Two-point and three-point boundary value problems for n th-order nonlinear differential equations
In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by "Shooting" method, and studied existence and uniqueness of solutions of a kind of three-point boundary value pro...
Saved in:
Published in | Applicable analysis Vol. 85; no. 12; pp. 1421 - 1432 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.12.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6811 1563-504X |
DOI | 10.1080/00036810601066061 |
Cover
Loading…
Abstract | In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by "Shooting" method, and studied existence and uniqueness of solutions of a kind of three-point boundary value problems for nth-order nonlinear differential equations by "Matching" method. |
---|---|
AbstractList | In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear differential equations by "Shooting" method, and studied existence and uniqueness of solutions of a kind of three-point boundary value problems for nth-order nonlinear differential equations by "Matching" method. |
Author | Pei, Minghe Shi, Yanli |
Author_xml | – sequence: 1 givenname: Yanli surname: Shi fullname: Shi, Yanli organization: Department of Mathematics , Jilin Institute of Chemical Technology – sequence: 2 givenname: Minghe surname: Pei fullname: Pei, Minghe email: pmh@beihua.edu.cn organization: Department of Mathematics , Bei Hua University |
BookMark | eNqFkM9KAzEQxoNUsK0-gLe8wGqm2aRZ8CLFf1DwUsHbkt1MMLJNapJa-_ZutScL9TDMDPP9hplvRAY-eCTkEtgVMMWuGWNcKmCS9SGZhBMyBCF5IVj5OiDD3bzoBXBGRim9MwYTJeSQ6MUmFKvgfKbaG5rfIuK-b8LaGx239FN3a6SrGJoOl4naEKnvlUWIBvsy-M551JEaZy1G9NnpjuLHWmcXfDonp1Z3CS_2eUxe7u8Ws8di_vzwNLudFy1UAEUpUVSA09KUlWksMAtWNw23XHDF5EQ1iKWacAHQKjRVBVoKZQQTslFcCj4m09-9bQwpRbR16_LPCTlq19XA6p1T9YFTPQl_yFV0y_7zo8zNL-N878dSb0LsTJ31tgvRRu1bl2p-DJ_-ix9Qdf7K_BsuUZIw |
CitedBy_id | crossref_primary_10_1186_s13661_014_0239_7 crossref_primary_10_14232_ejqtde_2021_1_1 crossref_primary_10_1016_j_camwa_2011_09_014 crossref_primary_10_1155_2009_362983 crossref_primary_10_1016_j_amc_2013_05_007 crossref_primary_10_1007_s00025_012_0232_3 crossref_primary_10_1016_j_amc_2015_02_087 |
Cites_doi | 10.1016/0022-0396(73)90014-4 10.1016/0362-546X(83)90093-7 10.1016/0022-247X(81)90064-0 10.1016/0362-546X(81)90082-1 10.1080/00036819308840175 10.1142/0266 10.1155/S0161171289000876 10.1016/0022-0396(78)90120-1 10.1016/0022-0396(74)90004-7 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2006 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2006 |
DBID | AAYXX CITATION |
DOI | 10.1080/00036810601066061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1563-504X |
EndPage | 1432 |
ExternalDocumentID | 10_1080_00036810601066061 206534 |
GroupedDBID | --Z -~X .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW EBS EJD E~A E~B F5P GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ~S~ 07G 1TA 6TJ AAGDL AAHIA AAIKQ AAKBW AAYXX ACGEE ADYSH AEUMN AFFNX AFRVT AGCQS AGLEN AIYEW AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK HF~ H~9 IVXBP LJTGL NUSFT TAQ TDBHL TFMCV UB9 UU8 V3K V4Q XOL ZY4 |
ID | FETCH-LOGICAL-c1911-46e591e74d49dbf10f1fabb3f35380628bee4823511c8ed991a658d5056b83653 |
ISSN | 0003-6811 |
IngestDate | Tue Jul 01 02:43:11 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 Mon May 13 12:10:01 EDT 2019 Wed Dec 25 09:05:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1911-46e591e74d49dbf10f1fabb3f35380628bee4823511c8ed991a658d5056b83653 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1080_00036810601066061 informaworld_taylorfrancis_310_1080_00036810601066061 crossref_primary_10_1080_00036810601066061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 12/1/2006 2006-12-00 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 12/1/2006 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Applicable analysis |
PublicationYear | 2006 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | CIT0010 Bernfeld SR (CIT0004) 1974 Pei MH (CIT0012) 2003; 4 CIT0003 CIT0002 CIT0013 Agarwal RP (CIT0001) 1986 CIT0005 CIT0007 Edward T (CIT0006) 1984; 32 CIT0009 Pei MH (CIT0011) 2001; 41 CIT0008 |
References_xml | – ident: CIT0002 doi: 10.1016/0022-0396(73)90014-4 – volume: 4 start-page: 5 year: 2003 ident: CIT0012 publication-title: Journal of Beihua University – ident: CIT0007 doi: 10.1016/0362-546X(83)90093-7 – ident: CIT0005 doi: 10.1016/0022-247X(81)90064-0 – volume: 32 start-page: 573 year: 1984 ident: CIT0006 publication-title: Bulletin of the Polish Academy of Sciences Mathematics – ident: CIT0013 doi: 10.1016/0362-546X(81)90082-1 – ident: CIT0009 doi: 10.1080/00036819308840175 – volume-title: Boundary Value Problems for Higher Order Differential Equations year: 1986 ident: CIT0001 doi: 10.1142/0266 – ident: CIT0008 doi: 10.1155/S0161171289000876 – ident: CIT0010 doi: 10.1016/0022-0396(78)90120-1 – volume: 41 start-page: 289 year: 2001 ident: CIT0011 publication-title: Kyungpook Mathematical Journal – ident: CIT0003 doi: 10.1016/0022-0396(74)90004-7 – volume-title: An Introduction to Nonlinear Boundary Value Problems year: 1974 ident: CIT0004 |
SSID | ssj0012856 |
Score | 1.6561849 |
Snippet | In this article, we are concerned with existence and uniqueness of solutions of four kinds of two-point boundary value problems for nth-order nonlinear... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1421 |
SubjectTerms | 2000 Mathematics Subject Classifications: 34B10 Existence nth-Order nonlinear differential equations Three-point boundary value problems Two-point boundary value problems Uniqueness |
Title | Two-point and three-point boundary value problems for n th-order nonlinear differential equations |
URI | https://www.tandfonline.com/doi/abs/10.1080/00036810601066061 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54XODAGzFeyoETU1HTJKU7IgSakMZpk-A0JW0Kk9AYWxGPX4-TJmk3HgIu1ValaTd_dezY_ozQkYwFuDdKN3cBBDOayECyjMOLJxjnYNK1TLu3znXc7rGrG35T5c-b6pJCnqTvX9aV_EeqcA7kqqtk_yBZPymcgM8gXziChOH4Oxm_PAajx4HNEi9ALMp-l6Zb0vitqcm8dS2UaRtjuBeaOjoQGMrN5rAkyhBj3yil0Dvo6um5tpHnOGrLULeutBKWycRvz5jOwM1bAbNVunZQpuUP7-7VzN5Clafh9CUN4sSqQ2VVZEwDHpZ5lU6Hlm13HFaimkYkLCK11RXMs-hLze1THalmSDPRX_CtSLVMudD8zOrlcwqJJzudmWIeLUbgQ-i-HjS89iGmKDGtff1PdCFvTbw-O8WU0TJFaVszRrpraMV6EfishMQ6mlPDDbRqPQps9fVkAy13PCvvZBMJjxcMeME1vGCHF2zwgh1eMDwCHmKHF-zxgut4wR4vW6h3edE9bwe2xUaQgqNOAhYr3iLqlGWslcmchDnJhZQ0p7AQ6vJaqRRLIh1tThOVgTMhwGTNtNksExpzuo0W4NZqB-Gc8fRURUrCu8-YIAIcaxFKGE9DldCkgUL3H_ZTyz-v26A89L-VXAMd-0tGJfnKT4PDumD6hdnxysv2NJ-H94vXooH4D5fQb2-1-5fn2kNL1au1jxaK8bM6AEO2kIcGkB_QepOe |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hGICBQgFRnh6YkAJJbKfJiBCoQNupSGyRnTgSAqWlScXj13N2nKotj4Ex0jm24zv7O9v5PoBTGQhMb5QWd0EPZjSUjmQpx8ATjHOEdJGRe-v1g84Du3vkj3bDrbDXKnUOnVVEEWau1sGtN6PrK3EXhkUl9FxzRogIHLOfFR4FbS3dQN3-9BTBD416qzZ30N6rTzV_esXcujTHWjqz3tw0IK5bWl0zeT6flPI8-Vwgcfx_VzZhw0JRcln5zhYsqbwJDQtLiQ36ognrvSm1a7ENYvA2dEbDp7wkWCsp0ReUfZZGomn8QTSDuCJWq6Yg2EmSo6VjeD5JXrVUjEmtzoKzzAtRrxXreLEDDzfXg6uOY3UanASzPUxBA8UjT7VZyqJUZp6beZmQkmYUZ1P9j6ZUioW-PrJMQpUiIhWIe1KNvWRIA053YRmrVntAMsaTtvKVRAdiTHgCszPhSrSnrgpp2AK3HqU4sSTmWkvjJfamXKcLH7QFZ9Mio4rB4y9jd3bo49Jsm2SVxsl387h8L1vA_yhCf61q_5_lTmC1M-h14-5t__4A1nwrpOR6h7BcjifqCEFSKY9NJHwBH9oC_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4MJkYfRFEjXvvgk8lwW9sxHo1K8ALxARLelnbrEiMZyEa8_HpPu24BvDzwuOR0XdfT9js7Z9-H0IXwOIQ3Uom7gAdT4gtL0IjBwuOUMYB0LS331u15nQF9GLKhqc1JTVmliqHjnChC79VqcU-iuKiIu9IkKr5j6xQhAHAIftY9gCbKqYndK5MIrq_FW5W5BfZOkdT87RYLx9ICaenccdOu5pqqqWYpVFUmr41ZJhrh1xKH48oj2UHbBoji69xzdtGaTGqoakApNks-raGtbknsmu4h3n8fW5PxS5Jh6BRn4AnSXAst0DT9xIo_XGKjVJNiGCNOwNLSLJ84yR-UT3GhzQJ7zAjLt5xzPN1Hg_Zd_6ZjGZUGK4RYDwJQT7KWI5s0oq1IxI4dOzEXgsQE9lL1h6aQkvquSliGvowAj3JAPZFCXsInHiMHqAJdy0OEY8rCpnSlAPehlDscYjNuC7AntvSJX0d2MUlBaCjMlZLGKHBKptOlF1pHl2WTSc7f8Z-xPT_zQaY_msS5wslP8yD7yOqI_dOE_NnV0YrtztHG8207eLrvPR6jTdeoKNnOCapk05k8BYSUiTO9Dr4B_BwBqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-point+and+three-point+boundary+value+problems+for+n+th-order+nonlinear+differential+equations&rft.jtitle=Applicable+analysis&rft.au=Shi%2C+Yanli&rft.au=Pei%2C+Minghe&rft.date=2006-12-01&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=85&rft.issue=12&rft.spage=1421&rft.epage=1432&rft_id=info:doi/10.1080%2F00036810601066061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00036810601066061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon |