Two-point and three-point boundary value problems for n th-order nonlinear differential equations

In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by "Shooting" method, and studied existence and uniqueness of solutions of a kind of three-point boundary value pro...

Full description

Saved in:
Bibliographic Details
Published inApplicable analysis Vol. 85; no. 12; pp. 1421 - 1432
Main Authors Shi, Yanli, Pei, Minghe
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.12.2006
Subjects
Online AccessGet full text
ISSN0003-6811
1563-504X
DOI10.1080/00036810601066061

Cover

Loading…
Abstract In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by "Shooting" method, and studied existence and uniqueness of solutions of a kind of three-point boundary value problems for nth-order nonlinear differential equations by "Matching" method.
AbstractList In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by "Shooting" method, and studied existence and uniqueness of solutions of a kind of three-point boundary value problems for nth-order nonlinear differential equations by "Matching" method.
Author Pei, Minghe
Shi, Yanli
Author_xml – sequence: 1
  givenname: Yanli
  surname: Shi
  fullname: Shi, Yanli
  organization: Department of Mathematics , Jilin Institute of Chemical Technology
– sequence: 2
  givenname: Minghe
  surname: Pei
  fullname: Pei, Minghe
  email: pmh@beihua.edu.cn
  organization: Department of Mathematics , Bei Hua University
BookMark eNqFkM9KAzEQxoNUsK0-gLe8wGqm2aRZ8CLFf1DwUsHbkt1MMLJNapJa-_ZutScL9TDMDPP9hplvRAY-eCTkEtgVMMWuGWNcKmCS9SGZhBMyBCF5IVj5OiDD3bzoBXBGRim9MwYTJeSQ6MUmFKvgfKbaG5rfIuK-b8LaGx239FN3a6SrGJoOl4naEKnvlUWIBvsy-M551JEaZy1G9NnpjuLHWmcXfDonp1Z3CS_2eUxe7u8Ws8di_vzwNLudFy1UAEUpUVSA09KUlWksMAtWNw23XHDF5EQ1iKWacAHQKjRVBVoKZQQTslFcCj4m09-9bQwpRbR16_LPCTlq19XA6p1T9YFTPQl_yFV0y_7zo8zNL-N878dSb0LsTJ31tgvRRu1bl2p-DJ_-ix9Qdf7K_BsuUZIw
CitedBy_id crossref_primary_10_1186_s13661_014_0239_7
crossref_primary_10_14232_ejqtde_2021_1_1
crossref_primary_10_1016_j_camwa_2011_09_014
crossref_primary_10_1155_2009_362983
crossref_primary_10_1016_j_amc_2013_05_007
crossref_primary_10_1007_s00025_012_0232_3
crossref_primary_10_1016_j_amc_2015_02_087
Cites_doi 10.1016/0022-0396(73)90014-4
10.1016/0362-546X(83)90093-7
10.1016/0022-247X(81)90064-0
10.1016/0362-546X(81)90082-1
10.1080/00036819308840175
10.1142/0266
10.1155/S0161171289000876
10.1016/0022-0396(78)90120-1
10.1016/0022-0396(74)90004-7
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
DBID AAYXX
CITATION
DOI 10.1080/00036810601066061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1563-504X
EndPage 1432
ExternalDocumentID 10_1080_00036810601066061
206534
GroupedDBID --Z
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
07G
1TA
6TJ
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGCQS
AGLEN
AIYEW
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
TAQ
TDBHL
TFMCV
UB9
UU8
V3K
V4Q
XOL
ZY4
ID FETCH-LOGICAL-c1911-46e591e74d49dbf10f1fabb3f35380628bee4823511c8ed991a658d5056b83653
ISSN 0003-6811
IngestDate Tue Jul 01 02:43:11 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
Mon May 13 12:10:01 EDT 2019
Wed Dec 25 09:05:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1911-46e591e74d49dbf10f1fabb3f35380628bee4823511c8ed991a658d5056b83653
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_00036810601066061
informaworld_taylorfrancis_310_1080_00036810601066061
crossref_primary_10_1080_00036810601066061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 12/1/2006
2006-12-00
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 12/1/2006
  day: 01
PublicationDecade 2000
PublicationTitle Applicable analysis
PublicationYear 2006
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0010
Bernfeld SR (CIT0004) 1974
Pei MH (CIT0012) 2003; 4
CIT0003
CIT0002
CIT0013
Agarwal RP (CIT0001) 1986
CIT0005
CIT0007
Edward T (CIT0006) 1984; 32
CIT0009
Pei MH (CIT0011) 2001; 41
CIT0008
References_xml – ident: CIT0002
  doi: 10.1016/0022-0396(73)90014-4
– volume: 4
  start-page: 5
  year: 2003
  ident: CIT0012
  publication-title: Journal of Beihua University
– ident: CIT0007
  doi: 10.1016/0362-546X(83)90093-7
– ident: CIT0005
  doi: 10.1016/0022-247X(81)90064-0
– volume: 32
  start-page: 573
  year: 1984
  ident: CIT0006
  publication-title: Bulletin of the Polish Academy of Sciences Mathematics
– ident: CIT0013
  doi: 10.1016/0362-546X(81)90082-1
– ident: CIT0009
  doi: 10.1080/00036819308840175
– volume-title: Boundary Value Problems for Higher Order Differential Equations
  year: 1986
  ident: CIT0001
  doi: 10.1142/0266
– ident: CIT0008
  doi: 10.1155/S0161171289000876
– ident: CIT0010
  doi: 10.1016/0022-0396(78)90120-1
– volume: 41
  start-page: 289
  year: 2001
  ident: CIT0011
  publication-title: Kyungpook Mathematical Journal
– ident: CIT0003
  doi: 10.1016/0022-0396(74)90004-7
– volume-title: An Introduction to Nonlinear Boundary Value Problems
  year: 1974
  ident: CIT0004
SSID ssj0012856
Score 1.6561849
Snippet In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1421
SubjectTerms 2000 Mathematics Subject Classifications: 34B10
Existence
nth-Order nonlinear differential equations
Three-point boundary value problems
Two-point boundary value problems
Uniqueness
Title Two-point and three-point boundary value problems for n th-order nonlinear differential equations
URI https://www.tandfonline.com/doi/abs/10.1080/00036810601066061
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54XODAGzFeyoETU1HTJKU7IgSakMZpk-A0JW0Kk9AYWxGPX4-TJmk3HgIu1ValaTd_dezY_ozQkYwFuDdKN3cBBDOayECyjMOLJxjnYNK1TLu3znXc7rGrG35T5c-b6pJCnqTvX9aV_EeqcA7kqqtk_yBZPymcgM8gXziChOH4Oxm_PAajx4HNEi9ALMp-l6Zb0vitqcm8dS2UaRtjuBeaOjoQGMrN5rAkyhBj3yil0Dvo6um5tpHnOGrLULeutBKWycRvz5jOwM1bAbNVunZQpuUP7-7VzN5Clafh9CUN4sSqQ2VVZEwDHpZ5lU6Hlm13HFaimkYkLCK11RXMs-hLze1THalmSDPRX_CtSLVMudD8zOrlcwqJJzudmWIeLUbgQ-i-HjS89iGmKDGtff1PdCFvTbw-O8WU0TJFaVszRrpraMV6EfishMQ6mlPDDbRqPQps9fVkAy13PCvvZBMJjxcMeME1vGCHF2zwgh1eMDwCHmKHF-zxgut4wR4vW6h3edE9bwe2xUaQgqNOAhYr3iLqlGWslcmchDnJhZQ0p7AQ6vJaqRRLIh1tThOVgTMhwGTNtNksExpzuo0W4NZqB-Gc8fRURUrCu8-YIAIcaxFKGE9DldCkgUL3H_ZTyz-v26A89L-VXAMd-0tGJfnKT4PDumD6hdnxysv2NJ-H94vXooH4D5fQb2-1-5fn2kNL1au1jxaK8bM6AEO2kIcGkB_QepOe
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hGICBQgFRnh6YkAJJbKfJiBCoQNupSGyRnTgSAqWlScXj13N2nKotj4Ex0jm24zv7O9v5PoBTGQhMb5QWd0EPZjSUjmQpx8ATjHOEdJGRe-v1g84Du3vkj3bDrbDXKnUOnVVEEWau1sGtN6PrK3EXhkUl9FxzRogIHLOfFR4FbS3dQN3-9BTBD416qzZ30N6rTzV_esXcujTHWjqz3tw0IK5bWl0zeT6flPI8-Vwgcfx_VzZhw0JRcln5zhYsqbwJDQtLiQ36ognrvSm1a7ENYvA2dEbDp7wkWCsp0ReUfZZGomn8QTSDuCJWq6Yg2EmSo6VjeD5JXrVUjEmtzoKzzAtRrxXreLEDDzfXg6uOY3UanASzPUxBA8UjT7VZyqJUZp6beZmQkmYUZ1P9j6ZUioW-PrJMQpUiIhWIe1KNvWRIA053YRmrVntAMsaTtvKVRAdiTHgCszPhSrSnrgpp2AK3HqU4sSTmWkvjJfamXKcLH7QFZ9Mio4rB4y9jd3bo49Jsm2SVxsl387h8L1vA_yhCf61q_5_lTmC1M-h14-5t__4A1nwrpOR6h7BcjifqCEFSKY9NJHwBH9oC_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4MJkYfRFEjXvvgk8lwW9sxHo1K8ALxARLelnbrEiMZyEa8_HpPu24BvDzwuOR0XdfT9js7Z9-H0IXwOIQ3Uom7gAdT4gtL0IjBwuOUMYB0LS331u15nQF9GLKhqc1JTVmliqHjnChC79VqcU-iuKiIu9IkKr5j6xQhAHAIftY9gCbKqYndK5MIrq_FW5W5BfZOkdT87RYLx9ICaenccdOu5pqqqWYpVFUmr41ZJhrh1xKH48oj2UHbBoji69xzdtGaTGqoakApNks-raGtbknsmu4h3n8fW5PxS5Jh6BRn4AnSXAst0DT9xIo_XGKjVJNiGCNOwNLSLJ84yR-UT3GhzQJ7zAjLt5xzPN1Hg_Zd_6ZjGZUGK4RYDwJQT7KWI5s0oq1IxI4dOzEXgsQE9lL1h6aQkvquSliGvowAj3JAPZFCXsInHiMHqAJdy0OEY8rCpnSlAPehlDscYjNuC7AntvSJX0d2MUlBaCjMlZLGKHBKptOlF1pHl2WTSc7f8Z-xPT_zQaY_msS5wslP8yD7yOqI_dOE_NnV0YrtztHG8207eLrvPR6jTdeoKNnOCapk05k8BYSUiTO9Dr4B_BwBqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-point+and+three-point+boundary+value+problems+for+n+th-order+nonlinear+differential+equations&rft.jtitle=Applicable+analysis&rft.au=Shi%2C+Yanli&rft.au=Pei%2C+Minghe&rft.date=2006-12-01&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=85&rft.issue=12&rft.spage=1421&rft.epage=1432&rft_id=info:doi/10.1080%2F00036810601066061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00036810601066061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon