A Novel NICU Sleep State Stratification: Multiperspective Features, Adaptive Feature Selection and Ensemble Model

The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 9; pp. 2684 - 2697
Main Authors Irfan, Muhammad, Subasi, Abdulhamit, Tang, Zhenning, Wang, Laishuan, Xu, Yan, Chen, Chen, Westerlund, Tomi, Chen, Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\theta</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula> brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.
AbstractList The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on α, β, θ, and δ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on α, β, θ, and δ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.
The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on $\alpha$, $\beta$, $\theta$, and $\delta$ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.
The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on <inline-formula><tex-math notation="LaTeX">\alpha</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>, <inline-formula><tex-math notation="LaTeX">\theta</tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">\delta</tex-math></inline-formula> brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.
Author Subasi, Abdulhamit
Chen, Wei
Xu, Yan
Chen, Chen
Westerlund, Tomi
Irfan, Muhammad
Wang, Laishuan
Tang, Zhenning
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0009-0005-4326-932X
  surname: Irfan
  fullname: Irfan, Muhammad
  organization: Center for Intelligent Medical Electronics, Fudan University, China
– sequence: 2
  givenname: Abdulhamit
  orcidid: 0000-0001-7630-4084
  surname: Subasi
  fullname: Subasi, Abdulhamit
  organization: University at Albany, USA
– sequence: 3
  givenname: Zhenning
  orcidid: 0009-0004-1098-6130
  surname: Tang
  fullname: Tang, Zhenning
  organization: Center for Intelligent Medical Electronics, Fudan University, China
– sequence: 4
  givenname: Laishuan
  orcidid: 0000-0003-0527-8186
  surname: Wang
  fullname: Wang, Laishuan
  email: laishuanwang@163.com
  organization: Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
– sequence: 5
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
  organization: Department of Neurology, National Children's Medical Center, Children's Hospital of Fudan University, China
– sequence: 6
  givenname: Chen
  orcidid: 0000-0001-7587-3314
  surname: Chen
  fullname: Chen, Chen
  organization: Human Phenome Institute, Fudan University, China
– sequence: 7
  givenname: Tomi
  orcidid: 0000-0002-1793-2694
  surname: Westerlund
  fullname: Westerlund, Tomi
  organization: University of Turku, Finland
– sequence: 8
  givenname: Wei
  orcidid: 0000-0003-3720-718X
  surname: Chen
  fullname: Chen, Wei
  email: wei.chenbme@sydney.edu.au
  organization: School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40067725$$D View this record in MEDLINE/PubMed
BookMark eNpNkU9Lw0AQxRdRtFY_gCCyRw-m7uyfZNdbLa0KbT20PYc1mUBkm43ZpOC3N6VVvLxhht8bmHmX5LTyFRJyA2wEwMzj-nkxHXHG1UgoaZSWJ2QASumIKwGnZMAY6MhwIy_IZQiffSu1jM_JhWQsThKuBuRrTJd-h44u3yYbunKINV21tsVeG9uWRZn16qsnuuhcW9bYhBqzttwhnaFtuwbDAx3ntv4_oit0e8hX1FY5nVYBtx8O6cLn6K7IWWFdwOtjHZLNbLqevEbz95e3yXgeZWCgjXIpDdfImbVGCIWABc8VcCG0tHFhjEpkZoSKE-xv0VBYyRUKyaAohFSJGJL7w9668V8dhjbdliFD52yFvgupgCQWErTRPXp3RLuPLeZp3ZRb23ynv2_qATgAWeNDaLD4Q4Cl-yjSfRTpPor0GEXvuT14SkT8xxvQcQLiB1UGgxA
CODEN IEBEAX
Cites_doi 10.1016/B978-0-12-817461-6.00004-4
10.1007/s10916-009-9406-2
10.1186/s13104-020-05343-4
10.1016/j.smrv.2010.11.002
10.1016/j.smrv.2019.07.007
10.1109/JBHI.2021.3101117
10.1016/j.bspc.2016.09.007
10.1155/2014/730218
10.3109/15513819109065465
10.1016/j.dsp.2018.02.020
10.1109/JSEN.2019.2896308
10.3390/app132212403
10.1109/ACCESS.2024.3365570
10.1038/s41598-023-50653-9
10.1097/ANC.0b013e3182653899
10.1109/JSEN.2021.3097392
10.1016/j.clinph.2022.08.022
10.32604/cmc.2022.020318
10.3390/machines11121055
10.1109/TII.2022.3167470
10.1088/1741-2552/aca2de
10.32604/cmc.2023.041970
10.1023/A:1015075101937
10.32604/sdhm.2021.012751
10.1088/1741-2552/aadc1f
10.1109/TNSRE.2023.3264797
10.1109/JBHI.2021.3073632
10.1007/978-3-031-36258-3_30
10.1109/ACCESS.2023.3346059
10.1016/j.bspc.2021.102648
10.1016/j.dsp.2023.103938
10.1109/ACCESS.2020.3028182
10.1109/TNSRE.2017.2721116
10.1109/TSP.2013.2265222
10.1088/1741-2552/ab965a
10.1109/TNSRE.2023.3266876
10.1016/j.heliyon.2023.e22195
10.1109/JIOT.2023.3283037
10.1088/1741-2552/ab5469
10.1109/JSEN.2018.2883497
10.1007/s11517-020-02169-x
10.1016/j.knosys.2017.05.005
10.1109/ICDSP.2018.8631817
10.1007/s12652-023-04715-5
10.1016/j.acap.2017.07.002
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2025.3549584
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2697
ExternalDocumentID 40067725
10_1109_TBME_2025_3549584
10918671
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Opetushallitus; Finnish National Agency for Education
  grantid: OPH-3323-2023
  funderid: 10.13039/501100011842
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c191t-d44928e20aa9335e1ef2d5123384a6f99574c93567e06781fa425e3401ff34573
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 03:42:31 EDT 2025
Thu Aug 28 04:47:21 EDT 2025
Wed Aug 27 16:23:57 EDT 2025
Wed Aug 27 07:37:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c191t-d44928e20aa9335e1ef2d5123384a6f99574c93567e06781fa425e3401ff34573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1793-2694
0009-0005-4326-932X
0000-0001-7630-4084
0000-0003-0527-8186
0009-0004-1098-6130
0000-0001-7587-3314
0000-0003-3720-718X
PMID 40067725
PQID 3176341898
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TBME_2025_3549584
proquest_miscellaneous_3176341898
pubmed_primary_40067725
ieee_primary_10918671
PublicationCentury 2000
PublicationDate 2025-Sep
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sep
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Abbas (ref7) 2023
ref24
ref46
ref23
Tripathy (ref40) 2023
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Subasi (ref31) 2021; 68
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref34
  doi: 10.1016/B978-0-12-817461-6.00004-4
– ident: ref28
  doi: 10.1007/s10916-009-9406-2
– ident: ref16
  doi: 10.1186/s13104-020-05343-4
– ident: ref6
  doi: 10.1016/j.smrv.2010.11.002
– ident: ref14
  doi: 10.1016/j.smrv.2019.07.007
– ident: ref17
  doi: 10.1109/JBHI.2021.3101117
– ident: ref32
  doi: 10.1016/j.bspc.2016.09.007
– ident: ref33
  doi: 10.1155/2014/730218
– ident: ref4
  doi: 10.3109/15513819109065465
– ident: ref38
  doi: 10.1016/j.dsp.2018.02.020
– ident: ref37
  doi: 10.1109/JSEN.2019.2896308
– ident: ref11
  doi: 10.3390/app132212403
– ident: ref44
  doi: 10.1109/ACCESS.2024.3365570
– ident: ref47
  doi: 10.1038/s41598-023-50653-9
– ident: ref3
  doi: 10.1097/ANC.0b013e3182653899
– ident: ref24
  doi: 10.1109/JSEN.2021.3097392
– ident: ref8
  doi: 10.1016/j.clinph.2022.08.022
– year: 2023
  ident: ref40
  article-title: FBSE-EWT: Feature based signal extraction and empirical wavelet transform
– ident: ref26
  doi: 10.32604/cmc.2022.020318
– ident: ref41
  doi: 10.3390/machines11121055
– ident: ref30
  doi: 10.1109/TII.2022.3167470
– ident: ref19
  doi: 10.1088/1741-2552/aca2de
– ident: ref2
  doi: 10.32604/cmc.2023.041970
– ident: ref46
  doi: 10.1023/A:1015075101937
– ident: ref45
  doi: 10.32604/sdhm.2021.012751
– ident: ref18
  doi: 10.1088/1741-2552/aadc1f
– ident: ref29
  doi: 10.1109/TNSRE.2023.3264797
– ident: ref10
  doi: 10.1109/JBHI.2021.3073632
– ident: ref20
  doi: 10.1007/978-3-031-36258-3_30
– ident: ref23
  doi: 10.1109/ACCESS.2023.3346059
– volume: 68
  year: 2021
  ident: ref31
  article-title: EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102648
– ident: ref35
  doi: 10.1016/j.dsp.2023.103938
– ident: ref22
  doi: 10.1109/ACCESS.2020.3028182
– ident: ref43
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref39
  doi: 10.1109/TSP.2013.2265222
– ident: ref42
  doi: 10.1088/1741-2552/ab965a
– ident: ref21
  doi: 10.1109/TNSRE.2023.3266876
– ident: ref1
  doi: 10.1016/j.heliyon.2023.e22195
– ident: ref25
  doi: 10.1109/JIOT.2023.3283037
– ident: ref9
  doi: 10.1088/1741-2552/ab5469
– ident: ref36
  doi: 10.1109/JSEN.2018.2883497
– ident: ref12
  doi: 10.1007/s11517-020-02169-x
– ident: ref13
  doi: 10.1016/j.knosys.2017.05.005
– ident: ref15
  doi: 10.1109/ICDSP.2018.8631817
– ident: ref27
  doi: 10.1007/s12652-023-04715-5
– ident: ref5
  doi: 10.1016/j.acap.2017.07.002
– year: 2023
  ident: ref7
  article-title: An IoT and machine learning-based neonatal sleep stage classification
SSID ssj0014846
Score 2.4802651
Snippet The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2684
SubjectTerms Accuracy
Adaptation models
Adaptive feature selection
Algorithms
and stacking model
Brain modeling
Classification algorithms
EEG
Electroencephalography
Electroencephalography - methods
Feature extraction
Female
Humans
Infant, Newborn
Intensive Care Units, Neonatal
Machine Learning
Male
multiperspective feature extraction and fusion
neonatal sleep
Pediatrics
Principal Component Analysis
Recording
Signal Processing, Computer-Assisted
Sleep
Sleep - physiology
Sleep Stages - physiology
Wavelet Analysis
Wavelet transforms
Title A Novel NICU Sleep State Stratification: Multiperspective Features, Adaptive Feature Selection and Ensemble Model
URI https://ieeexplore.ieee.org/document/10918671
https://www.ncbi.nlm.nih.gov/pubmed/40067725
https://www.proquest.com/docview/3176341898
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BDogeeJVCykNbqaeqDrZ3nc1yCygIKiUXEombtWuPLwQnQNxDf31n1k4aIUXqxbJWXr9mvfN9nv1mAL67hNp1bgMVRbQhDBy4SGMgMULWUuowZKHwcNS9n6hfT8lTI1b3WhhE9IvPsMO7Ppafz7KKf5VdcRJLzse2DdvE3Gqx1ipkoHq1KieM6AuOjWpCmNTnanwzHBAVjJOOJDpELncXdhTP05orZK_5I19gZTPW9D7nbh9Gy7utl5o8d6qF62R_PiRy_O_HOYC9Bn2Kfj1cDmELyyP4tJaT8Ah2hk20_TO89sVo9hunYvRwOxGPU8S58OBU-Jy2vMjI2_VaeBnv_J9uUzCyrIjJ_xT93M7Xm8Sjr7xD3YQtczEo3_HFTVFwUbbpMUzuBuPb-6Ap0RBkRPQWQa6UiXsYh9YaKRMycBHnhCGI-CrbLYxJtMqMTLoa2S1GhaU5AiWRuqKQKtHyC7TKWYmnIFhWRWTdFpoTBDlrUOfO5ZkjRJJIW7Thx9JQ6bzOxJF6BhOalA2csoHTxsBtOOb3vXZg_arb8G1p25S-Iw6O2BJn1XtKOKpLHr1nem04qY2-6r0cK183nPUMdvni9dKzc2gt3iq8IKyycJd-jP4FcVrhWA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkMZ44GMMKOPDSDwh0iWxXdd766ZOHax5WSvtLbKTy8tKWljDA389d046qkmTeIkiK44cn-37Xe5-dwCfvaZ2U7pIJQldCANHPjEYSUyQuZQmjpkoPM0Gk7n6dqWvOrJ64MIgYgg-wz7fBl9-uSwa_lV2xEksOR_bQ3hEil-nLV3r1mmghi0vJ05oD6dWdU5M6nU0O5mOyRhMdV-SQURKdw92FZ_Uhmtkb2mkUGLlfrQZtM7ZM8g2422DTa77zdr3iz93Ujn-9wc9h6cd_hSjdsG8gAdY78OTrayE-7A77fztL-HnSGTL37gQ2fnpXFwuEFciwFMRstpymFGQ7LEIRN7VP-amYGzZkC3_VYxKt9puEpeh9g51E64uxbi-wR9-gYLLsi0OYH42np1Ooq5IQ1SQqbeOSqVsOsQ0ds5KqUnEVVoSiiDTV7lBZa02qrBSDwyyYkwqR6cESjLrqkoqbeQr2KmXNb4BwcQqMtddZThFkHcWTel9WXjCJFq6qgdfNoLKV20ujjzYMLHNWcA5CzjvBNyDA57vrQfbqe7Bp41sc9pJ7B5xNS6bm5yQ1IB0-tAOe_C6Ffpt781aeXvPWz_C48lsepFfnGffD2GPB9IGor2DnfWvBt8Tcln7D2G9_gVhFeSi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+NICU+Sleep+State+Stratification%3A+Multiperspective+Features%2C+Adaptive+Feature+Selection+and+Ensemble+Model&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Irfan%2C+Muhammad&rft.au=Subasi%2C+Abdulhamit&rft.au=Tang%2C+Zhenning&rft.au=Wang%2C+Laishuan&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=72&rft.issue=9&rft.spage=2684&rft.epage=2697&rft_id=info:doi/10.1109%2FTBME.2025.3549584&rft_id=info%3Apmid%2F40067725&rft.externalDocID=10918671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon