Polarization-transverse-spatial logical qubit entanglement purification using linear optics
We propose two types of logical qubit entanglement purification protocols (LEPPs) to reduce the effect of noises inside and outside the logical qubit subspace using linear optics, where logical qubit is encoded by single-photon polarization-transverse-spatial Bell state. For the noise outside of the...
Saved in:
Published in | Optics and laser technology Vol. 185; p. 112566 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose two types of logical qubit entanglement purification protocols (LEPPs) to reduce the effect of noises inside and outside the logical qubit subspace using linear optics, where logical qubit is encoded by single-photon polarization-transverse-spatial Bell state. For the noise outside of the logical qubit subspace, deterministic LEPP is presented to determine and correct the error-entangled state using error correction of the single-photon Bell state, resulting in the logical entangled state with unity fidelity. For the noise inside of the logical qubit subspace, probabilistic LEPP is presented to progressively increase the fidelity of the noisy logical entangled state using the parity and diagonal-basis measurements for the logical qubit. These two types of LEPPs have experimental feasibility with current technology, and the quantum operations of logical qubits in these protocols have fantastic applications in some other logical-encoding quantum information protocols. |
---|---|
AbstractList | We propose two types of logical qubit entanglement purification protocols (LEPPs) to reduce the effect of noises inside and outside the logical qubit subspace using linear optics, where logical qubit is encoded by single-photon polarization-transverse-spatial Bell state. For the noise outside of the logical qubit subspace, deterministic LEPP is presented to determine and correct the error-entangled state using error correction of the single-photon Bell state, resulting in the logical entangled state with unity fidelity. For the noise inside of the logical qubit subspace, probabilistic LEPP is presented to progressively increase the fidelity of the noisy logical entangled state using the parity and diagonal-basis measurements for the logical qubit. These two types of LEPPs have experimental feasibility with current technology, and the quantum operations of logical qubits in these protocols have fantastic applications in some other logical-encoding quantum information protocols. |
ArticleNumber | 112566 |
Author | Guo, Peng-Liang Ren, Bao-Cang Gao, Cheng-Yan |
Author_xml | – sequence: 1 givenname: Peng-Liang surname: Guo fullname: Guo, Peng-Liang email: guopengliang@tynu.edu.cn organization: Department of Physics, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China – sequence: 2 givenname: Cheng-Yan surname: Gao fullname: Gao, Cheng-Yan organization: Department of Physics, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China – sequence: 3 givenname: Bao-Cang orcidid: 0000-0002-7679-3612 surname: Ren fullname: Ren, Bao-Cang email: renbaocang@cnu.edu.cn organization: Department of Physics, Capital Normal University, Beijing, 100048, China |
BookMark | eNqFkM1OwzAQhH0oEm3hGcgLJHjtJCXHquJPqgQHOHGw1s6mcpXawXYrwdOTKogrp1ntaEajb8Fmzjti7AZ4ARzq233hh9RjTGQKwUVVAIiqrmdszrnkuWwacckWMe4552VdyTn7ePU9BvuNyXqXp4AunihEyuMwvrDPer-zZtTPo7YpI5fQ7Xo6jEc2HIPtRvMczY7Rul3WW0cYsnGFNfGKXXTYR7r-1SV7f7h_2zzl25fH5816mxtoIOUCKy2pFNDJGrq7shaN0ICAXNOq5SvQnYSyFNKAadoKS9K6QyOQBJclSLlkq6nXBB9joE4NwR4wfCng6sxF7dUfF3XmoiYuY3I9JWmcd7IUVDSWnKHWBjJJtd7-2_ED-nt3SQ |
Cites_doi | 10.1007/s11128-022-03646-y 10.1038/35074041 10.1103/PhysRevLett.77.2818 10.1103/PhysRevLett.126.010503 10.1103/PhysRevLett.67.661 10.1103/PhysRevLett.127.040502 10.1103/PhysRevLett.76.722 10.1038/ncomms1951 10.1038/nature01623 10.1103/PhysRevLett.70.1895 10.1002/andp.202200505 10.1103/PhysRevA.81.032307 10.1103/PhysRevA.82.044304 10.1038/nature05146 10.1103/PhysRevA.109.042423 10.1364/JOSAB.397973 10.1364/OE.394617 10.1103/PhysRevLett.118.220501 10.1103/PhysRevA.80.042308 10.1103/PhysRevA.66.014301 10.1103/PhysRevA.65.032302 10.1038/nphoton.2012.243 10.1103/RevModPhys.92.025002 10.1007/s11433-023-2245-9 10.1016/j.aop.2017.07.012 10.1364/OE.23.009284 10.1126/science.aan0070 10.1103/PhysRevA.97.022321 10.1007/s11128-023-03852-2 10.1103/PhysRevLett.106.110402 10.1103/PhysRevLett.89.257901 10.1002/que2.13 10.1016/j.scib.2021.12.018 10.1103/PhysRevLett.69.2881 10.1038/s41566-017-0010-6 10.1364/OE.374292 10.1103/PhysRevLett.114.113603 10.1103/PhysRevLett.110.260503 10.1088/0034-4885/70/8/R03 10.1103/PhysRevLett.112.250501 10.1103/PhysRevA.104.012419 10.1007/s43673-021-00017-0 10.1007/s11128-023-04097-9 10.1103/PhysRevA.86.023815 10.1103/PhysRevA.77.032345 10.1103/PhysRevA.65.022304 10.22331/q-2019-02-18-123 10.1103/PhysRevA.63.042307 10.1364/OE.25.002969 10.1038/srep28813 10.1103/PhysRevA.105.062418 10.1103/PhysRevLett.68.557 10.1103/PhysRevA.98.042309 10.1103/PhysRevA.68.012323 10.1088/1612-202X/ad1aaa 10.1103/PhysRevA.72.032313 10.1103/PhysRevLett.98.100501 10.1038/nphoton.2010.35 10.1007/s11128-024-04505-8 10.1103/PhysRevA.54.3824 10.1007/s11433-023-2258-x 10.1103/RevModPhys.74.145 10.1007/s11128-024-04271-7 10.1016/j.physleta.2011.09.056 10.1007/s11433-022-2065-x 10.1007/s11433-021-1863-9 10.1038/37539 10.1103/PhysRevA.90.052309 10.1364/OPTICA.4.001006 10.1103/PhysRevA.71.062325 10.1103/PhysRevA.68.042317 10.1016/j.scib.2021.11.002 10.1103/PhysRevLett.127.040506 10.1364/OE.383499 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optlastec.2025.112566 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_optlastec_2025_112566 S0030399225001549 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXKI AAXUO ABDPE ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEZYN AFFNX AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c191t-2a5b3e421f361f846292b1a1a0be7d071bf314423c1c9d5a4ebbfac2ae2034133 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Tue Jul 01 05:26:04 EDT 2025 Sat Mar 15 15:40:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Entanglement purification Error correction Logical qubit Linear optics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c191t-2a5b3e421f361f846292b1a1a0be7d071bf314423c1c9d5a4ebbfac2ae2034133 |
ORCID | 0000-0002-7679-3612 |
ParticipantIDs | crossref_primary_10_1016_j_optlastec_2025_112566 elsevier_sciencedirect_doi_10_1016_j_optlastec_2025_112566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sasada, Okamoto (b76) 2003; 68 Bombin, Martin-Delgado (b31) 2005; 72 Zhou, Sheng (b67) 2017; 385 Bouwmeester, Pan, Mattle, Eibl, Weinfurter, Zeilinger (b9) 1997; 390 Grudka, Wójcik (b13) 2002; 66 Gu, Feng, Du, Zhong, Sheng, Zhou (b23) 2024; 21 Sheng, Long, Deng (b46) 2012; 376 Li, Xie, Li, Liang, Li, Li (b62) 2024; 67 Bennett, Brassard, Mermin (b2) 1992; 68 Wang, Mi, Wang (b36) 2017; 25 Kempe, Bacon, Lidar, Whaley (b64) 2001; 63 Li (b45) 2010; 82 Ekert (b1) 1991; 67 Deng, Long, Liu (b15) 2003; 68 Chen, Yong, Xu, Yao, Xiang, Li, Liu, Lu, Liu, Li, Yang, Peng, Zhao, Chen, Pan (b53) 2017; 11 Souza, Borges, Khoury, Huguenin, Aolita, Walborn (b71) 2008; 77 Gao, Ma, Liu, Long, Li, Li (b75) 2020; 37 Fujii, Yamamoto (b33) 2009; 80 Sheng, Deng, Zhou (b32) 2008; 77 Wang, Liu, Zhang, Cao, Wang (b35) 2015; 23 Gisin, Ribordy, Tittel, Zbinden (b3) 2002; 74 Zhou, Zhong, Sheng (b41) 2020; 28 Passos, Balthazar, Khoury, Hor-Meyll, Davidovich, Huguenin (b77) 2018; 97 Riera-Sàbat, Sekatski, Pirker, Dür (b47) 2021; 127 Aolita, Walborn (b70) 2007; 98 Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters (b8) 1993; 70 Krastanov, Albert, Jiang (b40) 2019; 3 Zhang, Ding, Sheng, Zhou, Shi, Guo (b16) 2017; 118 Xu, Ma, Zhang, Lo, Pan (b4) 2020; 92 Miguel-Ramiro, Dür (b39) 2018; 98 Osorio, Bruno, Sangouard, Zbinden, Gisin, Thew (b22) 2012; 86 Liu, Long, Tong, Li (b12) 2002; 65 Xiang, Ralph, Lund, Walk, Pryde (b21) 2010; 4 Riera-Sàbat, Sekatski, Pirker, Dür (b48) 2021; 104 Guo, Zhou, Zhang (b20) 2024; 23 Zhou, Sheng (b66) 2016; 6 Sit, Bouchard, Fickler, Gagnon-Bischoff, Larocque, Heshami, Elser, Peuntinger, Günthner, Heim, Marquardt, Leuchs, Boyd, Karimi (b73) 2017; 4 Bennett, Wiesner (b11) 1992; 69 Dür, Briegel (b27) 2007; 70 Zwerger, Briegel, Dür (b42) 2013; 110 Lidar, Birgitta Whaley (b65) 2003 Wang, Zhang, Yu, Yuan, Du, Ren (b43) 2023; 535 D’ambrosio, Nagali, Walborn, Aolita, Slussarenko, Marrucci, Sciarrino (b72) 2012; 3 Deutsch, Ekert, Jozsa, Macchiavello, Popescu, Sanpera (b28) 1996; 77 Sheng, Deng (b44) 2010; 81 Sheng, Zhou (b63) 2024; 67 Pan, Simon, Brukner, Zeilinger (b29) 2001; 410 Wang, Ai, Deng, Ren (b37) 2020; 28 Kwek, Cao, Luo, Wang, Sun, Wang, Liu (b5) 2021; 31 Vollbrecht, Verstraete (b30) 2005; 71 Simon, Pan (b38) 2002; 89 Ecker, Sohr, Bulla, Huber, Bohmann, Ursin (b55) 2021; 127 Xiao, Zhou, Zhong, Du, Sheng (b19) 2023; 22 Wang, Zhu (b7) 2024; 23 Bera, Gupta, Majumdar (b6) 2023; 22 Bennett, DiVincenzo, Smolin, Wootters (b26) 1996; 54 Long, Liu (b14) 2002; 65 Yan, Zhou, Zhong, Sheng (b68) 2022; 105 Huang, Hu, Liu, Zhou, Sheng, Li, Guo (b56) 2022; 67 Kalb, Reiserer, Humphreys, Bakermans, Kamerling, Nickerson, Benjamin, Twitchen, Markham, Hanson (b52) 2017; 356 Muralidharan, Kim, Lütkenhaus, Lukin, Jiang (b60) 2014; 112 Ren, Du, Deng (b34) 2014; 90 Bennett, Brassard, Popescu, Schumacher, Smolin, Wootters (b25) 1996; 76 Pan, Gasparoni, Ursin, Weihs, Zeilinger (b50) 2003; 423 Yan, Zhou, Zhong, Sheng (b24) 2023; 66 Hu, Zhang, Zhang, Liu, Huang, Han, Li, Guo (b10) 2019; 1 Munro, Stephens, Devitt, Harrison, Nemoto (b59) 2012; 6 Zhou, Sheng (b17) 2022; 65 Hu, Huang, Sheng, Zhou, Liu, Guo, Zhang, Xing, Huang, Li, Guo (b54) 2021; 126 Luo, Zhou, Zhong, Sheng (b69) 2022; 21 Wang, Ren, Byrd, Wu (b61) 2023; 108 Sheng, Zhou, Long (b18) 2022; 67 Lee, Park, Ralph, Jeong (b57) 2015; 114 Reichle, Leibfried, Knill, Britton, Blakestad, Jost, Langer, Ozeri, Seidelin, Wineland (b51) 2006; 443 Qi, Li, Yang, Yuan, Ren (b49) 2024; 109 Guo, Dong, He, Jing, He, Ren, Li, Deng (b74) 2020; 28 Fröwis, Dür (b58) 2011; 106 Dür (10.1016/j.optlastec.2025.112566_b27) 2007; 70 Pan (10.1016/j.optlastec.2025.112566_b50) 2003; 423 Xu (10.1016/j.optlastec.2025.112566_b4) 2020; 92 Guo (10.1016/j.optlastec.2025.112566_b20) 2024; 23 Lidar (10.1016/j.optlastec.2025.112566_b65) 2003 Liu (10.1016/j.optlastec.2025.112566_b12) 2002; 65 Long (10.1016/j.optlastec.2025.112566_b14) 2002; 65 Deng (10.1016/j.optlastec.2025.112566_b15) 2003; 68 Ren (10.1016/j.optlastec.2025.112566_b34) 2014; 90 Xiao (10.1016/j.optlastec.2025.112566_b19) 2023; 22 Li (10.1016/j.optlastec.2025.112566_b45) 2010; 82 Wang (10.1016/j.optlastec.2025.112566_b7) 2024; 23 Bennett (10.1016/j.optlastec.2025.112566_b8) 1993; 70 Guo (10.1016/j.optlastec.2025.112566_b74) 2020; 28 Wang (10.1016/j.optlastec.2025.112566_b43) 2023; 535 Passos (10.1016/j.optlastec.2025.112566_b77) 2018; 97 Bouwmeester (10.1016/j.optlastec.2025.112566_b9) 1997; 390 Wang (10.1016/j.optlastec.2025.112566_b35) 2015; 23 Yan (10.1016/j.optlastec.2025.112566_b68) 2022; 105 Bera (10.1016/j.optlastec.2025.112566_b6) 2023; 22 Souza (10.1016/j.optlastec.2025.112566_b71) 2008; 77 Kalb (10.1016/j.optlastec.2025.112566_b52) 2017; 356 Chen (10.1016/j.optlastec.2025.112566_b53) 2017; 11 Luo (10.1016/j.optlastec.2025.112566_b69) 2022; 21 Sheng (10.1016/j.optlastec.2025.112566_b44) 2010; 81 Sheng (10.1016/j.optlastec.2025.112566_b18) 2022; 67 Gu (10.1016/j.optlastec.2025.112566_b23) 2024; 21 Simon (10.1016/j.optlastec.2025.112566_b38) 2002; 89 Sheng (10.1016/j.optlastec.2025.112566_b46) 2012; 376 Ecker (10.1016/j.optlastec.2025.112566_b55) 2021; 127 Li (10.1016/j.optlastec.2025.112566_b62) 2024; 67 Grudka (10.1016/j.optlastec.2025.112566_b13) 2002; 66 Reichle (10.1016/j.optlastec.2025.112566_b51) 2006; 443 Hu (10.1016/j.optlastec.2025.112566_b54) 2021; 126 Riera-Sàbat (10.1016/j.optlastec.2025.112566_b47) 2021; 127 Fröwis (10.1016/j.optlastec.2025.112566_b58) 2011; 106 Kempe (10.1016/j.optlastec.2025.112566_b64) 2001; 63 Bennett (10.1016/j.optlastec.2025.112566_b26) 1996; 54 Krastanov (10.1016/j.optlastec.2025.112566_b40) 2019; 3 Hu (10.1016/j.optlastec.2025.112566_b10) 2019; 1 D’ambrosio (10.1016/j.optlastec.2025.112566_b72) 2012; 3 Bennett (10.1016/j.optlastec.2025.112566_b2) 1992; 68 Riera-Sàbat (10.1016/j.optlastec.2025.112566_b48) 2021; 104 Qi (10.1016/j.optlastec.2025.112566_b49) 2024; 109 Kwek (10.1016/j.optlastec.2025.112566_b5) 2021; 31 Deutsch (10.1016/j.optlastec.2025.112566_b28) 1996; 77 Fujii (10.1016/j.optlastec.2025.112566_b33) 2009; 80 Osorio (10.1016/j.optlastec.2025.112566_b22) 2012; 86 Gao (10.1016/j.optlastec.2025.112566_b75) 2020; 37 Sit (10.1016/j.optlastec.2025.112566_b73) 2017; 4 Zwerger (10.1016/j.optlastec.2025.112566_b42) 2013; 110 Miguel-Ramiro (10.1016/j.optlastec.2025.112566_b39) 2018; 98 Bombin (10.1016/j.optlastec.2025.112566_b31) 2005; 72 Sheng (10.1016/j.optlastec.2025.112566_b32) 2008; 77 Pan (10.1016/j.optlastec.2025.112566_b29) 2001; 410 Muralidharan (10.1016/j.optlastec.2025.112566_b60) 2014; 112 Zhou (10.1016/j.optlastec.2025.112566_b17) 2022; 65 Zhou (10.1016/j.optlastec.2025.112566_b41) 2020; 28 Bennett (10.1016/j.optlastec.2025.112566_b11) 1992; 69 Zhang (10.1016/j.optlastec.2025.112566_b16) 2017; 118 Aolita (10.1016/j.optlastec.2025.112566_b70) 2007; 98 Bennett (10.1016/j.optlastec.2025.112566_b25) 1996; 76 Huang (10.1016/j.optlastec.2025.112566_b56) 2022; 67 Xiang (10.1016/j.optlastec.2025.112566_b21) 2010; 4 Vollbrecht (10.1016/j.optlastec.2025.112566_b30) 2005; 71 Lee (10.1016/j.optlastec.2025.112566_b57) 2015; 114 Gisin (10.1016/j.optlastec.2025.112566_b3) 2002; 74 Wang (10.1016/j.optlastec.2025.112566_b36) 2017; 25 Yan (10.1016/j.optlastec.2025.112566_b24) 2023; 66 Sheng (10.1016/j.optlastec.2025.112566_b63) 2024; 67 Sasada (10.1016/j.optlastec.2025.112566_b76) 2003; 68 Ekert (10.1016/j.optlastec.2025.112566_b1) 1991; 67 Wang (10.1016/j.optlastec.2025.112566_b61) 2023; 108 Wang (10.1016/j.optlastec.2025.112566_b37) 2020; 28 Zhou (10.1016/j.optlastec.2025.112566_b67) 2017; 385 Munro (10.1016/j.optlastec.2025.112566_b59) 2012; 6 Zhou (10.1016/j.optlastec.2025.112566_b66) 2016; 6 |
References_xml | – volume: 23 start-page: 64 year: 2024 ident: b7 article-title: A hybrid dynamic n-party quantum key exchange protocol based on three-particle GHZ states publication-title: Quantum Inf. Process. – volume: 72 year: 2005 ident: b31 article-title: Entanglement distillation protocols and number theory publication-title: Phys. Rev. A – volume: 68 year: 2003 ident: b15 article-title: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block publication-title: Phys. Rev. A – volume: 22 start-page: 109 year: 2023 ident: b6 article-title: Device-independent quantum key distribution using random quantum states publication-title: Quantum Inf. Process. – volume: 69 start-page: 2881 year: 1992 end-page: 2884 ident: b11 article-title: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states publication-title: Phys. Rev. Lett. – volume: 86 year: 2012 ident: b22 article-title: Heralded photon amplification for quantum communication publication-title: Phys. Rev. A – volume: 110 year: 2013 ident: b42 article-title: Universal and optimal error thresholds for measurement-based entanglement purification publication-title: Phys. Rev. Lett. – volume: 70 start-page: 1895 year: 1993 end-page: 1899 ident: b8 article-title: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels publication-title: Phys. Rev. Lett. – volume: 67 start-page: 367 year: 2022 end-page: 374 ident: b18 article-title: One-step quantum secure direct communication publication-title: Sci. Bull. – volume: 4 start-page: 1006 year: 2017 end-page: 1010 ident: b73 article-title: High-dimensional intracity quantum cryptography with structured photons publication-title: Optica – start-page: 83 year: 2003 end-page: 120 ident: b65 article-title: Decoherence-free subspaces and subsystems publication-title: Irreversible Quantum Dynamics – volume: 67 year: 2024 ident: b62 article-title: Heralded entanglement between error-protected logical qubits for fault-tolerant distributed quantum computing publication-title: Sci. China Phys. Mech. Astron. – volume: 76 start-page: 722 year: 1996 end-page: 725 ident: b25 article-title: Purification of noisy entanglement and faithful teleportation via noisy channels publication-title: Phys. Rev. Lett. – volume: 77 start-page: 2818 year: 1996 end-page: 2821 ident: b28 article-title: Quantum privacy amplification and the security of quantum cryptography over noisy channels publication-title: Phys. Rev. Lett. – volume: 28 start-page: 4611 year: 2020 end-page: 4624 ident: b74 article-title: Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons publication-title: Opt. Express – volume: 65 year: 2002 ident: b12 article-title: General scheme for superdense coding between multiparties publication-title: Phys. Rev. A – volume: 89 year: 2002 ident: b38 article-title: Polarization entanglement purification using spatial entanglement publication-title: Phys. Rev. Lett. – volume: 112 year: 2014 ident: b60 article-title: Ultrafast and fault-tolerant quantum communication across long distances publication-title: Phys. Rev. Lett. – volume: 67 year: 2024 ident: b63 article-title: A step toward fault-tolerant distributed quantum computing: Entangling nonlocal logical-qubit with optical quantum multiplexing publication-title: Sci. China Phys. Mech. Astron. – volume: 114 year: 2015 ident: b57 article-title: Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing publication-title: Phys. Rev. Lett. – volume: 92 year: 2020 ident: b4 article-title: Secure quantum key distribution with realistic devices publication-title: Rev. Modern Phys. – volume: 98 year: 2018 ident: b39 article-title: Efficient entanglement purification protocols for publication-title: Phys. Rev. A – volume: 71 year: 2005 ident: b30 article-title: Interpolation of recurrence and hashing entanglement distillation protocols publication-title: Phys. Rev. A – volume: 23 start-page: 9284 year: 2015 end-page: 9294 ident: b35 article-title: One-step hyperentanglement purification and hyperdistillation with linear optics publication-title: Opt. Express – volume: 376 start-page: 314 year: 2012 end-page: 319 ident: b46 article-title: One-step deterministic multipartite entanglement purification with linear optics publication-title: Phys. Lett. A – volume: 65 year: 2002 ident: b14 article-title: Theoretically efficient high-capacity quantum-key-distribution scheme publication-title: Phys. Rev. A – volume: 37 start-page: 3028 year: 2020 end-page: 3033 ident: b75 article-title: Free-space quantum secure direct communication based on decoherence-free space publication-title: J. Opt. Soc. Am. B – volume: 74 start-page: 145 year: 2002 end-page: 195 ident: b3 article-title: Quantum cryptography publication-title: Rev. Modern Phys. – volume: 22 start-page: 339 year: 2023 ident: b19 article-title: The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement publication-title: Quantum Inf. Process. – volume: 28 start-page: 18693 year: 2020 end-page: 18706 ident: b37 article-title: Imperfect-interaction-free entanglement purification on stationary systems for solid quantum repeaters publication-title: Opt. Express – volume: 68 start-page: 557 year: 1992 end-page: 559 ident: b2 article-title: Quantum cryptography without Bell’s theorem publication-title: Phys. Rev. Lett. – volume: 77 year: 2008 ident: b32 article-title: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity publication-title: Phys. Rev. A – volume: 98 year: 2007 ident: b70 article-title: Quantum communication without alignment using multiple-qubit single-photon states publication-title: Phys. Rev. Lett. – volume: 126 year: 2021 ident: b54 article-title: Long-distance entanglement purification for quantum communication publication-title: Phys. Rev. Lett. – volume: 66 year: 2023 ident: b24 article-title: Advances in quantum entanglement purification publication-title: Sci. China Phys. Mech. Astron. – volume: 68 year: 2003 ident: b76 article-title: Transverse-mode beam splitter of a light beam and its application to quantum cryptography publication-title: Phys. Rev. A – volume: 31 start-page: 15 year: 2021 ident: b5 article-title: Chip-based quantum key distribution publication-title: AAPPS Bull. – volume: 423 start-page: 417 year: 2003 end-page: 422 ident: b50 article-title: Experimental entanglement purification of arbitrary unknown states publication-title: Nature – volume: 63 year: 2001 ident: b64 article-title: Theory of decoherence-free fault-tolerant universal quantum computation publication-title: Phys. Rev. A – volume: 21 start-page: 300 year: 2022 ident: b69 article-title: Purification for hybrid logical qubit entanglement publication-title: Quantum Inf. Process. – volume: 6 start-page: 28813 year: 2016 ident: b66 article-title: Purification of logic-qubit entanglement publication-title: Sci. Rep. – volume: 70 start-page: 1381 year: 2007 ident: b27 article-title: Entanglement purification and quantum error correction publication-title: Rep. Progr. Phys. – volume: 6 start-page: 777 year: 2012 end-page: 781 ident: b59 article-title: Quantum communication without the necessity of quantum memories publication-title: Nat. Photonics – volume: 66 year: 2002 ident: b13 article-title: Symmetric scheme for superdense coding between multiparties publication-title: Phys. Rev. A – volume: 104 year: 2021 ident: b48 article-title: Entanglement purification by counting and locating errors with entangling measurements publication-title: Phys. Rev. A – volume: 11 start-page: 695 year: 2017 end-page: 699 ident: b53 article-title: Experimental nested purification for a linear optical quantum repeater publication-title: Nat. Photonics – volume: 67 start-page: 661 year: 1991 end-page: 663 ident: b1 article-title: Quantum cryptography based on Bell’s theorem publication-title: Phys. Rev. Lett. – volume: 81 year: 2010 ident: b44 article-title: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement publication-title: Phys. Rev. A – volume: 109 year: 2024 ident: b49 article-title: Error identification entanglement purification for stationary system using high-dimensional entanglement publication-title: Phys. Rev. A – volume: 443 start-page: 838 year: 2006 end-page: 841 ident: b51 article-title: Experimental purification of two-atom entanglement publication-title: Nature – volume: 65 year: 2022 ident: b17 article-title: One-step device-independent quantum secure direct communication publication-title: Sci. China Phys. Mech. Astron. – volume: 127 year: 2021 ident: b55 article-title: Experimental single-copy entanglement distillation publication-title: Phys. Rev. Lett. – volume: 356 start-page: 928 year: 2017 end-page: 932 ident: b52 article-title: Entanglement distillation between solid-state quantum network nodes publication-title: Science – volume: 3 start-page: 961 year: 2012 ident: b72 article-title: Complete experimental toolbox for alignment-free quantum communication publication-title: Nat. Commun. – volume: 90 year: 2014 ident: b34 article-title: Two-step hyperentanglement purification with the quantum-state-joining method publication-title: Phys. Rev. A – volume: 1 year: 2019 ident: b10 article-title: Experimental certification for nonclassical teleportation publication-title: Quantum Eng. – volume: 77 year: 2008 ident: b71 article-title: Quantum key distribution without a shared reference frame publication-title: Phys. Rev. A – volume: 21 year: 2024 ident: b23 article-title: Efficient noiseless linear amplification protocol for single-photon state using imperfect auxiliary photon source publication-title: Laser Phys. Lett. – volume: 105 year: 2022 ident: b68 article-title: Measurement-based logical qubit entanglement purification publication-title: Phys. Rev. A – volume: 25 start-page: 2969 year: 2017 end-page: 2982 ident: b36 article-title: Hyperentanglement purification using imperfect spatial entanglement publication-title: Opt. Express – volume: 28 start-page: 2291 year: 2020 end-page: 2301 ident: b41 article-title: Purification of the residual entanglement publication-title: Opt. Express – volume: 4 start-page: 316 year: 2010 end-page: 319 ident: b21 article-title: Heralded noiseless linear amplification and distillation of entanglement publication-title: Nat. Photonics – volume: 54 start-page: 3824 year: 1996 end-page: 3851 ident: b26 article-title: Mixed-state entanglement and quantum error correction publication-title: Phys. Rev. A – volume: 80 year: 2009 ident: b33 article-title: Entanglement purification with double selection publication-title: Phys. Rev. A – volume: 82 year: 2010 ident: b45 article-title: Deterministic polarization-entanglement purification using spatial entanglement publication-title: Phys. Rev. A – volume: 127 year: 2021 ident: b47 article-title: Entanglement-assisted entanglement purification publication-title: Phys. Rev. Lett. – volume: 67 start-page: 593 year: 2022 end-page: 597 ident: b56 article-title: Experimental one-step deterministic polarization entanglement purification publication-title: Sci. Bull. – volume: 385 start-page: 10 year: 2017 end-page: 35 ident: b67 article-title: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state publication-title: Ann. Physics – volume: 410 start-page: 1067 year: 2001 end-page: 1070 ident: b29 article-title: Entanglement purification for quantum communication publication-title: Nature – volume: 535 year: 2023 ident: b43 article-title: Measurement-based hyperentanglement distillation for lossy and distortion photon state publication-title: Ann. Phys., Lpz. – volume: 97 year: 2018 ident: b77 article-title: Experimental investigation of environment-induced entanglement using an all-optical setup publication-title: Phys. Rev. A – volume: 390 start-page: 575 year: 1997 end-page: 579 ident: b9 article-title: Experimental quantum teleportation publication-title: Nature – volume: 3 start-page: 123 year: 2019 ident: b40 article-title: Optimized entanglement purification publication-title: Quantum – volume: 106 year: 2011 ident: b58 article-title: Stable macroscopic quantum superpositions publication-title: Phys. Rev. Lett. – volume: 108 year: 2023 ident: b61 article-title: Hybrid noise protection of logical qubits for universal quantum computation publication-title: Phys. Rev. A – volume: 118 year: 2017 ident: b16 article-title: Quantum secure direct communication with quantum memory publication-title: Phys. Rev. Lett. – volume: 23 start-page: 304 year: 2024 ident: b20 article-title: Measurement-device-independent multi-party quantum secure direct communication publication-title: Quantum Inf. Process. – volume: 21 start-page: 300 issue: 8 year: 2022 ident: 10.1016/j.optlastec.2025.112566_b69 article-title: Purification for hybrid logical qubit entanglement publication-title: Quantum Inf. Process. doi: 10.1007/s11128-022-03646-y – volume: 410 start-page: 1067 year: 2001 ident: 10.1016/j.optlastec.2025.112566_b29 article-title: Entanglement purification for quantum communication publication-title: Nature doi: 10.1038/35074041 – volume: 77 start-page: 2818 year: 1996 ident: 10.1016/j.optlastec.2025.112566_b28 article-title: Quantum privacy amplification and the security of quantum cryptography over noisy channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.2818 – volume: 126 year: 2021 ident: 10.1016/j.optlastec.2025.112566_b54 article-title: Long-distance entanglement purification for quantum communication publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.010503 – volume: 67 start-page: 661 issue: 6 year: 1991 ident: 10.1016/j.optlastec.2025.112566_b1 article-title: Quantum cryptography based on Bell’s theorem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.661 – volume: 127 year: 2021 ident: 10.1016/j.optlastec.2025.112566_b47 article-title: Entanglement-assisted entanglement purification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.040502 – volume: 76 start-page: 722 issue: 5 year: 1996 ident: 10.1016/j.optlastec.2025.112566_b25 article-title: Purification of noisy entanglement and faithful teleportation via noisy channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.722 – volume: 3 start-page: 961 year: 2012 ident: 10.1016/j.optlastec.2025.112566_b72 article-title: Complete experimental toolbox for alignment-free quantum communication publication-title: Nat. Commun. doi: 10.1038/ncomms1951 – volume: 423 start-page: 417 issue: 6938 year: 2003 ident: 10.1016/j.optlastec.2025.112566_b50 article-title: Experimental entanglement purification of arbitrary unknown states publication-title: Nature doi: 10.1038/nature01623 – volume: 70 start-page: 1895 year: 1993 ident: 10.1016/j.optlastec.2025.112566_b8 article-title: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.1895 – volume: 77 year: 2008 ident: 10.1016/j.optlastec.2025.112566_b32 article-title: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity publication-title: Phys. Rev. A – volume: 535 issue: 4 year: 2023 ident: 10.1016/j.optlastec.2025.112566_b43 article-title: Measurement-based hyperentanglement distillation for lossy and distortion photon state publication-title: Ann. Phys., Lpz. doi: 10.1002/andp.202200505 – volume: 81 year: 2010 ident: 10.1016/j.optlastec.2025.112566_b44 article-title: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.032307 – volume: 82 year: 2010 ident: 10.1016/j.optlastec.2025.112566_b45 article-title: Deterministic polarization-entanglement purification using spatial entanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.044304 – volume: 443 start-page: 838 issue: 7113 year: 2006 ident: 10.1016/j.optlastec.2025.112566_b51 article-title: Experimental purification of two-atom entanglement publication-title: Nature doi: 10.1038/nature05146 – volume: 109 year: 2024 ident: 10.1016/j.optlastec.2025.112566_b49 article-title: Error identification entanglement purification for stationary system using high-dimensional entanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.109.042423 – volume: 37 start-page: 3028 issue: 10 year: 2020 ident: 10.1016/j.optlastec.2025.112566_b75 article-title: Free-space quantum secure direct communication based on decoherence-free space publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.397973 – volume: 28 start-page: 18693 issue: 13 year: 2020 ident: 10.1016/j.optlastec.2025.112566_b37 article-title: Imperfect-interaction-free entanglement purification on stationary systems for solid quantum repeaters publication-title: Opt. Express doi: 10.1364/OE.394617 – volume: 118 year: 2017 ident: 10.1016/j.optlastec.2025.112566_b16 article-title: Quantum secure direct communication with quantum memory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.220501 – volume: 80 year: 2009 ident: 10.1016/j.optlastec.2025.112566_b33 article-title: Entanglement purification with double selection publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.042308 – volume: 66 year: 2002 ident: 10.1016/j.optlastec.2025.112566_b13 article-title: Symmetric scheme for superdense coding between multiparties publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.66.014301 – volume: 65 issue: 3 year: 2002 ident: 10.1016/j.optlastec.2025.112566_b14 article-title: Theoretically efficient high-capacity quantum-key-distribution scheme publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032302 – volume: 6 start-page: 777 issue: 11 year: 2012 ident: 10.1016/j.optlastec.2025.112566_b59 article-title: Quantum communication without the necessity of quantum memories publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.243 – volume: 92 year: 2020 ident: 10.1016/j.optlastec.2025.112566_b4 article-title: Secure quantum key distribution with realistic devices publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.92.025002 – volume: 67 year: 2024 ident: 10.1016/j.optlastec.2025.112566_b62 article-title: Heralded entanglement between error-protected logical qubits for fault-tolerant distributed quantum computing publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-023-2245-9 – volume: 385 start-page: 10 year: 2017 ident: 10.1016/j.optlastec.2025.112566_b67 article-title: Polarization entanglement purification for concatenated Greenberger–Horne–Zeilinger state publication-title: Ann. Physics doi: 10.1016/j.aop.2017.07.012 – volume: 23 start-page: 9284 issue: 7 year: 2015 ident: 10.1016/j.optlastec.2025.112566_b35 article-title: One-step hyperentanglement purification and hyperdistillation with linear optics publication-title: Opt. Express doi: 10.1364/OE.23.009284 – volume: 356 start-page: 928 issue: 6341 year: 2017 ident: 10.1016/j.optlastec.2025.112566_b52 article-title: Entanglement distillation between solid-state quantum network nodes publication-title: Science doi: 10.1126/science.aan0070 – volume: 97 year: 2018 ident: 10.1016/j.optlastec.2025.112566_b77 article-title: Experimental investigation of environment-induced entanglement using an all-optical setup publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.022321 – volume: 22 start-page: 109 year: 2023 ident: 10.1016/j.optlastec.2025.112566_b6 article-title: Device-independent quantum key distribution using random quantum states publication-title: Quantum Inf. Process. doi: 10.1007/s11128-023-03852-2 – volume: 106 year: 2011 ident: 10.1016/j.optlastec.2025.112566_b58 article-title: Stable macroscopic quantum superpositions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.110402 – volume: 89 issue: 25 year: 2002 ident: 10.1016/j.optlastec.2025.112566_b38 article-title: Polarization entanglement purification using spatial entanglement publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.257901 – volume: 1 issue: 2 year: 2019 ident: 10.1016/j.optlastec.2025.112566_b10 article-title: Experimental certification for nonclassical teleportation publication-title: Quantum Eng. doi: 10.1002/que2.13 – volume: 67 start-page: 593 issue: 6 year: 2022 ident: 10.1016/j.optlastec.2025.112566_b56 article-title: Experimental one-step deterministic polarization entanglement purification publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.12.018 – volume: 108 year: 2023 ident: 10.1016/j.optlastec.2025.112566_b61 article-title: Hybrid noise protection of logical qubits for universal quantum computation publication-title: Phys. Rev. A – volume: 69 start-page: 2881 year: 1992 ident: 10.1016/j.optlastec.2025.112566_b11 article-title: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2881 – volume: 11 start-page: 695 issue: 11 year: 2017 ident: 10.1016/j.optlastec.2025.112566_b53 article-title: Experimental nested purification for a linear optical quantum repeater publication-title: Nat. Photonics doi: 10.1038/s41566-017-0010-6 – volume: 28 start-page: 4611 issue: 4 year: 2020 ident: 10.1016/j.optlastec.2025.112566_b74 article-title: Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons publication-title: Opt. Express doi: 10.1364/OE.374292 – volume: 114 year: 2015 ident: 10.1016/j.optlastec.2025.112566_b57 article-title: Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.113603 – volume: 110 year: 2013 ident: 10.1016/j.optlastec.2025.112566_b42 article-title: Universal and optimal error thresholds for measurement-based entanglement purification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.260503 – volume: 70 start-page: 1381 issue: 8 year: 2007 ident: 10.1016/j.optlastec.2025.112566_b27 article-title: Entanglement purification and quantum error correction publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/70/8/R03 – volume: 112 year: 2014 ident: 10.1016/j.optlastec.2025.112566_b60 article-title: Ultrafast and fault-tolerant quantum communication across long distances publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.250501 – volume: 104 year: 2021 ident: 10.1016/j.optlastec.2025.112566_b48 article-title: Entanglement purification by counting and locating errors with entangling measurements publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.012419 – volume: 31 start-page: 15 year: 2021 ident: 10.1016/j.optlastec.2025.112566_b5 article-title: Chip-based quantum key distribution publication-title: AAPPS Bull. doi: 10.1007/s43673-021-00017-0 – volume: 22 start-page: 339 year: 2023 ident: 10.1016/j.optlastec.2025.112566_b19 article-title: The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement publication-title: Quantum Inf. Process. doi: 10.1007/s11128-023-04097-9 – volume: 86 year: 2012 ident: 10.1016/j.optlastec.2025.112566_b22 article-title: Heralded photon amplification for quantum communication publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.023815 – volume: 77 issue: 3 year: 2008 ident: 10.1016/j.optlastec.2025.112566_b71 article-title: Quantum key distribution without a shared reference frame publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.032345 – volume: 65 year: 2002 ident: 10.1016/j.optlastec.2025.112566_b12 article-title: General scheme for superdense coding between multiparties publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.022304 – volume: 3 start-page: 123 year: 2019 ident: 10.1016/j.optlastec.2025.112566_b40 article-title: Optimized entanglement purification publication-title: Quantum doi: 10.22331/q-2019-02-18-123 – volume: 63 year: 2001 ident: 10.1016/j.optlastec.2025.112566_b64 article-title: Theory of decoherence-free fault-tolerant universal quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.042307 – volume: 25 start-page: 2969 issue: 3 year: 2017 ident: 10.1016/j.optlastec.2025.112566_b36 article-title: Hyperentanglement purification using imperfect spatial entanglement publication-title: Opt. Express doi: 10.1364/OE.25.002969 – volume: 6 start-page: 28813 year: 2016 ident: 10.1016/j.optlastec.2025.112566_b66 article-title: Purification of logic-qubit entanglement publication-title: Sci. Rep. doi: 10.1038/srep28813 – volume: 105 year: 2022 ident: 10.1016/j.optlastec.2025.112566_b68 article-title: Measurement-based logical qubit entanglement purification publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.062418 – volume: 68 start-page: 557 year: 1992 ident: 10.1016/j.optlastec.2025.112566_b2 article-title: Quantum cryptography without Bell’s theorem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.557 – volume: 98 year: 2018 ident: 10.1016/j.optlastec.2025.112566_b39 article-title: Efficient entanglement purification protocols for d-level systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.042309 – volume: 68 year: 2003 ident: 10.1016/j.optlastec.2025.112566_b76 article-title: Transverse-mode beam splitter of a light beam and its application to quantum cryptography publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.012323 – volume: 21 issue: 2 year: 2024 ident: 10.1016/j.optlastec.2025.112566_b23 article-title: Efficient noiseless linear amplification protocol for single-photon state using imperfect auxiliary photon source publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/ad1aaa – volume: 72 year: 2005 ident: 10.1016/j.optlastec.2025.112566_b31 article-title: Entanglement distillation protocols and number theory publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.032313 – volume: 98 issue: 10 year: 2007 ident: 10.1016/j.optlastec.2025.112566_b70 article-title: Quantum communication without alignment using multiple-qubit single-photon states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.100501 – volume: 4 start-page: 316 year: 2010 ident: 10.1016/j.optlastec.2025.112566_b21 article-title: Heralded noiseless linear amplification and distillation of entanglement publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.35 – volume: 23 start-page: 304 year: 2024 ident: 10.1016/j.optlastec.2025.112566_b20 article-title: Measurement-device-independent multi-party quantum secure direct communication publication-title: Quantum Inf. Process. doi: 10.1007/s11128-024-04505-8 – volume: 54 start-page: 3824 year: 1996 ident: 10.1016/j.optlastec.2025.112566_b26 article-title: Mixed-state entanglement and quantum error correction publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.3824 – volume: 67 year: 2024 ident: 10.1016/j.optlastec.2025.112566_b63 article-title: A step toward fault-tolerant distributed quantum computing: Entangling nonlocal logical-qubit with optical quantum multiplexing publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-023-2258-x – volume: 74 start-page: 145 year: 2002 ident: 10.1016/j.optlastec.2025.112566_b3 article-title: Quantum cryptography publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.74.145 – volume: 23 start-page: 64 year: 2024 ident: 10.1016/j.optlastec.2025.112566_b7 article-title: A hybrid dynamic n-party quantum key exchange protocol based on three-particle GHZ states publication-title: Quantum Inf. Process. doi: 10.1007/s11128-024-04271-7 – volume: 376 start-page: 314 issue: 4 year: 2012 ident: 10.1016/j.optlastec.2025.112566_b46 article-title: One-step deterministic multipartite entanglement purification with linear optics publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.09.056 – volume: 66 year: 2023 ident: 10.1016/j.optlastec.2025.112566_b24 article-title: Advances in quantum entanglement purification publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-022-2065-x – volume: 65 year: 2022 ident: 10.1016/j.optlastec.2025.112566_b17 article-title: One-step device-independent quantum secure direct communication publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-021-1863-9 – volume: 390 start-page: 575 year: 1997 ident: 10.1016/j.optlastec.2025.112566_b9 article-title: Experimental quantum teleportation publication-title: Nature doi: 10.1038/37539 – volume: 90 year: 2014 ident: 10.1016/j.optlastec.2025.112566_b34 article-title: Two-step hyperentanglement purification with the quantum-state-joining method publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.052309 – volume: 4 start-page: 1006 issue: 9 year: 2017 ident: 10.1016/j.optlastec.2025.112566_b73 article-title: High-dimensional intracity quantum cryptography with structured photons publication-title: Optica doi: 10.1364/OPTICA.4.001006 – volume: 71 year: 2005 ident: 10.1016/j.optlastec.2025.112566_b30 article-title: Interpolation of recurrence and hashing entanglement distillation protocols publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.062325 – start-page: 83 year: 2003 ident: 10.1016/j.optlastec.2025.112566_b65 article-title: Decoherence-free subspaces and subsystems – volume: 68 issue: 4 year: 2003 ident: 10.1016/j.optlastec.2025.112566_b15 article-title: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.042317 – volume: 67 start-page: 367 issn: 2095-9273 issue: 4 year: 2022 ident: 10.1016/j.optlastec.2025.112566_b18 article-title: One-step quantum secure direct communication publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.11.002 – volume: 127 year: 2021 ident: 10.1016/j.optlastec.2025.112566_b55 article-title: Experimental single-copy entanglement distillation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.040506 – volume: 28 start-page: 2291 issue: 2 year: 2020 ident: 10.1016/j.optlastec.2025.112566_b41 article-title: Purification of the residual entanglement publication-title: Opt. Express doi: 10.1364/OE.383499 |
SSID | ssj0004653 |
Score | 2.400877 |
Snippet | We propose two types of logical qubit entanglement purification protocols (LEPPs) to reduce the effect of noises inside and outside the logical qubit subspace... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112566 |
SubjectTerms | Entanglement purification Error correction Linear optics Logical qubit |
Title | Polarization-transverse-spatial logical qubit entanglement purification using linear optics |
URI | https://dx.doi.org/10.1016/j.optlastec.2025.112566 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH6MiaAH0ak4f4wcvMa1adM5b0McU3F4cDDwUJI0HfPQ1a27-rf7XpvKBoIHjy1JCF_Ce1-a730FuBZhlBqpI7pu7HG6v-VaJ4KHmFuQJclElp-yX8bRaBI-TeW0Afd1LQzJKl3sr2J6Ga3dm65Ds5vP51Tji-GXbFVlZTRGFexhj3b5zZe_URvpnCgDjDfYekvjtcgL5KiFJS9DIamcRpZ2ib9kqI2sMzyEA0cX2aCa0RE0bNaC_Q0TwRbsliJOszqG91c6p7rCSl5QFiLRheUrkk3jMC7Osc-1nheMVOPZrJKPs3y9JNFQ2ZWRGH7GiICqJcPZ4-gnMBk-vN2PuPt5Ajd4BCu4UFIHNhR-GkR-iixD9IX2la88bXsJEgudBniYEoHxTT-RKrRap8oIZYVHmS04hWa2yOwZMB9JEwLsWethM6Qs2kQmQl5469u-krYNXg1YnFceGXEtHvuIfzCOCeO4wrgNdzWw8dZyxxjJ_-p8_p_OF7BHT5Xi9hKaxXJtr5BXFLpTbpwO7Awen0fjb8pLzt4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NS8NAEB1qRdSDaFWsn3vQY2yyyaZW8CBqae0HHlooeIjZdFPqoY1tinjxT_kHnUk20oLgQXpNssvydnnzNvtmFuCcO24YCOnScWPZoPNbQ8o-NxyMLaiSRF8kv7JbbbfWdR57opeDrywXhmyVmvtTTk_YWj8paTRL0XBIOb5Iv1RWVaSFxrSzsqE-3nHfNr2p3-MkX3Befejc1Qx9tYAR4AYlNrgvpK0cboW2a4UYg3mFS8u3fFOqch_Drgxt3GpwO7CCSl_4jpIy9APuK24S79vY7wqsOkgXdG3C5ac1l4ypS1_aSHA4vAVT2TiKURTHioonckH5OyKpz_hLSJwLc9Vt2NL6lN2mEOxATo0KsDlXtbAAa4lrNJjuwvMTbYx1JqcRU9gjl4cypuTTxm40sbK3mRzGjGzqo0HqV2fRbEIupaQpI_f9gJHi9ScMR4-970F3KZDuQ340HqkDYBaqNJxRUykTP0ONJAM3cFGIXlmq4gtVBDMDzIvSohxe5lZ79X4w9ghjL8W4CNcZsN7C-vIwdPzV-PA_jc9gvdZpNb1mvd04gg16k9p9jyEfT2bqBEVNLE-TRcTgZdmr9hua5gpB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarization-transverse-spatial+logical+qubit+entanglement+purification+using+linear+optics&rft.jtitle=Optics+and+laser+technology&rft.au=Guo%2C+Peng-Liang&rft.au=Gao%2C+Cheng-Yan&rft.au=Ren%2C+Bao-Cang&rft.date=2025-07-01&rft.issn=0030-3992&rft.volume=185&rft.spage=112566&rft_id=info:doi/10.1016%2Fj.optlastec.2025.112566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2025_112566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |