Topology optimization of structures under band harmonic excitation using improved adaptive quadrature method

In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as the inclusion of a large number of gray elements or islands. To address this problem, this work proposes an improved adaptive quadrature meth...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 326; p. 119528
Main Authors Ou, Zhihao, Wu, Baisheng, Lai, Siu-Kai, Zhao, Xuqi, Zhong, Huixiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0141-0296
DOI10.1016/j.engstruct.2024.119528

Cover

Abstract In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as the inclusion of a large number of gray elements or islands. To address this problem, this work proposes an improved adaptive quadrature method and its restart criterion. When the restart criterion is satisfied, the subintervals divided in the previous iteration step are rolled back and reused in the subsequent integral calculation, which ensures the accuracy of the integral and effectively reduces the number of error estimations in the integral calculation. At the same time, considering that the structure topology optimization under band harmonic excitation with a non-zero starting frequency and ending frequency exceeding the first resonance frequency cannot obtain a feasible engineering configuration, an optimization model with the static response of the structure as a weighted part of the objective function is introduced. The improved adaptive quadrature method is integrated into structural topology optimization under band harmonic excitation. Three examples are given to illustrate the practicality and effectiveness of the proposed method. •The topology optimization of structures under band harmonic excitation is investigated.•An improved adaptive quadrature method and its restart criterion are proposed.•The method prevents the occurrence of infeasible configurations during topology optimization.•The method gives accurate integral values and reduces optimization time.
AbstractList In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as the inclusion of a large number of gray elements or islands. To address this problem, this work proposes an improved adaptive quadrature method and its restart criterion. When the restart criterion is satisfied, the subintervals divided in the previous iteration step are rolled back and reused in the subsequent integral calculation, which ensures the accuracy of the integral and effectively reduces the number of error estimations in the integral calculation. At the same time, considering that the structure topology optimization under band harmonic excitation with a non-zero starting frequency and ending frequency exceeding the first resonance frequency cannot obtain a feasible engineering configuration, an optimization model with the static response of the structure as a weighted part of the objective function is introduced. The improved adaptive quadrature method is integrated into structural topology optimization under band harmonic excitation. Three examples are given to illustrate the practicality and effectiveness of the proposed method. •The topology optimization of structures under band harmonic excitation is investigated.•An improved adaptive quadrature method and its restart criterion are proposed.•The method prevents the occurrence of infeasible configurations during topology optimization.•The method gives accurate integral values and reduces optimization time.
ArticleNumber 119528
Author Lai, Siu-Kai
Zhong, Huixiang
Zhao, Xuqi
Ou, Zhihao
Wu, Baisheng
Author_xml – sequence: 1
  givenname: Zhihao
  surname: Ou
  fullname: Ou, Zhihao
  organization: School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 2
  givenname: Baisheng
  surname: Wu
  fullname: Wu, Baisheng
  organization: School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
– sequence: 3
  givenname: Siu-Kai
  surname: Lai
  fullname: Lai, Siu-Kai
  email: sk.lai@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China
– sequence: 4
  givenname: Xuqi
  surname: Zhao
  fullname: Zhao, Xuqi
  organization: College of Mathematics and Computer, Jilin Normal University, Siping 136000, PR China
– sequence: 5
  givenname: Huixiang
  surname: Zhong
  fullname: Zhong, Huixiang
  organization: School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
BookMark eNqFkMtOwzAQRb0oEm3hG_APJNh52suq4iVVYlPW1tSetK4aO9hJRfl6UgWxZTWbe4_unAWZOe-QkAfOUs549XhM0e1jHwbdpxnLipRzWWZiRuaMFzxhmaxuySLGI2MsE4LNyWnrO3_y-wv1XW9b-w299Y76hk6YIWCkgzMY6A6coQcIrXdWU_zStp_CQ7RuT23bBX9GQ8HAiDoj_RzABLgiaIv9wZs7ctPAKeL9712Sj-en7fo12by_vK1Xm0RzyfukklDVNcslyLISOyPqWhZSm7KQwBqTC5A7zWRRc-QgGoZlmYMRWaPF-KbJ8yWpJ64OPsaAjeqCbSFcFGfqKkod1Z8odRWlJlFjczU1cZx3thhU1BadRmMDjlnj7b-MHzCKfYo
Cites_doi 10.1016/j.ymssp.2021.107998
10.1007/s00158-014-1218-4
10.1002/nme.2065
10.1007/s00158-010-0594-7
10.1016/j.jsv.2018.12.030
10.1016/j.engstruct.2022.114140
10.1016/0045-7825(94)00714-X
10.1016/0045-7825(88)90086-2
10.1016/j.jsv.2011.07.026
10.1080/15376494.2022.2030444
10.1002/nme.1620350707
10.1137/S0895479888151111
10.1007/s00158-007-0101-y
10.1016/j.cma.2010.02.002
10.1016/j.cma.2018.09.022
10.1145/108556.108575
10.1007/s00158-017-1714-4
10.1145/321526.321537
10.1002/nme.6374
10.1006/jsvi.2001.4075
10.1007/s001580100129
10.1016/j.cam.2009.08.073
10.1007/BF01214002
10.1002/nme.484
10.1016/j.jsv.2017.12.015
10.1007/s001580050130
10.1007/s10999-022-09637-2
10.1007/s00158-015-1328-7
10.1016/j.jsv.2018.06.003
10.1137/S1052623499362822
10.1016/j.advengsoft.2018.10.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engstruct.2024.119528
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engstruct_2024_119528
S014102962402090X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFXIZ
AGQPQ
AGRNS
AI.
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c191t-69a677039a9568bd877949cd549a0fd38a9bc09471e1a8f0e553ad82fc8014d33
IEDL.DBID AIKHN
ISSN 0141-0296
IngestDate Thu Jul 24 02:15:32 EDT 2025
Sat Aug 16 17:02:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Restart criterion
Numerical integration
Band harmonic excitation
Adaptive quadrature algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c191t-69a677039a9568bd877949cd549a0fd38a9bc09471e1a8f0e553ad82fc8014d33
ParticipantIDs crossref_primary_10_1016_j_engstruct_2024_119528
elsevier_sciencedirect_doi_10_1016_j_engstruct_2024_119528
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Silva, Neves (bib9) 2020; 121
Géradin, Rixen (bib28) 2014
Davis, Rabinowitz (bib23) 1967
Ma, Kikuchi, Cheng (bib5) 1995; 121
Zhu, Beckers, Zhang (bib33) 2010; 234
Zheng, Zhao, Yu, Sun (bib34) 2017; 56
Du, Olhoff (bib4) 2007; 34
Wang, Kang, Zhang (bib15) 2023; 30
Du, Olhoff (bib32) 2007; 34
Haftka, Gürdal (bib36) 1992
Bendsøe, Kikuchi (bib1) 1998; 71
Zhao, Wang (bib10) 2016; 53
Jensen (bib17) 2007; 72
Pedersen (bib3) 2000; 20
Yan, Cheng (bib37) 2018; 418
Kincaid, Cheney (bib42) 1991
Yoon (bib18) 2010; 199
Silva, Neves, Lenzi (bib14) 2020; 464
Shankar (bib41) 1994
Cool, Sigmund, Aage, Naets, Deckers (bib16) 2024; 568
Li, Luo, Gao, Wu (bib20) 2018; 126
Shu, Wang, Fang, Ma, Wei (bib7) 2011; 330
Jog (bib6) 2002; 253
Tcherniak (bib30) 2002; 54
Meng, Yang, Wang, Wang, Li (bib13) 2023; 19
Zhang, Takezawa, Kang (bib12) 2019; 344
Silva, Neves, Lenzi (bib8) 2019; 444
Burden (bib25) 1985
Andreassen, Clausen, Schevenels, Lazarov, Sigmund (bib39) 2011; 43
Wu, Zhao, Lim, Li, Zhong (bib22) 2022; 162
Adhikari (bib27) 2013
Stolpe, Svanberg (bib31) 2001; 22
Sigmund, Petersson (bib38) 1998; 16
Lyness (bib24) 1969; 16
Liu, Zhang, Gao (bib19) 2015; 51
Zhao, Wu, Lai, Liu, Zhong (bib21) 2022; 258
Yan, Cheng, Wang (bib11) 2018; 431
Svanberg (bib40) 2002; 12
Grimes, Lewis, Simon (bib29) 1994; 15
Berntsen, Espelid (bib26) 1991; 17
Díaaz, Kikuchi (bib2) 1992; 35
Zhao, Wu, Lai, Li, Zhong (bib35) 2021; 229
Kincaid (10.1016/j.engstruct.2024.119528_bib42) 1991
Lyness (10.1016/j.engstruct.2024.119528_bib24) 1969; 16
Du (10.1016/j.engstruct.2024.119528_bib32) 2007; 34
Zhao (10.1016/j.engstruct.2024.119528_bib35) 2021; 229
Grimes (10.1016/j.engstruct.2024.119528_bib29) 1994; 15
Zhao (10.1016/j.engstruct.2024.119528_bib10) 2016; 53
Shu (10.1016/j.engstruct.2024.119528_bib7) 2011; 330
Wang (10.1016/j.engstruct.2024.119528_bib15) 2023; 30
Du (10.1016/j.engstruct.2024.119528_bib4) 2007; 34
Jog (10.1016/j.engstruct.2024.119528_bib6) 2002; 253
Cool (10.1016/j.engstruct.2024.119528_bib16) 2024; 568
Berntsen (10.1016/j.engstruct.2024.119528_bib26) 1991; 17
Géradin (10.1016/j.engstruct.2024.119528_bib28) 2014
Yan (10.1016/j.engstruct.2024.119528_bib37) 2018; 418
Zhao (10.1016/j.engstruct.2024.119528_bib21) 2022; 258
Burden (10.1016/j.engstruct.2024.119528_bib25) 1985
Bendsøe (10.1016/j.engstruct.2024.119528_bib1) 1998; 71
Ma (10.1016/j.engstruct.2024.119528_bib5) 1995; 121
Haftka (10.1016/j.engstruct.2024.119528_bib36) 1992
Andreassen (10.1016/j.engstruct.2024.119528_bib39) 2011; 43
Stolpe (10.1016/j.engstruct.2024.119528_bib31) 2001; 22
Zhang (10.1016/j.engstruct.2024.119528_bib12) 2019; 344
Silva (10.1016/j.engstruct.2024.119528_bib14) 2020; 464
Zhu (10.1016/j.engstruct.2024.119528_bib33) 2010; 234
Yan (10.1016/j.engstruct.2024.119528_bib11) 2018; 431
Meng (10.1016/j.engstruct.2024.119528_bib13) 2023; 19
Zheng (10.1016/j.engstruct.2024.119528_bib34) 2017; 56
Adhikari (10.1016/j.engstruct.2024.119528_bib27) 2013
Díaaz (10.1016/j.engstruct.2024.119528_bib2) 1992; 35
Tcherniak (10.1016/j.engstruct.2024.119528_bib30) 2002; 54
Yoon (10.1016/j.engstruct.2024.119528_bib18) 2010; 199
Davis (10.1016/j.engstruct.2024.119528_bib23) 1967
