Camera-Based Respiratory Imaging System for Monitoring Infant Thoracoabdominal Patterns of Respiration

Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to an...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. PP; pp. 1 - 14
Main Authors Huang, Dongmin, Zeng, Yongshen, Zhu, Yingen, Song, Xiaoyan, Pan, Liping, Yang, Jie, Wang, Yanrong, Lu, Hongzhou, Wang, Wenjin
Format Journal Article
LanguageEnglish
Published United States IEEE 17.10.2024
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3482569

Cover

Loading…
Abstract Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.
AbstractList Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.
Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of respiration for infant lung health assessment. To bridge this gap, we exploit the unique advantage of spatial redundancy of a camera sensor to analyze the infant thoracoabdominal respiratory motion. Specifically, we propose a camera-based respiratory imaging (CRI) system that utilizes optical flow to construct a spatio-temporal respiratory imager for comparing the infant chest and abdominal respiratory motion, and employs deep learning algorithms to identify infant abdominal, thoracoabdominal synchronous, and thoracoabdominal asynchronous patterns of respiration. To alleviate the challenges posed by limited clinical training data and subject variability, we introduce a novel multiple-expert contrastive learning (MECL) strategy to CRI. It enriches training samples by reversing and pairing different-class data, and promotes the representation consistency of same-class data through multi-expert collaborative optimization. Clinical validation involving 44 infants shows that MECL achieves 70% in sensitivity and 80.21% in specificity, which validates the feasibility of CRI for respiratory pattern recognition. This work investigates a novel video-based approach for assessing the infant thoracoabdominal patterns of respiration, revealing a new value stream of video health monitoring in neonatal care.
Author Wang, Yanrong
Lu, Hongzhou
Huang, Dongmin
Zhu, Yingen
Zeng, Yongshen
Song, Xiaoyan
Wang, Wenjin
Yang, Jie
Pan, Liping
Author_xml – sequence: 1
  givenname: Dongmin
  orcidid: 0000-0001-7832-5444
  surname: Huang
  fullname: Huang, Dongmin
  organization: Department of Biomedical Engineering, Southern University of Science and Technology, China
– sequence: 2
  givenname: Yongshen
  orcidid: 0009-0008-5215-0525
  surname: Zeng
  fullname: Zeng, Yongshen
  organization: Department of Biomedical Engineering, Southern University of Science and Technology, China
– sequence: 3
  givenname: Yingen
  orcidid: 0009-0005-3811-7532
  surname: Zhu
  fullname: Zhu, Yingen
  organization: Department of Biomedical Engineering, Southern University of Science and Technology, China
– sequence: 4
  givenname: Xiaoyan
  orcidid: 0009-0003-2690-1376
  surname: Song
  fullname: Song, Xiaoyan
  organization: Neonatal Intensive Care Unit, Nanfang Hospital of Southern Medical University, China
– sequence: 5
  givenname: Liping
  orcidid: 0000-0001-9675-9940
  surname: Pan
  fullname: Pan, Liping
  organization: Neonatal Intensive Care Unit, Shenzhen Third People's Hospital, China
– sequence: 6
  givenname: Jie
  orcidid: 0009-0008-0873-2560
  surname: Yang
  fullname: Yang, Jie
  organization: Neonatal Intensive Care Unit, Nanfang Hospital of Southern Medical University, China
– sequence: 7
  givenname: Yanrong
  surname: Wang
  fullname: Wang, Yanrong
  organization: Neonatal Intensive Care Unit, Shenzhen Third People's Hospital, China
– sequence: 8
  givenname: Hongzhou
  orcidid: 0000-0002-8308-5534
  surname: Lu
  fullname: Lu, Hongzhou
  organization: Neonatal Intensive Care Unit, Shenzhen Third People's Hospital, China
– sequence: 9
  givenname: Wenjin
  surname: Wang
  fullname: Wang, Wenjin
  organization: Department of Biomedical Engineering, Southern University of Science and Technology, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39418142$$D View this record in MEDLINE/PubMed
BookMark eNpNkctOwzAQRS0E4v0BSAhlySbFYyepvYSKRxEIxGMdTZwxBDV2sdNF_x5XLQhvxpo5dxZzDti2844YOwE-AuD64v7qbjoSXBQjWShRVnqL7QuoVC4EV9u_f9DFHjuO8Yunp1JLV7tsT-oCFBRin9kJ9hQwv8JIbfZCcd4FHHxYZtMePzr3kb0u40B9Zn3IHr3r0mzVnTqLbsjePn1A47Fpfd85nGXPOAwUXMy8_dvWeXfEdizOIh1v6iF7v7l-m9zlD0-308nlQ25A6SFvCbRGYTRwS6Ky0kIatFVpKoPjUkhUnAujVANQYtU0jWys5U3KaBobKQ_Z-XrvPPjvBcWh7rtoaDZDR34Rawkw1loWBST0bIMump7aeh66HsOy_r1NAmANmOBjDGT_EOD1SkG9UlCvFNQbBSlzus50RPSPHycnpZQ_xvKCnw
CODEN IJBHA9
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/JBHI.2024.3482569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 14
ExternalDocumentID 39418142
10_1109_JBHI_2024_3482569
10720853
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Shenzhen Fundamental Research Program
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012983
– fundername: Shenzhen Science and Technology Program
  grantid: JSGGKQTD20221103174704003; JCYJ20220530112601003
– fundername: National Key R&D Program of China
  grantid: 2022YFC2407800
– fundername: National Natural Science Foundation of China
  grantid: 62271241; 62350068
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
RIG
6IL
ADZIZ
CHZPO
NPM
7X8
ID FETCH-LOGICAL-c189t-de199a2c910fe26f3f1c18d65c6ca7523a8002c88b115a6bbb3bff0b9a29e7c33
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 07:56:36 EDT 2025
Thu Jan 02 22:30:30 EST 2025
Tue Jul 01 03:00:12 EDT 2025
Wed Aug 27 02:15:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c189t-de199a2c910fe26f3f1c18d65c6ca7523a8002c88b115a6bbb3bff0b9a29e7c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-0873-2560
0009-0005-3811-7532
0000-0001-7832-5444
0009-0008-5215-0525
0000-0002-8308-5534
0009-0003-2690-1376
0000-0001-9675-9940
PMID 39418142
PQID 3117993441
PQPubID 23479
PageCount 14
ParticipantIDs ieee_primary_10720853
crossref_primary_10_1109_JBHI_2024_3482569
proquest_miscellaneous_3117993441
pubmed_primary_39418142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Oct-17
PublicationDateYYYYMMDD 2024-10-17
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000816896
Score 2.4407685
Snippet Existing respiratory monitoring techniques primarily focus on respiratory rate measurement, neglecting the potential of using thoracoabdominal patterns of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Biomedical monitoring
Camera-based respiratory monitoring
Cameras
Feature extraction
Hospitals
Imaging
machine learning
Monitoring
neonatal intensive care unit
Pattern recognition
Pediatrics
Radar
respiratory motion patterns
Training
Title Camera-Based Respiratory Imaging System for Monitoring Infant Thoracoabdominal Patterns of Respiration
URI https://ieeexplore.ieee.org/document/10720853
https://www.ncbi.nlm.nih.gov/pubmed/39418142
https://www.proquest.com/docview/3117993441
Volume PP
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5cD-LF56rriwiehK7bNH3kqKLsCoqIC95KnghiK7p78dc7k3ZXERY8NdAmTTOTzjczmRmAU8utTVUsI6nJWuW4iVAo4MazRW4Q0AruKTj57j4bjsXtc_rcBquHWBjnXDh85vrUDL58W5spmcpwh-dUUjLpQAc1tyZYa25QCRUkQj0ujo0Id6JovZjxQJ7fXg5HqA1y0adsLimdb_4lh0JhlcUYM8iam3W4n82yOWLy2p9OdN98_Ung-O_P2IC1FnWyi4ZNNmHJVVuwctf61bfBXykyTkWXKNMse_xxv7PRWyhjxJrM5gwhLmt-A2QPZKPKI2XY0wsykqmVtnWoEcYeQtbO6pPVfj4aMkAXxjfXT1fDqK3AEJm4kJPIulhKxQ1iCu945hMf4w2bpSYzKkcdVhHeNEWhEViqTGudaO8HGvtIl5sk2YHlqq7cHrAUsaYQygwSp4TRaUFXRC9WcKEyVfTgbEaP8r1JtFEGBWUgSyJeScQrW-L1oEvL-uvBZkV7cDIjYYnbhHwfqnL19LNMQuo7nEHcg92GtvPeiRSIcwTfXzDqAazSy0lixfkhLE8-pu4IochEHwcW_AY3I9oV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6DLa9dB_t1nRtp8GeCk5jWf7Q4xoakqwJYySQN6NPCmP2aJKX_vW9k50sDAp9ssCWkHR3vp_udHcA3yy3NlWxjKQma5XjJkKlgIJni9wgoBXcU3DydJaNFmKyTJdtsHqIhXHOhctnrkfN4Mu3tdmQqQwlPKeSkskLeImKX8gmXGtnUgk1JEJFLo6NCGVRtH7MuC-vJtejMZ4HuehRPpeUbjjvaaJQWuVplBm0zfAtzLbzbC6Z_O5t1rpnHv5L4fjshbyDwxZ3su8No7yHA1d9gFfT1rN-BH6gyDwVXaNWs-zXPwc8G_8JhYxYk9ucIchlzY-ALIJsXHmkDZvfISuZWmlbhyph7GfI21mtWO13oyELHMNieDMfjKK2BkNk4kKuI-tiKRU3iCq845lPfIwvbJaazKgcT7GKEKcpCo3QUmVa60R739fYR7rcJMlH6FR15U6ApYg2hVCmnzgljE4LeiJ-sYILlamiC5dbepR_m1QbZTii9GVJxCuJeGVLvC4c07bufdjsaBe-bklYoqCQ90NVrt6syiQkv8MZxF341NB21zuRApGO4KdPjPoFXo_m09vydjz78Rne0ERIf8X5GXTW9xt3jsBkrS8COz4C0rzdZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camera-Based+Respiratory+Imaging+System+for+Monitoring+Infant+Thoracoabdominal+Patterns+of+Respiration&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Huang%2C+Dongmin&rft.au=Zeng%2C+Yongshen&rft.au=Zhu%2C+Yingen&rft.au=Song%2C+Xiaoyan&rft.date=2024-10-17&rft.pub=IEEE&rft.issn=2168-2194&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FJBHI.2024.3482569&rft.externalDocID=10720853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon