ASA-LSTM-based brain tumor segmentation and classification in MRI images

Brain tumors form when groups of abnormal cells develop in the brain and have the capacity to infiltrate nearby tissues. Early detection of brain tumors is essential for treating cancer patients and maximizing their survival rates. The brain tumor segmentation (BraTS – 2020) dataset is utilized in t...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Advanced Technology and Engineering Exploration Vol. 11; no. 115; p. 838
Main Authors Jain, Dhyanendra, Pandey, Amit Kumar, Alok Singh Chauhan, Jitendra Singh Kushwah, Saxena, Neeta, Sharma, Rajeev, Venkata Durga Prasad Sambrow
Format Journal Article
LanguageEnglish
Published Bhopal Accent Social and Welfare Society 01.06.2024
Subjects
Online AccessGet full text
ISSN2394-5443
2394-7454
DOI10.19101/IJATEE.2023.10102143

Cover

Abstract Brain tumors form when groups of abnormal cells develop in the brain and have the capacity to infiltrate nearby tissues. Early detection of brain tumors is essential for treating cancer patients and maximizing their survival rates. The brain tumor segmentation (BraTS – 2020) dataset is utilized in this research for segmentation and classification. Min-max normalization and median filter are used in this experiment for data pre-processing after which, the pre-processed data is then fed to DenseNet-201 for extracting features from magnetic resonance images (MRI). Next, a whale optimization algorithm (WOA) is used for effective selection of features. This work proposes an attentive symmetric auto-encoder (ASA)-based segmentation that returns similar code for two variants, and a long short-term memory (LSTM) method for effective classification. The performance of the proposed ASA-LSTM method is estimated by utilizing various tumor regions known as tumor core (TC), enhancing tumor (ET) and whole tumor (WT). The proposed method achieves accuracies of 99.48%, 99.44%, and 99.32% for TC, ET, and WT tumor regions, respectively. These results compared with other existing methods, including convolutional neural network (CNN), artificial neural network (ANN), and recurrent neural network (RNN). The proposed method is found to be effectively than other existing techniques in the segmentation and classification of brain MRI images.
AbstractList Brain tumors form when groups of abnormal cells develop in the brain and have the capacity to infiltrate nearby tissues. Early detection of brain tumors is essential for treating cancer patients and maximizing their survival rates. The brain tumor segmentation (BraTS – 2020) dataset is utilized in this research for segmentation and classification. Min-max normalization and median filter are used in this experiment for data pre-processing after which, the pre-processed data is then fed to DenseNet-201 for extracting features from magnetic resonance images (MRI). Next, a whale optimization algorithm (WOA) is used for effective selection of features. This work proposes an attentive symmetric auto-encoder (ASA)-based segmentation that returns similar code for two variants, and a long short-term memory (LSTM) method for effective classification. The performance of the proposed ASA-LSTM method is estimated by utilizing various tumor regions known as tumor core (TC), enhancing tumor (ET) and whole tumor (WT). The proposed method achieves accuracies of 99.48%, 99.44%, and 99.32% for TC, ET, and WT tumor regions, respectively. These results compared with other existing methods, including convolutional neural network (CNN), artificial neural network (ANN), and recurrent neural network (RNN). The proposed method is found to be effectively than other existing techniques in the segmentation and classification of brain MRI images.
Author Saxena, Neeta
Venkata Durga Prasad Sambrow
Pandey, Amit Kumar
Jitendra Singh Kushwah
Sharma, Rajeev
Alok Singh Chauhan
Jain, Dhyanendra
Author_xml – sequence: 1
  givenname: Dhyanendra
  surname: Jain
  fullname: Jain, Dhyanendra
– sequence: 2
  givenname: Amit
  surname: Pandey
  middlename: Kumar
  fullname: Pandey, Amit Kumar
– sequence: 3
  fullname: Alok Singh Chauhan
– sequence: 4
  fullname: Jitendra Singh Kushwah
– sequence: 5
  givenname: Neeta
  surname: Saxena
  fullname: Saxena, Neeta
– sequence: 6
  givenname: Rajeev
  surname: Sharma
  fullname: Sharma, Rajeev
– sequence: 7
  fullname: Venkata Durga Prasad Sambrow
BookMark eNo1kE9PAjEQxRuDiYh8BJNNPO86_bfbHjcEBQMxETw37dKSJdDFdjn47a0unmbm5WXmze8ejXznLUKPGAosMeDn5Vu9nc8LAoQWaQaCGb1BY0IlyyvG2ejac8boHZrGeAAACiCplGO0qDd1vtps17nR0e4yE3Trs_5y6kIW7f5kfa_7tvOZ9rusOeoYW9c2g5SM649l1p703sYHdOv0MdrptU7Q58t8O1vkq_fX5axe5U2KS_PSuKohpXCcSSc5xsKkL4hIsrEaSyBccKY1IbDTsgLtrOMCoATKsakMnaCnYe85dF8XG3t16C7Bp5OKgmTARMlFcvHB1YQuxmCdOoeUM3wrDOqPmxq4qV9u6p8b_QEpWF_8
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.19101/IJATEE.2023.10102143
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2394-7454
ExternalDocumentID 10_19101_IJATEE_2023_10102143
GroupedDBID 8FE
8FG
AAYXX
ABJCF
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PTHSS
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1913-6bf7c268f549f95118b91028bf7bea19025854aa220da970afef580060351b7b3
IEDL.DBID 8FG
ISSN 2394-5443
IngestDate Fri Jul 25 11:57:26 EDT 2025
Tue Jul 01 04:10:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 115
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1913-6bf7c268f549f95118b91028bf7bea19025854aa220da970afef580060351b7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.19101/ijatee.2023.10102143
PQID 3094048658
PQPubID 2037694
ParticipantIDs proquest_journals_3094048658
crossref_primary_10_19101_IJATEE_2023_10102143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Bhopal
PublicationPlace_xml – name: Bhopal
PublicationTitle International Journal of Advanced Technology and Engineering Exploration
PublicationYear 2024
Publisher Accent Social and Welfare Society
Publisher_xml – name: Accent Social and Welfare Society
SSID ssj0003009399
Score 1.8747038
Snippet Brain tumors form when groups of abnormal cells develop in the brain and have the capacity to infiltrate nearby tissues. Early detection of brain tumors is...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 838
SubjectTerms Algorithms
Artificial neural networks
Brain
Brain cancer
Classification
Feature extraction
Image segmentation
Magnetic resonance imaging
Medical imaging
Neural networks
Recurrent neural networks
Tumors
Title ASA-LSTM-based brain tumor segmentation and classification in MRI images
URI https://www.proquest.com/docview/3094048658
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gu3BBIEAMxpQD12xt0zTZCQ3UsSE2oX1Iu1VJmiIO68a6_X_iNgXtwjWtqspO_GzH9kPoUegw5ZxrYneHtgGKtYMSCteUlhZOGfd0CM3Jk2k0WoZvK7ZyCbfClVXWNrE01OlGQ468R2HQWygsYD5tvwmwRsHtqqPQOEVN3yIN7HMxfP3NsVCI10sKSSAAJzDqzTXxWJD0e2N7AuK4CwTiEMTC9DB6DE_H1rmEnOEFOne-Ih5Uyr1EJya_QqPBfEDe54sJAQBKsQKOB7w_rDc7XJjPteslyrHMU6zBN4ZioGrJvjiZjfHX2hqR4hoth_HiZUQcHQLR9n8piVTGdRCJzIZ0WR8iA9UH98AuKyN9uC8ULJQyCLxU9rknM5MxAQNXKPMVV_QGNfJNbm4RZoEnhWJRyo0KJY9kSiMFPa2ZEYaaqIW6tRSSbTX1IoFoAcSWVGJLQGxJLbYWateyStwhKJI_ld39__gendmvhVUFVhs19ruDebBYv1edUqEd1HyOpx-zH3RqpIU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1Be4ALAgGiUMAHOKZLNqcHhAq0augi1EXqLdiOgzg0LV2E-Cm-kZkmAfXCrVcnsqXn8bwZexaAG0_ZIedcGSgdCh0U1IOCAtekEkinDq8om5KTuz23NbKfx854B76zXBgKq8x04lpRh1NFd-Rliwq92R4S5v3sw6CuUfS6mrXQSMSirb8-0WVb3PlPuL-3ptlsDB9bRtpVwFDom1iGKyOuTNeL0DOKamRgyxqxLA5LLar07OY5thCmWQlFjVdEpCPHo7olllOVXFo47y7kbcpozUH-odF76f_e6lh0Q7BuWkktxw0qLpemDeEa1bKPZ67RKFHLcnKbqV6ZtUmIm3ywJrnmIRyk1imrJ-J0BDs6PoZWfVA3OoNh1yDKC5mkrhJsuZpM52yh3yZp9lLMRBwyRdY4hR8lQ_hjt--z9wmqrcUJjLYC1Snk4mmsz4A5ZkV40nFDrqUtuCtCy5WURRtpT1vaLUApQyGYJXU2AvJPCLYggS0g2IIMtgIUM6yC9Ngtgj8hOf__8zXstYbdTtDxe-0L2MeZ7ST-qwi55XylL9HSWMqrdHsZvG5bon4AUJLfWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASA-LSTM-based+brain+tumor+segmentation+and+classification+in+MRI+images&rft.jtitle=International+Journal+of+Advanced+Technology+and+Engineering+Exploration&rft.date=2024-06-01&rft.issn=2394-5443&rft.eissn=2394-7454&rft.volume=11&rft.issue=115&rft_id=info:doi/10.19101%2FIJATEE.2023.10102143&rft.externalDBID=n%2Fa&rft.externalDocID=10_19101_IJATEE_2023_10102143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2394-5443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2394-5443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2394-5443&client=summon