Svanberg (10.1016/j.engstruct.2024.119528_bib40) 2002; 12
Liu (10.1016/j.engstruct.2024.119528_bib19) 2015; 51
Sigmund (10.1016/j.engstruct.2024.119528_bib38) 1998; 16
Silva (10.1016/j.engstruct.2024.119528_bib9) 2020; 121
Shankar (10.1016/j.engstruct.2024.119528_bib41) 1994
Wu (10.1016/j.engstruct.2024.119528_bib22) 2022; 162
Li (10.1016/j.engstruct.2024.119528_bib20) 2018; 126
Silva (10.1016/j.engstruct.2024.119528_bib8) 2019; 444
Jensen (10.1016/j.engstruct.2024.119528_bib17) 2007; 72
Pedersen (10.1016/j.engstruct.2024.119528_bib3) 2000; 20
References_xml – year: 1967
  ident: bib23
  article-title: Methods of numerical integration
– volume: 431
  start-page: 226
  year: 2018
  end-page: 247
  ident: bib11
  article-title: Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration
  publication-title: J Sound Vib
– volume: 444
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib8
  article-title: A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems
  publication-title: J Sound Vib
– volume: 71
  start-page: 197
  year: 1998
  end-page: 224
  ident: bib1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Eng
– volume: 72
  start-page: 1605
  year: 2007
  end-page: 1630
  ident: bib17
  article-title: Topology optimization of dynamics problems with Padé approximants
  publication-title: Int J Numer Methods Eng
– volume: 229
  year: 2021
  ident: bib35
  article-title: A PEM-based topology optimization for structures subjected to stationary random excitations
  publication-title: Eng Struct
– volume: 19
  start-page: 467
  year: 2023
  end-page: 481
  ident: bib13
  article-title: Reliability-based topology optimization of vibrating structures with frequency constraints
  publication-title: Int J Mech Mater Des
– volume: 12
  start-page: 555
  year: 2002
  end-page: 573
  ident: bib40
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J Optim
– volume: 22
  start-page: 116
  year: 2001
  end-page: 124
  ident: bib31
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 199
  start-page: 1744
  year: 2010
  end-page: 1763
  ident: bib18
  article-title: Structural topology optimization for frequency response problem using model reduction schemes
  publication-title: Comput Methods Appl Mech Eng
– year: 1991
  ident: bib42
  article-title: Numerical analysis: mathematics of scientific computing
– volume: 253
  start-page: 687
  year: 2002
  end-page: 709
  ident: bib6
  article-title: Topology design of structures subjected to periodic loading
  publication-title: J Sound Vib
– volume: 121
  start-page: 3636
  year: 2020
  end-page: 3659
  ident: bib9
  article-title: A strategy based on the strain-to-kinetic energy ratio to ensure stability and convergence in topology optimization of globally resonating one-material structures
  publication-title: Int J Numer Methods Eng
– volume: 34
  start-page: 91
  year: 2007
  end-page: 110
  ident: bib4
  article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps
  publication-title: Struct Multidiscipl Optim
– volume: 330
  start-page: 5820
  year: 2011
  end-page: 5834
  ident: bib7
  article-title: Level set based structural topology optimization for minimizing frequency response
  publication-title: J Sound Vib
– volume: 17
  start-page: 233
  year: 1991
  end-page: 252
  ident: bib26
  article-title: Error estimation in automatic quadrature routines
  publication-title: ACM T Math Softw
– volume: 34
  start-page: 91
  year: 2007
  end-page: 110
  ident: bib32
  article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps
  publication-title: Struct Multidiscip Optim
– volume: 126
  start-page: 75
  year: 2018
  end-page: 89
  ident: bib20
  article-title: An improved parametric level set method for structural frequency response optimization problems
  publication-title: Adv Eng Softw
– volume: 568
  year: 2024
  ident: bib16
  article-title: Vibroacoustic topology optimization for sound transmission minimization through sandwich structures
  publication-title: J Sound Vib
– year: 1992
  ident: bib36
  publication-title: Elements of structural optimization
– volume: 30
  start-page: 1326
  year: 2023
  end-page: 1339
  ident: bib15
  article-title: A velocity field level set method for topology optimization of piezoelectric layer on the plate with active vibration control
  publication-title: Mech Adv Mater Struct
– volume: 344
  start-page: 766
  year: 2019
  end-page: 797
  ident: bib12
  article-title: Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method
  publication-title: Comput Methods Appl Mech Engrg
– volume: 418
  start-page: 15
  year: 2018
  end-page: 35
  ident: bib37
  article-title: An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
  publication-title: J Sound Vib
– volume: 16
  start-page: 68
  year: 1998
  end-page: 75
  ident: bib38
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct Optim
– volume: 43
  start-page: 1
  year: 2011
  end-page: 16
  ident: bib39
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
– volume: 56
  start-page: 1185
  year: 2017
  end-page: 1196
  ident: bib34
  article-title: The approximate reanalysis method for topology optimization under harmonic force excitations with multiple frequencies
  publication-title: Struct Multidiscip Optim
– volume: 20
  start-page: 2
  year: 2000
  end-page: 11
  ident: bib3
  article-title: Maximization of eigenvalues using topology optimization
  publication-title: Struct Multidiscipl Optim
– year: 1985
  ident: bib25
  article-title: Numerical analysis
– year: 1994
  ident: bib41
  article-title: Principles of quantum mechanics
– volume: 258
  year: 2022
  ident: bib21
  article-title: Topology optimization of proportionally damped structures under harmonic excitations: analysis of velocity and acceleration responses
  publication-title: Eng Struct
– year: 2014
  ident: bib28
  article-title: Mechanical vibrations: theory and application to structural dynamics
– volume: 234
  start-page: 2222
  year: 2010
  end-page: 2230
  ident: bib33
  article-title: On the multi-component layout design with inertial force
  publication-title: J Comput Appl Math
– volume: 53
  start-page: 101
  year: 2016
  end-page: 114
  ident: bib10
  article-title: Dynamic response topology optimization in the time domain using model reduction method
  publication-title: Struct Multidiscipl Optim
– volume: 162
  year: 2022
  ident: bib22
  article-title: An adaptive algorithm for mid-frequency response of a proportional damping system
  publication-title: Mech Syst Signal Process
– volume: 15
  start-page: 228
  year: 1994
  end-page: 272
  ident: bib29
  article-title: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems
  publication-title: SIAM J Matrix Anal Appl
– volume: 464
  year: 2020
  ident: bib14
  article-title: On the use of active and reactive input power in topology optimization of one-material structures considering steady-state forced vibration problems
  publication-title: J Sound Vib
– volume: 35
  start-page: 1487
  year: 1992
  end-page: 1502
  ident: bib2
  article-title: Solutions to shape and topology eigenvalue optimization problems using a homogenization method
  publication-title: Int J Numer Methods Eng
– volume: 121
  start-page: 259
  year: 1995
  end-page: 280
  ident: bib5
  article-title: Topological design for vibrating structures
  publication-title: Comput Methods Appl Mech Eng
– volume: 16
  start-page: 483
  year: 1969
  end-page: 495
  ident: bib24
  article-title: Notes on the adaptive Simpson quadrature routine
  publication-title: J ACM
– year: 2013
  ident: bib27
  publication-title: Structural dynamic analysis with generalized damping models: analysis.
– volume: 51
  start-page: 1321
  year: 2015
  end-page: 1333
  ident: bib19
  article-title: A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations
  publication-title: Struct Multidiscipl Optim
– volume: 54
  start-page: 1605
  year: 2002
  end-page: 1622
  ident: bib30
  article-title: Topology optimization of resonating structures using SIMP method
  publication-title: Int J Numer Methods Eng
– volume: 162
  year: 2022
  ident: 10.1016/j.engstruct.2024.119528_bib22
  article-title: An adaptive algorithm for mid-frequency response of a proportional damping system
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107998
– volume: 51
  start-page: 1321
  issue: 6
  year: 2015
  ident: 10.1016/j.engstruct.2024.119528_bib19
  article-title: A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-014-1218-4
– volume: 72
  start-page: 1605
  issue: 13
  year: 2007
  ident: 10.1016/j.engstruct.2024.119528_bib17
  article-title: Topology optimization of dynamics problems with Padé approximants
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2065
– year: 1967
  ident: 10.1016/j.engstruct.2024.119528_bib23
– volume: 43
  start-page: 1
  year: 2011
  ident: 10.1016/j.engstruct.2024.119528_bib39
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– volume: 444
  start-page: 1
  issue: 31
  year: 2019
  ident: 10.1016/j.engstruct.2024.119528_bib8
  article-title: A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.12.030
– volume: 258
  year: 2022
  ident: 10.1016/j.engstruct.2024.119528_bib21
  article-title: Topology optimization of proportionally damped structures under harmonic excitations: analysis of velocity and acceleration responses
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114140
– volume: 121
  start-page: 259
  issue: 1-4
  year: 1995
  ident: 10.1016/j.engstruct.2024.119528_bib5
  article-title: Topological design for vibrating structures
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)00714-X
– year: 1992
  ident: 10.1016/j.engstruct.2024.119528_bib36
– volume: 71
  start-page: 197
  issue: 2
  year: 1998
  ident: 10.1016/j.engstruct.2024.119528_bib1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(88)90086-2
– volume: 330
  start-page: 5820
  issue: 24
  year: 2011
  ident: 10.1016/j.engstruct.2024.119528_bib7
  article-title: Level set based structural topology optimization for minimizing frequency response
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2011.07.026
– year: 2014
  ident: 10.1016/j.engstruct.2024.119528_bib28
– volume: 229
  issue: 15
  year: 2021
  ident: 10.1016/j.engstruct.2024.119528_bib35
  article-title: A PEM-based topology optimization for structures subjected to stationary random excitations
  publication-title: Eng Struct
– volume: 30
  start-page: 1326
  issue: 7
  year: 2023
  ident: 10.1016/j.engstruct.2024.119528_bib15
  article-title: A velocity field level set method for topology optimization of piezoelectric layer on the plate with active vibration control
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2022.2030444
– volume: 35
  start-page: 1487
  issue: 7
  year: 1992
  ident: 10.1016/j.engstruct.2024.119528_bib2
  article-title: Solutions to shape and topology eigenvalue optimization problems using a homogenization method
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620350707
– year: 1985
  ident: 10.1016/j.engstruct.2024.119528_bib25
– volume: 15
  start-page: 228
  issue: 1
  year: 1994
  ident: 10.1016/j.engstruct.2024.119528_bib29
  article-title: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/S0895479888151111
– volume: 34
  start-page: 91
  issue: 2
  year: 2007
  ident: 10.1016/j.engstruct.2024.119528_bib4
  article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-007-0101-y
– volume: 199
  start-page: 1744
  issue: 25-28
  year: 2010
  ident: 10.1016/j.engstruct.2024.119528_bib18
  article-title: Structural topology optimization for frequency response problem using model reduction schemes
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.02.002
– volume: 344
  start-page: 766
  issue: 1
  year: 2019
  ident: 10.1016/j.engstruct.2024.119528_bib12
  article-title: Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2018.09.022
– volume: 17
  start-page: 233
  issue: 2
  year: 1991
  ident: 10.1016/j.engstruct.2024.119528_bib26
  article-title: Error estimation in automatic quadrature routines
  publication-title: ACM T Math Softw
  doi: 10.1145/108556.108575
– volume: 34
  start-page: 91
  issue: 6
  year: 2007
  ident: 10.1016/j.engstruct.2024.119528_bib32
  article-title: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0101-y
– volume: 56
  start-page: 1185
  issue: 5
  year: 2017
  ident: 10.1016/j.engstruct.2024.119528_bib34
  article-title: The approximate reanalysis method for topology optimization under harmonic force excitations with multiple frequencies
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1714-4
– volume: 16
  start-page: 483
  issue: 3
  year: 1969
  ident: 10.1016/j.engstruct.2024.119528_bib24
  article-title: Notes on the adaptive Simpson quadrature routine
  publication-title: J ACM
  doi: 10.1145/321526.321537
– volume: 121
  start-page: 3636
  issue: 16
  year: 2020
  ident: 10.1016/j.engstruct.2024.119528_bib9
  article-title: A strategy based on the strain-to-kinetic energy ratio to ensure stability and convergence in topology optimization of globally resonating one-material structures
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6374
– volume: 253
  start-page: 687
  issue: 3
  year: 2002
  ident: 10.1016/j.engstruct.2024.119528_bib6
  article-title: Topology design of structures subjected to periodic loading
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.2001.4075
– volume: 464
  issue: 6
  year: 2020
  ident: 10.1016/j.engstruct.2024.119528_bib14
  article-title: On the use of active and reactive input power in topology optimization of one-material structures considering steady-state forced vibration problems
  publication-title: J Sound Vib
– volume: 22
  start-page: 116
  issue: 2
  year: 2001
  ident: 10.1016/j.engstruct.2024.119528_bib31
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580100129
– year: 1991
  ident: 10.1016/j.engstruct.2024.119528_bib42
– volume: 234
  start-page: 2222
  issue: 7
  year: 2010
  ident: 10.1016/j.engstruct.2024.119528_bib33
  article-title: On the multi-component layout design with inertial force
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2009.08.073
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  ident: 10.1016/j.engstruct.2024.119528_bib38
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct Optim
  doi: 10.1007/BF01214002
– volume: 54
  start-page: 1605
  issue: 11
  year: 2002
  ident: 10.1016/j.engstruct.2024.119528_bib30
  article-title: Topology optimization of resonating structures using SIMP method
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.484
– volume: 418
  start-page: 15
  year: 2018
  ident: 10.1016/j.engstruct.2024.119528_bib37
  article-title: An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.12.015
– volume: 20
  start-page: 2
  issue: 1
  year: 2000
  ident: 10.1016/j.engstruct.2024.119528_bib3
  article-title: Maximization of eigenvalues using topology optimization
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s001580050130
– volume: 19
  start-page: 467
  issue: 2
  year: 2023
  ident: 10.1016/j.engstruct.2024.119528_bib13
  article-title: Reliability-based topology optimization of vibrating structures with frequency constraints
  publication-title: Int J Mech Mater Des
  doi: 10.1007/s10999-022-09637-2
– volume: 53
  start-page: 101
  issue: 1
  year: 2016
  ident: 10.1016/j.engstruct.2024.119528_bib10
  article-title: Dynamic response topology optimization in the time domain using model reduction method
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-015-1328-7
– volume: 431
  start-page: 226
  issue: 29
  year: 2018
  ident: 10.1016/j.engstruct.2024.119528_bib11
  article-title: Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2018.06.003
– volume: 12
  start-page: 555
  issue: 2
  year: 2002
  ident: 10.1016/j.engstruct.2024.119528_bib40
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623499362822
– year: 1994
  ident: 10.1016/j.engstruct.2024.119528_bib41
– year: 2013
  ident: 10.1016/j.engstruct.2024.119528_bib27
– volume: 568
  issue: 6
  year: 2024
  ident: 10.1016/j.engstruct.2024.119528_bib16
  article-title: Vibroacoustic topology optimization for sound transmission minimization through sandwich structures
  publication-title: J Sound Vib
– volume: 126
  start-page: 75
  year: 2018
  ident: 10.1016/j.engstruct.2024.119528_bib20
  article-title: An improved parametric level set method for structural frequency response optimization problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2018.10.001
SSID ssj0002880
Score 2.4375212
Snippet In structural topology optimization under band harmonic excitation, inaccurate integration values may lead to incorrect topology optimization results, such as...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 119528
SubjectTerms Adaptive quadrature algorithm
Band harmonic excitation
Numerical integration
Restart criterion
Topology optimization
Title Topology optimization of structures under band harmonic excitation using improved adaptive quadrature method
URI https://dx.doi.org/10.1016/j.engstruct.2024.119528
Volume 326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7Zx0UP4ifOj5GD12xt0naNtzEcU2EXN9itpPkYE-2mbKAXf7tJkw4HggevJSHlSfIkb_u-zwNww4XWVlMEp1Ea4CgWCuc6THBOpMg5I5LIUu1znIym0cMsntVgUNXC2LRKz_2O00u29k-6Hs3uarHoPpUpioQl9v9AwIJZHZqEmnEb0OzfP47GW0ImaWmgZttj22EnzUsVc6fUamJFEnWsApp1Zv_tkPpx8AwP4cDfGFHfvdQR1FRxDPs_dARP4GXirA4-0dIwwKsvrURLjdygGxNTI1st9o5yXkhk5aqtJC5SH8JrdCObAD9Hi_Ibg5KIS76yTIjeNlw63WXk3KZPYTq8mwxG2NsoYGGCsTVOGE96ZmMzbksDc5n2zB5kQprIkAda0pSzXJgorxeqkKc6UHFMuUyJFlZZRlJ6Bo1iWahzQJKSHqEqMqCTSKmYxVGuzHRGnFKqFW9BUOGWrZxaRlalkT1nW6gzC3XmoG7BbYVvtjPxmeH0vzpf_KfzJewRa-ZbJpRdQcM0UNfmhrHO21DvfIVtv46-AR4Y1OM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VMgAD4lOUTw-sblPb-WJDFVWB0oVW6hbZsVMVQVpQK8HCb8cXp9BKSAyska1Ez7mzL3n3HsClTLMMNUVoJCKPCj81VGXNgCqmUyVjppku1D57QWcg7ob-sAKtRS8M0irL3O9yepGtyyuNEs3GdDxuPBYURRYH-H_Ai73hGqwLn4fI66t__vA8WFTYp-FoisNXSF4mHzmdVlspMlFH_TP0Zf9ti1radto7sF2eF8m1e6RdqJh8D7aWVAT34bnvjA4-yMTG_0vZWEkmGXE3nduKmmCv2BtRMtcExapREJeY97RU6CZIfx-RcfGFwWgitZxiHiSvc6md6jJxXtMHMGjf9FsdWpoo0NSWYjMaxDIIbVjHEhsDlY5CG4Fxqm1dKL1M80jGKrU1Xtg0TRllnvF9LnXEshR1ZTTnh1DNJ7k5AqI5Cxk3wkLOhDF-7Atl7GIKyTnPjKyBt8AtmTqtjGRBIntKvqFOEOrEQV2DqwW-ycqyJzaj_zX5-D-TL2Cj03_oJt3b3v0JbDK09S2oZadQtYPNmT1rzNR58S59Ae3O1a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+structures+under+band+harmonic+excitation+using+improved+adaptive+quadrature+method&rft.jtitle=Engineering+structures&rft.au=Ou%2C+Zhihao&rft.au=Wu%2C+Baisheng&rft.au=Lai%2C+Siu-Kai&rft.au=Zhao%2C+Xuqi&rft.date=2025-03-01&rft.issn=0141-0296&rft.volume=326&rft.spage=119528&rft_id=info:doi/10.1016%2Fj.engstruct.2024.119528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2024_119528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon