918671 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Opetushallitus; Finnish National Agency for Education grantid: OPH-3323-2023 funderid: 10.13039/501100011842 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c191t-d44928e20aa9335e1ef2d5123384a6f99574c93567e06781fa425e3401ff34573 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 03:42:31 EDT 2025 Thu Aug 28 04:47:21 EDT 2025 Wed Aug 27 16:23:57 EDT 2025 Wed Aug 27 07:37:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c191t-d44928e20aa9335e1ef2d5123384a6f99574c93567e06781fa425e3401ff34573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1793-2694 0009-0005-4326-932X 0000-0001-7630-4084 0000-0003-0527-8186 0009-0004-1098-6130 0000-0001-7587-3314 0000-0003-3720-718X |
PMID | 40067725 |
PQID | 3176341898 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TBME_2025_3549584 proquest_miscellaneous_3176341898 pubmed_primary_40067725 ieee_primary_10918671 |
PublicationCentury | 2000 |
PublicationDate | 2025-Sep |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-Sep |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Abbas (ref7) 2023 ref24 ref46 ref23 Tripathy (ref40) 2023 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Subasi (ref31) 2021; 68 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref34 doi: 10.1016/B978-0-12-817461-6.00004-4 – ident: ref28 doi: 10.1007/s10916-009-9406-2 – ident: ref16 doi: 10.1186/s13104-020-05343-4 – ident: ref6 doi: 10.1016/j.smrv.2010.11.002 – ident: ref14 doi: 10.1016/j.smrv.2019.07.007 – ident: ref17 doi: 10.1109/JBHI.2021.3101117 – ident: ref32 doi: 10.1016/j.bspc.2016.09.007 – ident: ref33 doi: 10.1155/2014/730218 – ident: ref4 doi: 10.3109/15513819109065465 – ident: ref38 doi: 10.1016/j.dsp.2018.02.020 – ident: ref37 doi: 10.1109/JSEN.2019.2896308 – ident: ref11 doi: 10.3390/app132212403 – ident: ref44 doi: 10.1109/ACCESS.2024.3365570 – ident: ref47 doi: 10.1038/s41598-023-50653-9 – ident: ref3 doi: 10.1097/ANC.0b013e3182653899 – ident: ref24 doi: 10.1109/JSEN.2021.3097392 – ident: ref8 doi: 10.1016/j.clinph.2022.08.022 – year: 2023 ident: ref40 article-title: FBSE-EWT: Feature based signal extraction and empirical wavelet transform – ident: ref26 doi: 10.32604/cmc.2022.020318 – ident: ref41 doi: 10.3390/machines11121055 – ident: ref30 doi: 10.1109/TII.2022.3167470 – ident: ref19 doi: 10.1088/1741-2552/aca2de – ident: ref2 doi: 10.32604/cmc.2023.041970 – ident: ref46 doi: 10.1023/A:1015075101937 – ident: ref45 doi: 10.32604/sdhm.2021.012751 – ident: ref18 doi: 10.1088/1741-2552/aadc1f – ident: ref29 doi: 10.1109/TNSRE.2023.3264797 – ident: ref10 doi: 10.1109/JBHI.2021.3073632 – ident: ref20 doi: 10.1007/978-3-031-36258-3_30 – ident: ref23 doi: 10.1109/ACCESS.2023.3346059 – volume: 68 year: 2021 ident: ref31 article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102648 – ident: ref35 doi: 10.1016/j.dsp.2023.103938 – ident: ref22 doi: 10.1109/ACCESS.2020.3028182 – ident: ref43 doi: 10.1109/TNSRE.2017.2721116 – ident: ref39 doi: 10.1109/TSP.2013.2265222 – ident: ref42 doi: 10.1088/1741-2552/ab965a – ident: ref21 doi: 10.1109/TNSRE.2023.3266876 – ident: ref1 doi: 10.1016/j.heliyon.2023.e22195 – ident: ref25 doi: 10.1109/JIOT.2023.3283037 – ident: ref9 doi: 10.1088/1741-2552/ab5469 – ident: ref36 doi: 10.1109/JSEN.2018.2883497 – ident: ref12 doi: 10.1007/s11517-020-02169-x – ident: ref13 doi: 10.1016/j.knosys.2017.05.005 – ident: ref15 doi: 10.1109/ICDSP.2018.8631817 – ident: ref27 doi: 10.1007/s12652-023-04715-5 – ident: ref5 doi: 10.1016/j.acap.2017.07.002 – year: 2023 ident: ref7 article-title: An IoT and machine learning-based neonatal sleep stage classification |
SSID | ssj0014846 |
Score | 2.4802651 |
Snippet | The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2684 |
SubjectTerms | Accuracy Adaptation models Adaptive feature selection Algorithms and stacking model Brain modeling Classification algorithms EEG Electroencephalography Electroencephalography - methods Feature extraction Female Humans Infant, Newborn Intensive Care Units, Neonatal Machine Learning Male multiperspective feature extraction and fusion neonatal sleep Pediatrics Principal Component Analysis Recording Signal Processing, Computer-Assisted Sleep Sleep - physiology Sleep Stages - physiology Wavelet Analysis Wavelet transforms |
Title | A Novel NICU Sleep State Stratification: Multiperspective Features, Adaptive Feature Selection and Ensemble Model |
URI | https://ieeexplore.ieee.org/document/10918671 https://www.ncbi.nlm.nih.gov/pubmed/40067725 https://www.proquest.com/docview/3176341898 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BDogeeJVCykNbqaeqDrZ3nc1yCygIKiUXEombtWuPLwQnQNxDf31n1k4aIUXqxbJWXr9mvfN9nv1mAL67hNp1bgMVRbQhDBy4SGMgMULWUuowZKHwcNS9n6hfT8lTI1b3WhhE9IvPsMO7Ppafz7KKf5VdcRJLzse2DdvE3Gqx1ipkoHq1KieM6AuOjWpCmNTnanwzHBAVjJOOJDpELncXdhTP05orZK_5I19gZTPW9D7nbh9Gy7utl5o8d6qF62R_PiRy_O_HOYC9Bn2Kfj1cDmELyyP4tJaT8Ah2hk20_TO89sVo9hunYvRwOxGPU8S58OBU-Jy2vMjI2_VaeBnv_J9uUzCyrIjJ_xT93M7Xm8Sjr7xD3YQtczEo3_HFTVFwUbbpMUzuBuPb-6Ap0RBkRPQWQa6UiXsYh9YaKRMycBHnhCGI-CrbLYxJtMqMTLoa2S1GhaU5AiWRuqKQKtHyC7TKWYmnIFhWRWTdFpoTBDlrUOfO5ZkjRJJIW7Thx9JQ6bzOxJF6BhOalA2csoHTxsBtOOb3vXZg_arb8G1p25S-Iw6O2BJn1XtKOKpLHr1nem04qY2-6r0cK183nPUMdvni9dKzc2gt3iq8IKyycJd-jP4FcVrhWA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkMZ44GMMKOPDSDwh0iWxXdd766ZOHax5WSvtLbKTy8tKWljDA389d046qkmTeIkiK44cn-37Xe5-dwCfvaZ2U7pIJQldCANHPjEYSUyQuZQmjpkoPM0Gk7n6dqWvOrJ64MIgYgg-wz7fBl9-uSwa_lV2xEksOR_bQ3hEil-nLV3r1mmghi0vJ05oD6dWdU5M6nU0O5mOyRhMdV-SQURKdw92FZ_Uhmtkb2mkUGLlfrQZtM7ZM8g2422DTa77zdr3iz93Ujn-9wc9h6cd_hSjdsG8gAdY78OTrayE-7A77fztL-HnSGTL37gQ2fnpXFwuEFciwFMRstpymFGQ7LEIRN7VP-amYGzZkC3_VYxKt9puEpeh9g51E64uxbi-wR9-gYLLsi0OYH42np1Ooq5IQ1SQqbeOSqVsOsQ0ds5KqUnEVVoSiiDTV7lBZa02qrBSDwyyYkwqR6cESjLrqkoqbeQr2KmXNb4BwcQqMtddZThFkHcWTel9WXjCJFq6qgdfNoLKV20ujjzYMLHNWcA5CzjvBNyDA57vrQfbqe7Bp41sc9pJ7B5xNS6bm5yQ1IB0-tAOe_C6Ffpt781aeXvPWz_C48lsepFfnGffD2GPB9IGor2DnfWvBt8Tcln7D2G9_gVhFeSi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+NICU+Sleep+State+Stratification%3A+Multiperspective+Features%2C+Adaptive+Feature+Selection+and+Ensemble+Model&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Irfan%2C+Muhammad&rft.au=Subasi%2C+Abdulhamit&rft.au=Tang%2C+Zhenning&rft.au=Wang%2C+Laishuan&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=72&rft.issue=9&rft.spage=2684&rft.epage=2697&rft_id=info:doi/10.1109%2FTBME.2025.3549584&rft_id=info%3Apmid%2F40067725&rft.externalDocID=10918671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |