Topology optimization of structures under band harmonic excitation using improved adaptive quadrature method
In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as the inclusion of a large number of gray elements or islands. To address this problem, this work proposes an improved adaptive quadrature meth...
Saved in:
Published in | Engineering structures Vol. 326; p. 119528 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0141-0296 |
DOI | 10.1016/j.engstruct.2024.119528 |
Cover
Abstract | In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as the inclusion of a large number of gray elements or islands. To address this problem, this work proposes an improved adaptive quadrature method and its restart criterion. When the restart criterion is satisfied, the subintervals divided in the previous iteration step are rolled back and reused in the subsequent integral calculation, which ensures the accuracy of the integral and effectively reduces the number of error estimations in the integral calculation. At the same time, considering that the structure topology optimization under band harmonic excitation with a non-zero starting frequency and ending frequency exceeding the first resonance frequency cannot obtain a feasible engineering configuration, an optimization model with the static response of the structure as a weighted part of the objective function is introduced. The improved adaptive quadrature method is integrated into structural topology optimization under band harmonic excitation. Three examples are given to illustrate the practicality and effectiveness of the proposed method.
•The topology optimization of structures under band harmonic excitation is investigated.•An improved adaptive quadrature method and its restart criterion are proposed.•The method prevents the occurrence of infeasible configurations during topology optimization.•The method gives accurate integral values and reduces optimization time. |
---|---|
AbstractList | In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as the inclusion of a large number of gray elements or islands. To address this problem, this work proposes an improved adaptive quadrature method and its restart criterion. When the restart criterion is satisfied, the subintervals divided in the previous iteration step are rolled back and reused in the subsequent integral calculation, which ensures the accuracy of the integral and effectively reduces the number of error estimations in the integral calculation. At the same time, considering that the structure topology optimization under band harmonic excitation with a non-zero starting frequency and ending frequency exceeding the first resonance frequency cannot obtain a feasible engineering configuration, an optimization model with the static response of the structure as a weighted part of the objective function is introduced. The improved adaptive quadrature method is integrated into structural topology optimization under band harmonic excitation. Three examples are given to illustrate the practicality and effectiveness of the proposed method.
•The topology optimization of structures under band harmonic excitation is investigated.•An improved adaptive quadrature method and its restart criterion are proposed.•The method prevents the occurrence of infeasible configurations during topology optimization.•The method gives accurate integral values and reduces optimization time. |
ArticleNumber | 119528 |
Author | Lai, Siu-Kai Zhong, Huixiang Zhao, Xuqi Ou, Zhihao Wu, Baisheng |
Author_xml | – sequence: 1 givenname: Zhihao surname: Ou fullname: Ou, Zhihao organization: School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 2 givenname: Baisheng surname: Wu fullname: Wu, Baisheng organization: School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China – sequence: 3 givenname: Siu-Kai surname: Lai fullname: Lai, Siu-Kai email: sk.lai@polyu.edu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China – sequence: 4 givenname: Xuqi surname: Zhao fullname: Zhao, Xuqi organization: College of Mathematics and Computer, Jilin Normal University, Siping 136000, PR China – sequence: 5 givenname: Huixiang surname: Zhong fullname: Zhong, Huixiang organization: School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China |
BookMark | eNqFkMtOwzAQRb0oEm3hG_APJNh52suq4iVVYlPW1tSetK4aO9hJRfl6UgWxZTWbe4_unAWZOe-QkAfOUs549XhM0e1jHwbdpxnLipRzWWZiRuaMFzxhmaxuySLGI2MsE4LNyWnrO3_y-wv1XW9b-w299Y76hk6YIWCkgzMY6A6coQcIrXdWU_zStp_CQ7RuT23bBX9GQ8HAiDoj_RzABLgiaIv9wZs7ctPAKeL9712Sj-en7fo12by_vK1Xm0RzyfukklDVNcslyLISOyPqWhZSm7KQwBqTC5A7zWRRc-QgGoZlmYMRWaPF-KbJ8yWpJ64OPsaAjeqCbSFcFGfqKkod1Z8odRWlJlFjczU1cZx3thhU1BadRmMDjlnj7b-MHzCKfYo |
Cites_doi | 10.1016/j.ymssp.2021.107998 10.1007/s00158-014-1218-4 10.1002/nme.2065 10.1007/s00158-010-0594-7 10.1016/j.jsv.2018.12.030 10.1016/j.engstruct.2022.114140 10.1016/0045-7825(94)00714-X 10.1016/0045-7825(88)90086-2 10.1016/j.jsv.2011.07.026 10.1080/15376494.2022.2030444 10.1002/nme.1620350707 10.1137/S0895479888151111 10.1007/s00158-007-0101-y 10.1016/j.cma.2010.02.002 10.1016/j.cma.2018.09.022 10.1145/108556.108575 10.1007/s00158-017-1714-4 10.1145/321526.321537 10.1002/nme.6374 10.1006/jsvi.2001.4075 10.1007/s001580100129 10.1016/j.cam.2009.08.073 10.1007/BF01214002 10.1002/nme.484 10.1016/j.jsv.2017.12.015 10.1007/s001580050130 10.1007/s10999-022-09637-2 10.1007/s00158-015-1328-7 10.1016/j.jsv.2018.06.003 10.1137/S1052623499362822 10.1016/j.advengsoft.2018.10.001 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engstruct.2024.119528 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_engstruct_2024_119528 S014102962402090X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFXIZ AGQPQ AGRNS AI. ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c191t-69a677039a9568bd877949cd549a0fd38a9bc09471e1a8f0e553ad82fc8014d33 |
IEDL.DBID | AIKHN |
ISSN | 0141-0296 |
IngestDate | Thu Jul 24 02:15:32 EDT 2025 Sat Aug 16 17:02:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Restart criterion Numerical integration Band harmonic excitation Adaptive quadrature algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c191t-69a677039a9568bd877949cd549a0fd38a9bc09471e1a8f0e553ad82fc8014d33 |
ParticipantIDs | crossref_primary_10_1016_j_engstruct_2024_119528 elsevier_sciencedirect_doi_10_1016_j_engstruct_2024_119528 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering structures |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Silva, Neves (bib9) 2020; 121 Géradin, Rixen (bib28) 2014 Davis, Rabinowitz (bib23) 1967 Ma, Kikuchi, Cheng (bib5) 1995; 121 Zhu, Beckers, Zhang (bib33) 2010; 234 Zheng, Zhao, Yu, Sun (bib34) 2017; 56 Du, Olhoff (bib4) 2007; 34 Wang, Kang, Zhang (bib15) 2023; 30 Du, Olhoff (bib32) 2007; 34 Haftka, Gürdal (bib36) 1992 Bendsøe, Kikuchi (bib1) 1998; 71 Zhao, Wang (bib10) 2016; 53 Jensen (bib17) 2007; 72 Pedersen (bib3) 2000; 20 Yan, Cheng (bib37) 2018; 418 Kincaid, Cheney (bib42) 1991 Yoon (bib18) 2010; 199 Silva, Neves, Lenzi (bib14) 2020; 464 Shankar (bib41) 1994 Cool, Sigmund, Aage, Naets, Deckers (bib16) 2024; 568 Li, Luo, Gao, Wu (bib20) 2018; 126 Shu, Wang, Fang, Ma, Wei (bib7) 2011; 330 Jog (bib6) 2002; 253 Tcherniak (bib30) 2002; 54 Meng, Yang, Wang, Wang, Li (bib13) 2023; 19 Zhang, Takezawa, Kang (bib12) 2019; 344 Silva, Neves, Lenzi (bib8) 2019; 444 Burden (bib25) 1985 Andreassen, Clausen, Schevenels, Lazarov, Sigmund (bib39) 2011; 43 Wu, Zhao, Lim, Li, Zhong (bib22) 2022; 162 Adhikari (bib27) 2013 Stolpe, Svanberg (bib31) 2001; 22 Sigmund, Petersson (bib38) 1998; 16 Lyness (bib24) 1969; 16 Liu, Zhang, Gao (bib19) 2015; 51 Zhao, Wu, Lai, Liu, Zhong (bib21) 2022; 258 Yan, Cheng, Wang (bib11) 2018; 431 Svanberg (bib40) 2002; 12 Grimes, Lewis, Simon (bib29) 1994; 15 Berntsen, Espelid (bib26) 1991; 17 Díaaz, Kikuchi (bib2) 1992; 35 Zhao, Wu, Lai, Li, Zhong (bib35) 2021; 229 Kincaid (10.1016/j.engstruct.2024.119528_bib42) 1991 Lyness (10.1016/j.engstruct.2024.119528_bib24) 1969; 16 Du (10.1016/j.engstruct.2024.119528_bib32) 2007; 34 Zhao (10.1016/j.engstruct.2024.119528_bib35) 2021; 229 Grimes (10.1016/j.engstruct.2024.119528_bib29) 1994; 15 Zhao (10.1016/j.engstruct.2024.119528_bib10) 2016; 53 Shu (10.1016/j.engstruct.2024.119528_bib7) 2011; 330 Wang (10.1016/j.engstruct.2024.119528_bib15) 2023; 30 Du (10.1016/j.engstruct.2024.119528_bib4) 2007; 34 Jog (10.1016/j.engstruct.2024.119528_bib6) 2002; 253 Cool (10.1016/j.engstruct.2024.119528_bib16) 2024; 568 Berntsen (10.1016/j.engstruct.2024.119528_bib26) 1991; 17 Géradin (10.1016/j.engstruct.2024.119528_bib28) 2014 Yan (10.1016/j.engstruct.2024.119528_bib37) 2018; 418 Zhao (10.1016/j.engstruct.2024.119528_bib21) 2022; 258 Burden (10.1016/j.engstruct.2024.119528_bib25) 1985 Bendsøe (10.1016/j.engstruct.2024.119528_bib1) 1998; 71 Ma (10.1016/j.engstruct.2024.119528_bib5) 1995; 121 Haftka (10.1016/j.engstruct.2024.119528_bib36) 1992 Andreassen (10.1016/j.engstruct.2024.119528_bib39) 2011; 43 Stolpe (10.1016/j.engstruct.2024.119528_bib31) 2001; 22 Zhang (10.1016/j.engstruct.2024.119528_bib12) 2019; 344 Silva (10.1016/j.engstruct.2024.119528_bib14) 2020; 464 Zhu (10.1016/j.engstruct.2024.119528_bib33) 2010; 234 Yan (10.1016/j.engstruct.2024.119528_bib11) 2018; 431 Meng (10.1016/j.engstruct.2024.119528_bib13) 2023; 19 Zheng (10.1016/j.engstruct.2024.119528_bib34) 2017; 56 Adhikari (10.1016/j.engstruct.2024.119528_bib27) 2013 Díaaz (10.1016/j.engstruct.2024.119528_bib2) 1992; 35 Tcherniak (10.1016/j.engstruct.2024.119528_bib30) 2002; 54 Yoon (10.1016/j.engstruct.2024.119528_bib18) 2010; 199 Davis (10.1016/j.engstruct.2024.119528_bib23) 1967 Svanberg (10.1016/j.engstruct.2024.119528_bib40) 2002; 12 Liu (10.1016/j.engstruct.2024.119528_bib19) 2015; 51 Sigmund (10.1016/j.engstruct.2024.119528_bib38) 1998; 16 Silva (10.1016/j.engstruct.2024.119528_bib9) 2020; 121 Shankar (10.1016/j.engstruct.2024.119528_bib41) 1994 Wu (10.1016/j.engstruct.2024.119528_bib22) 2022; 162 Li (10.1016/j.engstruct.2024.119528_bib20) 2018; 126 Silva (10.1016/j.engstruct.2024.119528_bib8) 2019; 444 Jensen (10.1016/j.engstruct.2024.119528_bib17) 2007; 72 Pedersen (10.1016/j.engstruct.2024.119528_bib3) 2000; 20 |
References_xml | – year: 1967 ident: bib23 article-title: Methods of numerical integration – volume: 431 start-page: 226 year: 2018 end-page: 247 ident: bib11 article-title: Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration publication-title: J Sound Vib – volume: 444 start-page: 1 year: 2019 end-page: 20 ident: bib8 article-title: A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems publication-title: J Sound Vib – volume: 71 start-page: 197 year: 1998 end-page: 224 ident: bib1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Eng – volume: 72 start-page: 1605 year: 2007 end-page: 1630 ident: bib17 article-title: Topology optimization of dynamics problems with Padé approximants publication-title: Int J Numer Methods Eng – volume: 229 year: 2021 ident: bib35 article-title: A PEM-based topology optimization for structures subjected to stationary random excitations publication-title: Eng Struct – volume: 19 start-page: 467 year: 2023 end-page: 481 ident: bib13 article-title: Reliability-based topology optimization of vibrating structures with frequency constraints publication-title: Int J Mech Mater Des – volume: 12 start-page: 555 year: 2002 end-page: 573 ident: bib40 article-title: A class of globally convergent optimization methods based on conservative convex separable approximations publication-title: SIAM J Optim – volume: 22 start-page: 116 year: 2001 end-page: 124 ident: bib31 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct Multidiscip Optim – volume: 199 start-page: 1744 year: 2010 end-page: 1763 ident: bib18 article-title: Structural topology optimization for frequency response problem using model reduction schemes publication-title: Comput Methods Appl Mech Eng – year: 1991 ident: bib42 article-title: Numerical analysis: mathematics of scientific computing – volume: 253 start-page: 687 year: 2002 end-page: 709 ident: bib6 article-title: Topology design of structures subjected to periodic loading publication-title: J Sound Vib – volume: 121 start-page: 3636 year: 2020 end-page: 3659 ident: bib9 article-title: A strategy based on the strain-to-kinetic energy ratio to ensure stability and convergence in topology optimization of globally resonating one-material structures publication-title: Int J Numer Methods Eng – volume: 34 start-page: 91 year: 2007 end-page: 110 ident: bib4 article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps publication-title: Struct Multidiscipl Optim – volume: 330 start-page: 5820 year: 2011 end-page: 5834 ident: bib7 article-title: Level set based structural topology optimization for minimizing frequency response publication-title: J Sound Vib – volume: 17 start-page: 233 year: 1991 end-page: 252 ident: bib26 article-title: Error estimation in automatic quadrature routines publication-title: ACM T Math Softw – volume: 34 start-page: 91 year: 2007 end-page: 110 ident: bib32 article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps publication-title: Struct Multidiscip Optim – volume: 126 start-page: 75 year: 2018 end-page: 89 ident: bib20 article-title: An improved parametric level set method for structural frequency response optimization problems publication-title: Adv Eng Softw – volume: 568 year: 2024 ident: bib16 article-title: Vibroacoustic topology optimization for sound transmission minimization through sandwich structures publication-title: J Sound Vib – year: 1992 ident: bib36 publication-title: Elements of structural optimization – volume: 30 start-page: 1326 year: 2023 end-page: 1339 ident: bib15 article-title: A velocity field level set method for topology optimization of piezoelectric layer on the plate with active vibration control publication-title: Mech Adv Mater Struct – volume: 344 start-page: 766 year: 2019 end-page: 797 ident: bib12 article-title: Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method publication-title: Comput Methods Appl Mech Engrg – volume: 418 start-page: 15 year: 2018 end-page: 35 ident: bib37 article-title: An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts publication-title: J Sound Vib – volume: 16 start-page: 68 year: 1998 end-page: 75 ident: bib38 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct Optim – volume: 43 start-page: 1 year: 2011 end-page: 16 ident: bib39 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim – volume: 56 start-page: 1185 year: 2017 end-page: 1196 ident: bib34 article-title: The approximate reanalysis method for topology optimization under harmonic force excitations with multiple frequencies publication-title: Struct Multidiscip Optim – volume: 20 start-page: 2 year: 2000 end-page: 11 ident: bib3 article-title: Maximization of eigenvalues using topology optimization publication-title: Struct Multidiscipl Optim – year: 1985 ident: bib25 article-title: Numerical analysis – year: 1994 ident: bib41 article-title: Principles of quantum mechanics – volume: 258 year: 2022 ident: bib21 article-title: Topology optimization of proportionally damped structures under harmonic excitations: analysis of velocity and acceleration responses publication-title: Eng Struct – year: 2014 ident: bib28 article-title: Mechanical vibrations: theory and application to structural dynamics – volume: 234 start-page: 2222 year: 2010 end-page: 2230 ident: bib33 article-title: On the multi-component layout design with inertial force publication-title: J Comput Appl Math – volume: 53 start-page: 101 year: 2016 end-page: 114 ident: bib10 article-title: Dynamic response topology optimization in the time domain using model reduction method publication-title: Struct Multidiscipl Optim – volume: 162 year: 2022 ident: bib22 article-title: An adaptive algorithm for mid-frequency response of a proportional damping system publication-title: Mech Syst Signal Process – volume: 15 start-page: 228 year: 1994 end-page: 272 ident: bib29 article-title: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems publication-title: SIAM J Matrix Anal Appl – volume: 464 year: 2020 ident: bib14 article-title: On the use of active and reactive input power in topology optimization of one-material structures considering steady-state forced vibration problems publication-title: J Sound Vib – volume: 35 start-page: 1487 year: 1992 end-page: 1502 ident: bib2 article-title: Solutions to shape and topology eigenvalue optimization problems using a homogenization method publication-title: Int J Numer Methods Eng – volume: 121 start-page: 259 year: 1995 end-page: 280 ident: bib5 article-title: Topological design for vibrating structures publication-title: Comput Methods Appl Mech Eng – volume: 16 start-page: 483 year: 1969 end-page: 495 ident: bib24 article-title: Notes on the adaptive Simpson quadrature routine publication-title: J ACM – year: 2013 ident: bib27 publication-title: Structural dynamic analysis with generalized damping models: analysis. – volume: 51 start-page: 1321 year: 2015 end-page: 1333 ident: bib19 article-title: A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations publication-title: Struct Multidiscipl Optim – volume: 54 start-page: 1605 year: 2002 end-page: 1622 ident: bib30 article-title: Topology optimization of resonating structures using SIMP method publication-title: Int J Numer Methods Eng – volume: 162 year: 2022 ident: 10.1016/j.engstruct.2024.119528_bib22 article-title: An adaptive algorithm for mid-frequency response of a proportional damping system publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107998 – volume: 51 start-page: 1321 issue: 6 year: 2015 ident: 10.1016/j.engstruct.2024.119528_bib19 article-title: A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-014-1218-4 – volume: 72 start-page: 1605 issue: 13 year: 2007 ident: 10.1016/j.engstruct.2024.119528_bib17 article-title: Topology optimization of dynamics problems with Padé approximants publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2065 – year: 1967 ident: 10.1016/j.engstruct.2024.119528_bib23 – volume: 43 start-page: 1 year: 2011 ident: 10.1016/j.engstruct.2024.119528_bib39 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0594-7 – volume: 444 start-page: 1 issue: 31 year: 2019 ident: 10.1016/j.engstruct.2024.119528_bib8 article-title: A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.12.030 – volume: 258 year: 2022 ident: 10.1016/j.engstruct.2024.119528_bib21 article-title: Topology optimization of proportionally damped structures under harmonic excitations: analysis of velocity and acceleration responses publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.114140 – volume: 121 start-page: 259 issue: 1-4 year: 1995 ident: 10.1016/j.engstruct.2024.119528_bib5 article-title: Topological design for vibrating structures publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)00714-X – year: 1992 ident: 10.1016/j.engstruct.2024.119528_bib36 – volume: 71 start-page: 197 issue: 2 year: 1998 ident: 10.1016/j.engstruct.2024.119528_bib1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(88)90086-2 – volume: 330 start-page: 5820 issue: 24 year: 2011 ident: 10.1016/j.engstruct.2024.119528_bib7 article-title: Level set based structural topology optimization for minimizing frequency response publication-title: J Sound Vib doi: 10.1016/j.jsv.2011.07.026 – year: 2014 ident: 10.1016/j.engstruct.2024.119528_bib28 – volume: 229 issue: 15 year: 2021 ident: 10.1016/j.engstruct.2024.119528_bib35 article-title: A PEM-based topology optimization for structures subjected to stationary random excitations publication-title: Eng Struct – volume: 30 start-page: 1326 issue: 7 year: 2023 ident: 10.1016/j.engstruct.2024.119528_bib15 article-title: A velocity field level set method for topology optimization of piezoelectric layer on the plate with active vibration control publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2022.2030444 – volume: 35 start-page: 1487 issue: 7 year: 1992 ident: 10.1016/j.engstruct.2024.119528_bib2 article-title: Solutions to shape and topology eigenvalue optimization problems using a homogenization method publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620350707 – year: 1985 ident: 10.1016/j.engstruct.2024.119528_bib25 – volume: 15 start-page: 228 issue: 1 year: 1994 ident: 10.1016/j.engstruct.2024.119528_bib29 article-title: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems publication-title: SIAM J Matrix Anal Appl doi: 10.1137/S0895479888151111 – volume: 34 start-page: 91 issue: 2 year: 2007 ident: 10.1016/j.engstruct.2024.119528_bib4 article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-007-0101-y – volume: 199 start-page: 1744 issue: 25-28 year: 2010 ident: 10.1016/j.engstruct.2024.119528_bib18 article-title: Structural topology optimization for frequency response problem using model reduction schemes publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2010.02.002 – volume: 344 start-page: 766 issue: 1 year: 2019 ident: 10.1016/j.engstruct.2024.119528_bib12 article-title: Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.09.022 – volume: 17 start-page: 233 issue: 2 year: 1991 ident: 10.1016/j.engstruct.2024.119528_bib26 article-title: Error estimation in automatic quadrature routines publication-title: ACM T Math Softw doi: 10.1145/108556.108575 – volume: 34 start-page: 91 issue: 6 year: 2007 ident: 10.1016/j.engstruct.2024.119528_bib32 article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0101-y – volume: 56 start-page: 1185 issue: 5 year: 2017 ident: 10.1016/j.engstruct.2024.119528_bib34 article-title: The approximate reanalysis method for topology optimization under harmonic force excitations with multiple frequencies publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1714-4 – volume: 16 start-page: 483 issue: 3 year: 1969 ident: 10.1016/j.engstruct.2024.119528_bib24 article-title: Notes on the adaptive Simpson quadrature routine publication-title: J ACM doi: 10.1145/321526.321537 – volume: 121 start-page: 3636 issue: 16 year: 2020 ident: 10.1016/j.engstruct.2024.119528_bib9 article-title: A strategy based on the strain-to-kinetic energy ratio to ensure stability and convergence in topology optimization of globally resonating one-material structures publication-title: Int J Numer Methods Eng doi: 10.1002/nme.6374 – volume: 253 start-page: 687 issue: 3 year: 2002 ident: 10.1016/j.engstruct.2024.119528_bib6 article-title: Topology design of structures subjected to periodic loading publication-title: J Sound Vib doi: 10.1006/jsvi.2001.4075 – volume: 464 issue: 6 year: 2020 ident: 10.1016/j.engstruct.2024.119528_bib14 article-title: On the use of active and reactive input power in topology optimization of one-material structures considering steady-state forced vibration problems publication-title: J Sound Vib – volume: 22 start-page: 116 issue: 2 year: 2001 ident: 10.1016/j.engstruct.2024.119528_bib31 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s001580100129 – year: 1991 ident: 10.1016/j.engstruct.2024.119528_bib42 – volume: 234 start-page: 2222 issue: 7 year: 2010 ident: 10.1016/j.engstruct.2024.119528_bib33 article-title: On the multi-component layout design with inertial force publication-title: J Comput Appl Math doi: 10.1016/j.cam.2009.08.073 – volume: 16 start-page: 68 issue: 1 year: 1998 ident: 10.1016/j.engstruct.2024.119528_bib38 article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima publication-title: Struct Optim doi: 10.1007/BF01214002 – volume: 54 start-page: 1605 issue: 11 year: 2002 ident: 10.1016/j.engstruct.2024.119528_bib30 article-title: Topology optimization of resonating structures using SIMP method publication-title: Int J Numer Methods Eng doi: 10.1002/nme.484 – volume: 418 start-page: 15 year: 2018 ident: 10.1016/j.engstruct.2024.119528_bib37 article-title: An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.12.015 – volume: 20 start-page: 2 issue: 1 year: 2000 ident: 10.1016/j.engstruct.2024.119528_bib3 article-title: Maximization of eigenvalues using topology optimization publication-title: Struct Multidiscipl Optim doi: 10.1007/s001580050130 – volume: 19 start-page: 467 issue: 2 year: 2023 ident: 10.1016/j.engstruct.2024.119528_bib13 article-title: Reliability-based topology optimization of vibrating structures with frequency constraints publication-title: Int J Mech Mater Des doi: 10.1007/s10999-022-09637-2 – volume: 53 start-page: 101 issue: 1 year: 2016 ident: 10.1016/j.engstruct.2024.119528_bib10 article-title: Dynamic response topology optimization in the time domain using model reduction method publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-015-1328-7 – volume: 431 start-page: 226 issue: 29 year: 2018 ident: 10.1016/j.engstruct.2024.119528_bib11 article-title: Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.06.003 – volume: 12 start-page: 555 issue: 2 year: 2002 ident: 10.1016/j.engstruct.2024.119528_bib40 article-title: A class of globally convergent optimization methods based on conservative convex separable approximations publication-title: SIAM J Optim doi: 10.1137/S1052623499362822 – year: 1994 ident: 10.1016/j.engstruct.2024.119528_bib41 – year: 2013 ident: 10.1016/j.engstruct.2024.119528_bib27 – volume: 568 issue: 6 year: 2024 ident: 10.1016/j.engstruct.2024.119528_bib16 article-title: Vibroacoustic topology optimization for sound transmission minimization through sandwich structures publication-title: J Sound Vib – volume: 126 start-page: 75 year: 2018 ident: 10.1016/j.engstruct.2024.119528_bib20 article-title: An improved parametric level set method for structural frequency response optimization problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2018.10.001 |
SSID | ssj0002880 |
Score | 2.4375212 |
Snippet | In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 119528 |
SubjectTerms | Adaptive quadrature algorithm Band harmonic excitation Numerical integration Restart criterion Topology optimization |
Title | Topology optimization of structures under band harmonic excitation using improved adaptive quadrature method |
URI | https://dx.doi.org/10.1016/j.engstruct.2024.119528 |
Volume | 326 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7Zx0UP4ifOj5GD12xt0naNtzEcU2EXN9itpPkYE-2mbKAXf7tJkw4HggevJSHlSfIkb_u-zwNww4XWVlMEp1Ea4CgWCuc6THBOpMg5I5LIUu1znIym0cMsntVgUNXC2LRKz_2O00u29k-6Hs3uarHoPpUpioQl9v9AwIJZHZqEmnEb0OzfP47GW0ImaWmgZttj22EnzUsVc6fUamJFEnWsApp1Zv_tkPpx8AwP4cDfGFHfvdQR1FRxDPs_dARP4GXirA4-0dIwwKsvrURLjdygGxNTI1st9o5yXkhk5aqtJC5SH8JrdCObAD9Hi_Ibg5KIS76yTIjeNlw63WXk3KZPYTq8mwxG2NsoYGGCsTVOGE96ZmMzbksDc5n2zB5kQprIkAda0pSzXJgorxeqkKc6UHFMuUyJFlZZRlJ6Bo1iWahzQJKSHqEqMqCTSKmYxVGuzHRGnFKqFW9BUOGWrZxaRlalkT1nW6gzC3XmoG7BbYVvtjPxmeH0vzpf_KfzJewRa-ZbJpRdQcM0UNfmhrHO21DvfIVtv46-AR4Y1OM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VMgAD4lOUTw-sblPb-WJDFVWB0oVW6hbZsVMVQVpQK8HCb8cXp9BKSAyska1Ez7mzL3n3HsClTLMMNUVoJCKPCj81VGXNgCqmUyVjppku1D57QWcg7ob-sAKtRS8M0irL3O9yepGtyyuNEs3GdDxuPBYURRYH-H_Ai73hGqwLn4fI66t__vA8WFTYp-FoisNXSF4mHzmdVlspMlFH_TP0Zf9ti1radto7sF2eF8m1e6RdqJh8D7aWVAT34bnvjA4-yMTG_0vZWEkmGXE3nduKmmCv2BtRMtcExapREJeY97RU6CZIfx-RcfGFwWgitZxiHiSvc6md6jJxXtMHMGjf9FsdWpoo0NSWYjMaxDIIbVjHEhsDlY5CG4Fxqm1dKL1M80jGKrU1Xtg0TRllnvF9LnXEshR1ZTTnh1DNJ7k5AqI5Cxk3wkLOhDF-7Atl7GIKyTnPjKyBt8AtmTqtjGRBIntKvqFOEOrEQV2DqwW-ycqyJzaj_zX5-D-TL2Cj03_oJt3b3v0JbDK09S2oZadQtYPNmT1rzNR58S59Ae3O1a4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+structures+under+band+harmonic+excitation+using+improved+adaptive+quadrature+method&rft.jtitle=Engineering+structures&rft.au=Ou%2C+Zhihao&rft.au=Wu%2C+Baisheng&rft.au=Lai%2C+Siu-Kai&rft.au=Zhao%2C+Xuqi&rft.date=2025-03-01&rft.issn=0141-0296&rft.volume=326&rft.spage=119528&rft_id=info:doi/10.1016%2Fj.engstruct.2024.119528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2024_119528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |