Implementation of Machine Learning Approaches for Breast Cancer Prediction

The grouping of bosom malignant growth has been the subject of enthusiasm for the fields  of  medicinal  services and bioinformatics, in light of the fact that it is the subsequent primary explanation of disease related passings in ladies. Bosom malignancy can be investigated utilizing a biopsy wher...

Full description

Saved in:
Bibliographic Details
Published inTurkish journal of computer and mathematics education Vol. 12; no. 1S; pp. 73 - 79
Main Authors Hausalmal, Komal, Kshirsagar, J P
Format Journal Article
LanguageEnglish
Published Gurgaon Ninety Nine Publication 11.04.2021
Subjects
Online AccessGet full text
ISSN1309-4653
1309-4653
DOI10.17762/turcomat.v12i1S.1562

Cover

Abstract The grouping of bosom malignant growth has been the subject of enthusiasm for the fields  of  medicinal  services and bioinformatics, in light of the fact that it is the subsequent primary explanation of disease related passings in ladies. Bosom malignancy can be investigated utilizing a biopsy where tissue is wiped out and concentrated under magnifying instrument. The distinguishing proof of issue depends on the capability and experienced of the histopathologists, who will consideration for unusual cells. Be that  as  it  may,  if  the  histopathologist  isn’t  all around prepared or encountered, this may prompt wrong finding. With the ongoing suggestion in picture handling and AI space, there is an enthusiasm for test to build up a solid example acknowledgment based structure to improve the nature of finding. In this work, the picture highlight extraction approach and AI approach is utilized for the grouping of bosom disease utilizing histology pictures into threatening. The preprocessing on the picture is done using histopathological picture after that apply feature extraction and classify the final result using SVM and Naive Bayes Classification techniques.
AbstractList The grouping of bosom malignant growth has been the subject of enthusiasm for the fields of medicinal services and bioinformatics, in light of the fact that it is the subsequent primary explanation of disease related passings in ladies. Bosom malignancy can be investigated utilizing a biopsy where tissue is wiped out and concentrated under magnifying instrument. The distinguishing proof of issue depends on the capability and experienced of the histopathologists, who will consideration for unusual cells. Be that as it may, if the histopathologist isn't all around prepared or encountered, this may prompt wrong finding. With the ongoing suggestion in picture handling and AI space, there is an enthusiasm for test to build up a solid example acknowledgment based structure to improve the nature of finding. In this work, the picture highlight extraction approach and AI approach is utilized for the grouping of bosom disease utilizing histology pictures into threatening. The preprocessing on the picture is done using histopathological picture after that apply feature extraction and classify the final result using SVM and Naive Bayes Classification techniques.
The grouping of bosom malignant growth has been the subject of enthusiasm for the fields  of  medicinal  services and bioinformatics, in light of the fact that it is the subsequent primary explanation of disease related passings in ladies. Bosom malignancy can be investigated utilizing a biopsy where tissue is wiped out and concentrated under magnifying instrument. The distinguishing proof of issue depends on the capability and experienced of the histopathologists, who will consideration for unusual cells. Be that  as  it  may,  if  the  histopathologist  isn’t  all around prepared or encountered, this may prompt wrong finding. With the ongoing suggestion in picture handling and AI space, there is an enthusiasm for test to build up a solid example acknowledgment based structure to improve the nature of finding. In this work, the picture highlight extraction approach and AI approach is utilized for the grouping of bosom disease utilizing histology pictures into threatening. The preprocessing on the picture is done using histopathological picture after that apply feature extraction and classify the final result using SVM and Naive Bayes Classification techniques.
Author Et. al, Komal Hausalmal
Author_xml – sequence: 1
  givenname: Komal
  surname: Hausalmal
  fullname: Hausalmal, Komal
– sequence: 2
  givenname: J
  surname: Kshirsagar
  middlename: P
  fullname: Kshirsagar, J P
BookMark eNpNkFtLAzEQhYNUsNb-BCHg89bcs_tYi5dKRUF9Dml2olu6yZpsBf-9W6vg0xyGc2YO3ykahRgAoXNKZlRrxS77XXKxtf3sk7KGPs-oVOwIjSknVSGU5KN_-gRNc94QQqjUoizVGN0v224LLYTe9k0MOHr8YN17EwCvwKbQhDc877oUhyVk7GPCVwls7vHCBgcJPyWoG7fPnqFjb7cZpr9zgl5vrl8Wd8Xq8Xa5mK8KRyvKCrsWwguiq1oLxlTpKWOUcxDMVg58xYj2lfT1ei2l40Rz0BXVwnvqPfi65hN0cbg7tPrYQe7NJu5SGF4aphgraamEGlzy4HIp5pzAmy41rU1fhhLzQ878kTMHcmZPjn8D8sJmdg
ContentType Journal Article
Copyright 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
0-V
3V.
7XB
88B
88I
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
DWQXO
EDSIH
GNUQQ
HCIFZ
JQ2
K7-
M0N
M0P
M2P
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.17762/turcomat.v12i1S.1562
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
Education Collection
ProQuest Central Korea
Turkey Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Education Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Education
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Turkey Database
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
Education Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1309-4653
EndPage 79
ExternalDocumentID 10_17762_turcomat_v12i1S_1562
GroupedDBID 0-V
5VS
88I
8FE
8FG
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARALO
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
CJNVE
DWQXO
EDSIH
GNUQQ
HCIFZ
K6V
K7-
KQ8
M0P
M2P
M~E
P62
PHGZM
PHGZT
PIMPY
PQEDU
PQQKQ
PROAC
3V.
7XB
8AL
8FK
EOJEC
JQ2
M0N
OBODZ
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c1912-ab44f4079d742268f122133e42a9cef9207f95fdbb55c3073e79174ff1ffefdd3
IEDL.DBID 8FG
ISSN 1309-4653
IngestDate Sat Aug 23 12:35:50 EDT 2025
Tue Jul 01 03:08:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1S
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1912-ab44f4079d742268f122133e42a9cef9207f95fdbb55c3073e79174ff1ffefdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2622818646?pq-origsite=%requestingapplication%
PQID 2622818646
PQPubID 2045096
PageCount 7
ParticipantIDs proquest_journals_2622818646
crossref_primary_10_17762_turcomat_v12i1S_1562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-11
PublicationDateYYYYMMDD 2021-04-11
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Gurgaon
PublicationPlace_xml – name: Gurgaon
PublicationTitle Turkish journal of computer and mathematics education
PublicationYear 2021
Publisher Ninety Nine Publication
Publisher_xml – name: Ninety Nine Publication
SSID ssj0001574886
Score 2.1407163
Snippet The grouping of bosom malignant growth has been the subject of enthusiasm for the fields  of  medicinal  services and bioinformatics, in light of the fact that...
The grouping of bosom malignant growth has been the subject of enthusiasm for the fields of medicinal services and bioinformatics, in light of the fact that it...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 73
SubjectTerms Artificial Intelligence
Bioinformatics
Biopsy
Breast cancer
Breast diseases
Cancer
Cytology
Database Management Systems
Datasets
Division
Feature extraction
Histology
Histopathology
Literary Devices
Machine learning
Pathology
Radiology
Title Implementation of Machine Learning Approaches for Breast Cancer Prediction
URI https://www.proquest.com/docview/2622818646
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4ULl58G1EkPXgtbLvd18kAgkgCISIJt0132xoPLgj4_51ZuiFePO2h2R6-6bzamW8IeQSnCEGyb5lWvmQyjC2LwUsw35R8YXlgPOx3nkzD0UKOl8HSXbhtXVllZRNLQ61XOd6Rd0QokLgolOHT-pvh1Ch8XXUjNI5JnYOnwXMeD18OdyxBBOczdI07Eeh9B-w47KpA-bn45PM2pC_ir0v6a5FLNzM8J6cuPqTdvUAvyJEpLslZNXuBOlW8IuOS1vfLdQ4VdGXppKyLNNRRpn7QruMLN1sKoSntYf35jvZRzhs62-ATDf57TRbDwXt_xNxcBJZDdiWYyqS0kIglOsI-2NhyISDVNFKoJDc2EV5kk8DqLAuCHHXYRJCUSWu5tcZq7d-QWrEqzC2hJjKZNZzbzMCeylMS-eTjRCvlZTqPG6RdQZOu9_QXKaYNiGVaYZnusUwRywZpVgCmThu26UF2d_8v35MTgTUjyKXIm6S22_yYB3D6u6xVSrZF6r3BdPYG38Hz_HX0C-O3sWM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4gHPTi24ii9qDHBbZ0XwdjACG8QxQSbus-WuNBQMAY_5S_0ZmlG-LFG-fNNul0Xl878w3ALQZFTJIryoiDijCE7SrDxShhVGTCFxZZskz9zv2B3RqLzsSaZOAn7YWhssrUJyaOOp5FdEde4jYn4iJb2A_zD4OmRtHrajpCY60WXfn9hZBted9-xPO947zZGNVbhp4qYESITbgRhEIohDFe7FAXqatMzhGoScEDL5LK42VHeZaKw9CyIrIA6SCkEUqZSkkVxxVcdwdygjpas5CrNQbDp82tjuWgRdi6VchBT1PCyIH7CNDdmPzNfC4iYOJ_g-DfGJAEtuYh7OuMlFXXKnQEGTk9hoN02gPTxn8CnYRI-F33Kk3ZTLF-UokpmSZpfWVVzVAulwyTYVajivcVq5NmLdhwQY9C9O8pjLciszPITmdTeQ5MOjJU0jRVKHHNoBwIYrB3vTgIymEcuXkopqLx52vCDZ-ACsnST2Xpr2XpkyzzUEgF6Gv7W_obbbn4__MN7LZG_Z7faw-6l7DHqWKFmBzNAmRXi095hSnHKrzW58zgZduq9QvOCexO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Machine+Learning+Approaches+for+Breast+Cancer+Prediction&rft.jtitle=Turkish+journal+of+computer+and+mathematics+education&rft.au=Et.+al%2C+Komal+Hausalmal&rft.date=2021-04-11&rft.issn=1309-4653&rft.eissn=1309-4653&rft.volume=12&rft.issue=1S&rft.spage=73&rft.epage=79&rft_id=info:doi/10.17762%2Fturcomat.v12i1S.1562&rft.externalDBID=n%2Fa&rft.externalDocID=10_17762_turcomat_v12i1S_1562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1309-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1309-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1309-4653&client=summon