Unsupervised rapid lowlight enhancement via deep curve and statistic loss
Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While supervised approaches to lowlight image enhancement have shown promise, they require paired image datasets, which are often expensive and diffic...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 152; p. 110841 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 |
DOI | 10.1016/j.engappai.2025.110841 |
Cover
Loading…
Abstract | Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While supervised approaches to lowlight image enhancement have shown promise, they require paired image datasets, which are often expensive and difficult to obtain, limiting their practical applicability. Previous unsupervised network approaches have attempted to address these challenges but often fall short in terms of quality or speed.
To overcome these limitations, we present an unsupervised network specifically designed for lowlight image enhancement. Our method employs diverse strategies within the loss functions to guide the model in generating images with normal lighting that appear natural to the human eye. This approach, combining rapid processing, a lightweight model, and decent-quality outputs trained with unpaired data, makes it an ideal choice for real-world applications such as consumer electronics which is helpful for various kinds of engineering.
Furthermore, to address the common issue of noise amplification in enhanced images, we incorporate a denoising model trained also with unpaired data, which can effectively remove the noises. Our quantitative comparisons demonstrate that our approach achieves superior and comprehensive scores while maintaining a low number of trainable parameters, around 10k. Additionally, our model processes a 512 × 512 color image in just 43 ms, which highlights its efficiency. Using the LOLv2-real (LOw-Light real-world version 2) dataset, it achieved a PSNR (Peak Signal-to-Noise Ratio) of 20.23 dB, which is 1.27 dB higher than the second-best method, a LPIPS (Learned Perceptual Image Patch Similarity) of 0.168, and an SSIM (Structure SIMilarity) of 0.77, demonstrating its effectiveness. |
---|---|
AbstractList | Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While supervised approaches to lowlight image enhancement have shown promise, they require paired image datasets, which are often expensive and difficult to obtain, limiting their practical applicability. Previous unsupervised network approaches have attempted to address these challenges but often fall short in terms of quality or speed.
To overcome these limitations, we present an unsupervised network specifically designed for lowlight image enhancement. Our method employs diverse strategies within the loss functions to guide the model in generating images with normal lighting that appear natural to the human eye. This approach, combining rapid processing, a lightweight model, and decent-quality outputs trained with unpaired data, makes it an ideal choice for real-world applications such as consumer electronics which is helpful for various kinds of engineering.
Furthermore, to address the common issue of noise amplification in enhanced images, we incorporate a denoising model trained also with unpaired data, which can effectively remove the noises. Our quantitative comparisons demonstrate that our approach achieves superior and comprehensive scores while maintaining a low number of trainable parameters, around 10k. Additionally, our model processes a 512 × 512 color image in just 43 ms, which highlights its efficiency. Using the LOLv2-real (LOw-Light real-world version 2) dataset, it achieved a PSNR (Peak Signal-to-Noise Ratio) of 20.23 dB, which is 1.27 dB higher than the second-best method, a LPIPS (Learned Perceptual Image Patch Similarity) of 0.168, and an SSIM (Structure SIMilarity) of 0.77, demonstrating its effectiveness. |
ArticleNumber | 110841 |
Author | Lin, Chang Hong Young, Min Si |
Author_xml | – sequence: 1 givenname: Min Si orcidid: 0009-0006-7795-6061 surname: Young fullname: Young, Min Si – sequence: 2 givenname: Chang Hong orcidid: 0000-0003-3646-3261 surname: Lin fullname: Lin, Chang Hong email: chlin@mail.ntust.edu.tw |
BookMark | eNqFkMtuwjAQRb2gUoH2Fyr_QFLbxE68a4X6QELqpqwtZzwBIzCRbVL17xtEu65mMatz78yZkUk4BSTkgbOSM64e9yWGre1760vBhCw5Z03FJ2TKtBQF17W6JbOU9oyxRVOpKVltQjr3GAef0NFoe-_o4fR18Ntdphh2NgAeMWQ6eEsdYk_hHAekNjiass0-ZQ8jkdIduensIeH9756TzevL5_K9WH-8rZbP6wJ4o3OhsXbdonVMdI0ECULWjrWykqqqJFeNdtAKaGtV21a3oC8jWiYcAwW1axZzoq65EMfWiJ3poz_a-G04MxcJZm_-JJiLBHOVMIJPVxDH6waP0STwOP7nfETIxp38fxE_LAduWw |
Cites_doi | 10.1016/S0734-189X(87)80186-X 10.1016/j.jvcir.2022.103712 10.1109/TIP.2021.3062184 10.1109/TCE.2007.4429280 10.1109/TIP.2021.3051462 10.1109/TIP.2016.2639450 10.1109/TIP.2018.2810539 10.1109/TIP.2005.864170 10.1016/j.patcog.2016.06.008 10.1109/83.951529 10.1109/TIP.2013.2261309 10.3390/e25060932 10.1364/JOSA.61.000001 10.1609/aaai.v37i3.25364 10.1016/0016-0032(80)90058-7 10.1109/TIP.2018.2794218 10.1609/aaai.v36i3.20162 10.1007/s11263-020-01407-x 10.1016/j.sigpro.2019.107284 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2025.110841 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
ExternalDocumentID | 10_1016_j_engappai_2025_110841 S0952197625008413 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 ~G- 29G AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET UHS WUQ ZMT |
ID | FETCH-LOGICAL-c189t-9e7df3bd02f85c5c257d0b54564451689dcb2cb767ab9bc9c9c92b02d0c6c7d83 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Tue Jul 01 05:05:44 EDT 2025 Sat Jun 07 17:01:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lowlight enhancement Statistic loss function Unsupervised network Denoising Zero-reference data |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c189t-9e7df3bd02f85c5c257d0b54564451689dcb2cb767ab9bc9c9c92b02d0c6c7d83 |
ORCID | 0009-0006-7795-6061 0000-0003-3646-3261 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_110841 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-07-15 |
PublicationDateYYYYMMDD | 2025-07-15 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Liu, Li, Han (bib35) 2022 Yu, Koltun (bib44) 2015 Chen, He (bib3) 2021 Li, Zhang, Liu, Feng, Wang, Lei, Zuo (bib21) 2023 Li, Guo, Loy (bib20) 2021; 44 Hai, Xuan, Yang, Hao, Zou, Lin, Han (bib12) 2023; 90 Wu, Weng, Zhang, Wang, Yang, Jiang (bib40) 2022 Wang, Fu, Liu, Zhang (bib37) 2023 Coltuc, Bolon, Chassery (bib5) 2006; 15 Wang, Zhang, Shen, Luo, Stenger, Lu (bib36) 2023; 37 Zhang, Guo, Ma, Liu, Zhang (bib48) 2021; 129 Krull, Buchholz, Jug (bib17) 2019 Yu, Zhao, Zhong (bib45) 2023; 25 Fu, Zeng, Huang, Zhang, Ding (bib7) 2016 Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, Wang (bib16) 2021; 30 Ronneberger, Fischer, Brox (bib29) 2015 Wei, Wang, Yang, Liu (bib38) 2018 Ibrahim, Kong (bib15) 2007; 53 Yang, Wang, Fang, Wang, Liu (bib42) 2020 Land, McCann (bib18) 1971; 61 Wang, Chen, Yuan, Liu, Huang, Hou, Cottrell (bib33) 2018 Wang, Zheng, Hu, Li (bib32) 2013; 22 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib13) 2017 Yang, Wang, Fang, Wang, Liu (bib43) 2021; 30 Li, Liu, Yang, Sun, Guo (bib19) 2018; 27 Zhang, Zhang, Guo (bib46) 2019 Simonyan, Zisserman (bib31) 2014 Rezatofighi, Tsoi, Gwak, Sadeghian, Reid, Savarese (bib28) 2019 Zheng, Gupta (bib50) 2022 Ma, Ma, Liu, Fan, Luo (bib23) 2022 Xu, Wang, Fu, Jia (bib41) 2022 Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (bib27) 1987; 39 Wang, Wan, Yang, Li, Chau, Kot (bib34) 2022; 36 Buchsbaum (bib1) 1980; 310 Fu, Yang, Tu, Huang, Ding, Ma (bib8) 2023 Shi, Liu, Zhang, Tian, Xia, Fu (bib30) 2024 Mertens, Kautz, Van Reeth (bib24) 2007 Gao, Su, Li, Li, Li (bib9) 2020; 167 Guo, Li, Guo, Loy, Hou, Kwong, Cong (bib11) 2020 Pizer (bib26) 1990; 337 Farid (bib6) 2001; 10 Guo, Li, Ling (bib10) 2016; 26 Huang, Li, Jia, Lu, Liu (bib14) 2021 Cai, Gu, Zhang (bib2) 2018; 27 Wen, Wu, Zhang, Yu, Swierczynski (bib39) 2023 Lore, Akintayo, Sarkar (bib22) 2017; 61 Zhang, Zhang, Liu, Shen, Zhang, Zhao (bib47) 2019 Chen, Papandreou, Schroff, Adam (bib4) 2017 Zhang, Shao, Sun, Zhu, Gao, Sang (bib49) 2021 Moran, Schmidt, Zhong, Coady (bib25) 2020 Gao (10.1016/j.engappai.2025.110841_bib9) 2020; 167 Hai (10.1016/j.engappai.2025.110841_bib12) 2023; 90 Rezatofighi (10.1016/j.engappai.2025.110841_bib28) 2019 Krull (10.1016/j.engappai.2025.110841_bib17) 2019 Zhang (10.1016/j.engappai.2025.110841_bib47) 2019 Yu (10.1016/j.engappai.2025.110841_bib45) 2023; 25 Wang (10.1016/j.engappai.2025.110841_bib36) 2023; 37 Wang (10.1016/j.engappai.2025.110841_bib32) 2013; 22 Li (10.1016/j.engappai.2025.110841_bib21) 2023 Simonyan (10.1016/j.engappai.2025.110841_bib31) 2014 Pizer (10.1016/j.engappai.2025.110841_bib26) 1990; 337 Shi (10.1016/j.engappai.2025.110841_bib30) 2024 Wang (10.1016/j.engappai.2025.110841_bib35) 2022 Fu (10.1016/j.engappai.2025.110841_bib8) 2023 Wang (10.1016/j.engappai.2025.110841_bib34) 2022; 36 Yu (10.1016/j.engappai.2025.110841_bib44) 2015 Chen (10.1016/j.engappai.2025.110841_bib4) 2017 Ibrahim (10.1016/j.engappai.2025.110841_bib15) 2007; 53 Ronneberger (10.1016/j.engappai.2025.110841_bib29) 2015 Zhang (10.1016/j.engappai.2025.110841_bib48) 2021; 129 Xu (10.1016/j.engappai.2025.110841_bib41) 2022 Land (10.1016/j.engappai.2025.110841_bib18) 1971; 61 Farid (10.1016/j.engappai.2025.110841_bib6) 2001; 10 Li (10.1016/j.engappai.2025.110841_bib19) 2018; 27 Wei (10.1016/j.engappai.2025.110841_bib38) 2018 Zheng (10.1016/j.engappai.2025.110841_bib50) 2022 Moran (10.1016/j.engappai.2025.110841_bib25) 2020 Yang (10.1016/j.engappai.2025.110841_bib43) 2021; 30 Lore (10.1016/j.engappai.2025.110841_bib22) 2017; 61 Huang (10.1016/j.engappai.2025.110841_bib14) 2021 Wang (10.1016/j.engappai.2025.110841_bib33) 2018 Cai (10.1016/j.engappai.2025.110841_bib2) 2018; 27 Coltuc (10.1016/j.engappai.2025.110841_bib5) 2006; 15 Ma (10.1016/j.engappai.2025.110841_bib23) 2022 Yang (10.1016/j.engappai.2025.110841_bib42) 2020 Mertens (10.1016/j.engappai.2025.110841_bib24) 2007 Chen (10.1016/j.engappai.2025.110841_bib3) 2021 Guo (10.1016/j.engappai.2025.110841_bib11) 2020 Li (10.1016/j.engappai.2025.110841_bib20) 2021; 44 Howard (10.1016/j.engappai.2025.110841_bib13) 2017 Guo (10.1016/j.engappai.2025.110841_bib10) 2016; 26 Fu (10.1016/j.engappai.2025.110841_bib7) 2016 Zhang (10.1016/j.engappai.2025.110841_bib49) 2021 Pizer (10.1016/j.engappai.2025.110841_bib27) 1987; 39 Wang (10.1016/j.engappai.2025.110841_bib37) 2023 Buchsbaum (10.1016/j.engappai.2025.110841_bib1) 1980; 310 Jiang (10.1016/j.engappai.2025.110841_bib16) 2021; 30 Zhang (10.1016/j.engappai.2025.110841_bib46) 2019 Wen (10.1016/j.engappai.2025.110841_bib39) 2023 Wu (10.1016/j.engappai.2025.110841_bib40) 2022 |
References_xml | – year: 2017 ident: bib13 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: ArXiv Preprint ArXiv:1704.04861 – volume: 37 start-page: 2654 year: 2023 end-page: 2662 ident: bib36 article-title: Ultra-high-definition low-light image enhancement: a benchmark and transformer-based method publication-title: AAAI Conference on Artificial Intelligence – volume: 167 year: 2020 ident: bib9 article-title: Single image dehazing via self-constructing image fusion publication-title: Signal Process. – start-page: 14781 year: 2021 end-page: 14790 ident: bib14 article-title: Neighbor2neighbor: self-supervised denoising from single noisy images publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3063 year: 2020 end-page: 3072 ident: bib42 article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1780 year: 2020 end-page: 1789 ident: bib11 article-title: Zero-reference deep curve estimation for low-light image enhancement publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 2027 year: 2022 end-page: 2036 ident: bib35 article-title: Blind2unblind: self-supervised image denoising with visible blind spots publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 17714 year: 2022 end-page: 17724 ident: bib41 article-title: SNR-aware low-light image enhancement publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2023 ident: bib39 article-title: Self-reference deep adaptive curve estimation for low-light image enhancement publication-title: ArXiv Preprint ArXiv:2308.08197 – start-page: 5901 year: 2022 end-page: 5910 ident: bib40 article-title: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 15750 year: 2021 end-page: 15758 ident: bib3 article-title: Exploring simple siamese representation learning publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2021 ident: bib49 article-title: Unsupervised low-light image enhancement via histogram equalization prior publication-title: ArXiv Preprint ArXiv:2112.01766 – volume: 53 start-page: 1752 year: 2007 end-page: 1758 ident: bib15 article-title: Brightness preserving dynamic histogram equalization for image contrast enhancement publication-title: IEEE Trans. Consum. Electron. – volume: 27 start-page: 2828 year: 2018 end-page: 2841 ident: bib19 article-title: Structure-revealing low-light image enhancement via robust retinex model publication-title: IEEE Trans. Image Process. – start-page: 2129 year: 2019 end-page: 2137 ident: bib17 article-title: Noise2void-learning denoising from single noisy images publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 90 year: 2023 ident: bib12 article-title: R2rnet: low-light image enhancement via real-low to real-normal network publication-title: J. Vis. Commun. Image Represent. – start-page: 1632 year: 2019 end-page: 1640 ident: bib46 article-title: Kindling the darkness: a practical low-light image enhancer publication-title: ACM International Conference on Multimedia – volume: 310 start-page: 1 year: 1980 end-page: 26 ident: bib1 article-title: A spatial processor model for object colour perception publication-title: J. Franklin Inst. – start-page: 3015 year: 2024 end-page: 3024 ident: bib30 article-title: ZERO-IG: zero-shot illumination-guided joint denoising and adaptive enhancement for low-light images publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 5637 year: 2022 end-page: 5646 ident: bib23 article-title: Toward fast, flexible, and robust low-light image enhancement publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 22 start-page: 3538 year: 2013 end-page: 3548 ident: bib32 article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 2049 year: 2018 end-page: 2062 ident: bib2 article-title: Learning a deep single image contrast enhancer from multi-exposure images publication-title: IEEE Trans. Image Process. – start-page: 9914 year: 2023 end-page: 9924 ident: bib21 article-title: Spatially adaptive self-supervised learning for real-world image denoising publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 26 start-page: 982 year: 2016 end-page: 993 ident: bib10 article-title: LIME: low-light image enhancement via illumination map estimation publication-title: IEEE Trans. Image Process. – year: 2018 ident: bib38 article-title: Deep retinex decomposition for low-light enhancement publication-title: ArXiv Preprint ArXiv:1808.04560 – start-page: 1623 year: 2019 end-page: 1631 ident: bib47 article-title: Zero-shot restoration of back-lit images using deep internal learning publication-title: ACM International Conference on Multimedia – volume: 39 start-page: 355 year: 1987 end-page: 368 ident: bib27 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph Image Process – start-page: 234 year: 2015 end-page: 241 ident: bib29 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer Assisted Intervention – volume: 44 start-page: 4225 year: 2021 end-page: 4238 ident: bib20 article-title: Learning to enhance low-light image via zero-reference deep curve estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2782 year: 2016 end-page: 2790 ident: bib7 article-title: A weighted variational model for simultaneous reflectance and illumination estimation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 10 start-page: 1428 year: 2001 end-page: 1433 ident: bib6 article-title: Blind inverse gamma correction publication-title: IEEE Trans. Image Process. – start-page: 22252 year: 2023 end-page: 22261 ident: bib8 article-title: Learning a simple low-light image enhancer from paired low-light instances publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 18156 year: 2023 end-page: 18165 ident: bib37 article-title: Lg-bpn: local and global blind-patch network for self-supervised real-world denoising publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 36 start-page: 2604 year: 2022 end-page: 2612 ident: bib34 article-title: Low-light image enhancement with normalizing flow publication-title: AAAI Conference on Artificial Intelligence – volume: 61 start-page: 1 year: 1971 end-page: 11 ident: bib18 article-title: Lightness and retinex theory publication-title: J. Opt. Soc. Am. – year: 2014 ident: bib31 article-title: Very deep convolutional networks for large-scale image recognition publication-title: ArXiv Preprint ArXiv:1409.1556 – year: 2017 ident: bib4 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: ArXiv Preprint ArXiv:1706.05587 – start-page: 382 year: 2007 end-page: 390 ident: bib24 article-title: Exposure fusion publication-title: Pacific Conference on Computer Graphics and Applications – volume: 337 start-page: 2 year: 1990 ident: bib26 article-title: Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group publication-title: Conference on Visualization in Biomedical Computing – start-page: 12064 year: 2020 end-page: 12072 ident: bib25 article-title: Noisier2noise: learning to denoise from unpaired noisy data publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 581 year: 2022 end-page: 590 ident: bib50 article-title: Semantic-guided zero-shot learning for low-light image/video enhancement publication-title: IEEE/CVF Winter Conference on Applications of Computer Vision – year: 2015 ident: bib44 article-title: Multi-scale context aggregation by dilated convolutions publication-title: ArXiv Preprint ArXiv:1511.07122 – start-page: 1451 year: 2018 end-page: 1460 ident: bib33 article-title: Understanding convolution for semantic segmentation publication-title: IEEE Winter Conference on Applications of Computer Vision – volume: 30 start-page: 2340 year: 2021 end-page: 2349 ident: bib16 article-title: Enlightengan: deep light enhancement without paired supervision publication-title: IEEE Trans. Image Process. – start-page: 658 year: 2019 end-page: 666 ident: bib28 article-title: Generalized intersection over union: a metric and a loss for bounding box regression publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 25 start-page: 932 year: 2023 ident: bib45 article-title: Unsupervised low-light image enhancement based on generative adversarial network publication-title: Entropy – volume: 129 start-page: 1013 year: 2021 end-page: 1037 ident: bib48 article-title: Beyond brightening low-light images publication-title: Int. J. Comput. Vis. – volume: 61 start-page: 650 year: 2017 end-page: 662 ident: bib22 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recogn. – volume: 30 start-page: 3461 year: 2021 end-page: 3473 ident: bib43 article-title: Band representation-based semi-supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 1143 year: 2006 end-page: 1152 ident: bib5 article-title: Exact histogram specification publication-title: IEEE Trans. Image Process. – volume: 39 start-page: 355 issue: 3 year: 1987 ident: 10.1016/j.engappai.2025.110841_bib27 article-title: Adaptive histogram equalization and its variations publication-title: Comput. Vis. Graph Image Process doi: 10.1016/S0734-189X(87)80186-X – volume: 90 year: 2023 ident: 10.1016/j.engappai.2025.110841_bib12 article-title: R2rnet: low-light image enhancement via real-low to real-normal network publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2022.103712 – volume: 30 start-page: 3461 year: 2021 ident: 10.1016/j.engappai.2025.110841_bib43 article-title: Band representation-based semi-supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3062184 – year: 2021 ident: 10.1016/j.engappai.2025.110841_bib49 article-title: Unsupervised low-light image enhancement via histogram equalization prior publication-title: ArXiv Preprint ArXiv:2112.01766 – year: 2014 ident: 10.1016/j.engappai.2025.110841_bib31 article-title: Very deep convolutional networks for large-scale image recognition publication-title: ArXiv Preprint ArXiv:1409.1556 – start-page: 3063 year: 2020 ident: 10.1016/j.engappai.2025.110841_bib42 article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement – volume: 53 start-page: 1752 issue: 4 year: 2007 ident: 10.1016/j.engappai.2025.110841_bib15 article-title: Brightness preserving dynamic histogram equalization for image contrast enhancement publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2007.4429280 – volume: 30 start-page: 2340 year: 2021 ident: 10.1016/j.engappai.2025.110841_bib16 article-title: Enlightengan: deep light enhancement without paired supervision publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3051462 – volume: 26 start-page: 982 issue: 2 year: 2016 ident: 10.1016/j.engappai.2025.110841_bib10 article-title: LIME: low-light image enhancement via illumination map estimation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2639450 – start-page: 2129 year: 2019 ident: 10.1016/j.engappai.2025.110841_bib17 article-title: Noise2void-learning denoising from single noisy images – volume: 44 start-page: 4225 issue: 8 year: 2021 ident: 10.1016/j.engappai.2025.110841_bib20 article-title: Learning to enhance low-light image via zero-reference deep curve estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 2828 issue: 6 year: 2018 ident: 10.1016/j.engappai.2025.110841_bib19 article-title: Structure-revealing low-light image enhancement via robust retinex model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2810539 – year: 2017 ident: 10.1016/j.engappai.2025.110841_bib13 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications publication-title: ArXiv Preprint ArXiv:1704.04861 – year: 2017 ident: 10.1016/j.engappai.2025.110841_bib4 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: ArXiv Preprint ArXiv:1706.05587 – volume: 15 start-page: 1143 issue: 5 year: 2006 ident: 10.1016/j.engappai.2025.110841_bib5 article-title: Exact histogram specification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.864170 – start-page: 1632 year: 2019 ident: 10.1016/j.engappai.2025.110841_bib46 article-title: Kindling the darkness: a practical low-light image enhancer – volume: 61 start-page: 650 year: 2017 ident: 10.1016/j.engappai.2025.110841_bib22 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.06.008 – volume: 10 start-page: 1428 issue: 10 year: 2001 ident: 10.1016/j.engappai.2025.110841_bib6 article-title: Blind inverse gamma correction publication-title: IEEE Trans. Image Process. doi: 10.1109/83.951529 – volume: 22 start-page: 3538 issue: 9 year: 2013 ident: 10.1016/j.engappai.2025.110841_bib32 article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2261309 – volume: 25 start-page: 932 issue: 6 year: 2023 ident: 10.1016/j.engappai.2025.110841_bib45 article-title: Unsupervised low-light image enhancement based on generative adversarial network publication-title: Entropy doi: 10.3390/e25060932 – volume: 61 start-page: 1 issue: 1 year: 1971 ident: 10.1016/j.engappai.2025.110841_bib18 article-title: Lightness and retinex theory publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.61.000001 – start-page: 1451 year: 2018 ident: 10.1016/j.engappai.2025.110841_bib33 article-title: Understanding convolution for semantic segmentation – start-page: 12064 year: 2020 ident: 10.1016/j.engappai.2025.110841_bib25 article-title: Noisier2noise: learning to denoise from unpaired noisy data – start-page: 15750 year: 2021 ident: 10.1016/j.engappai.2025.110841_bib3 article-title: Exploring simple siamese representation learning – start-page: 2782 year: 2016 ident: 10.1016/j.engappai.2025.110841_bib7 article-title: A weighted variational model for simultaneous reflectance and illumination estimation – volume: 37 start-page: 2654 issue: 3 year: 2023 ident: 10.1016/j.engappai.2025.110841_bib36 article-title: Ultra-high-definition low-light image enhancement: a benchmark and transformer-based method publication-title: AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v37i3.25364 – start-page: 5901 year: 2022 ident: 10.1016/j.engappai.2025.110841_bib40 article-title: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement – start-page: 1623 year: 2019 ident: 10.1016/j.engappai.2025.110841_bib47 article-title: Zero-shot restoration of back-lit images using deep internal learning – start-page: 658 year: 2019 ident: 10.1016/j.engappai.2025.110841_bib28 article-title: Generalized intersection over union: a metric and a loss for bounding box regression – start-page: 382 year: 2007 ident: 10.1016/j.engappai.2025.110841_bib24 article-title: Exposure fusion – volume: 310 start-page: 1 issue: 1 year: 1980 ident: 10.1016/j.engappai.2025.110841_bib1 article-title: A spatial processor model for object colour perception publication-title: J. Franklin Inst. doi: 10.1016/0016-0032(80)90058-7 – volume: 27 start-page: 2049 issue: 4 year: 2018 ident: 10.1016/j.engappai.2025.110841_bib2 article-title: Learning a deep single image contrast enhancer from multi-exposure images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2794218 – year: 2015 ident: 10.1016/j.engappai.2025.110841_bib44 article-title: Multi-scale context aggregation by dilated convolutions publication-title: ArXiv Preprint ArXiv:1511.07122 – start-page: 18156 year: 2023 ident: 10.1016/j.engappai.2025.110841_bib37 article-title: Lg-bpn: local and global blind-patch network for self-supervised real-world denoising – volume: 337 start-page: 2 year: 1990 ident: 10.1016/j.engappai.2025.110841_bib26 article-title: Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group – start-page: 234 year: 2015 ident: 10.1016/j.engappai.2025.110841_bib29 article-title: U-net: convolutional networks for biomedical image segmentation – volume: 36 start-page: 2604 issue: 3 year: 2022 ident: 10.1016/j.engappai.2025.110841_bib34 article-title: Low-light image enhancement with normalizing flow publication-title: AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v36i3.20162 – start-page: 17714 year: 2022 ident: 10.1016/j.engappai.2025.110841_bib41 article-title: SNR-aware low-light image enhancement – volume: 129 start-page: 1013 year: 2021 ident: 10.1016/j.engappai.2025.110841_bib48 article-title: Beyond brightening low-light images publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01407-x – start-page: 1780 year: 2020 ident: 10.1016/j.engappai.2025.110841_bib11 article-title: Zero-reference deep curve estimation for low-light image enhancement – start-page: 5637 year: 2022 ident: 10.1016/j.engappai.2025.110841_bib23 article-title: Toward fast, flexible, and robust low-light image enhancement – start-page: 2027 year: 2022 ident: 10.1016/j.engappai.2025.110841_bib35 article-title: Blind2unblind: self-supervised image denoising with visible blind spots – start-page: 9914 year: 2023 ident: 10.1016/j.engappai.2025.110841_bib21 article-title: Spatially adaptive self-supervised learning for real-world image denoising – start-page: 3015 year: 2024 ident: 10.1016/j.engappai.2025.110841_bib30 article-title: ZERO-IG: zero-shot illumination-guided joint denoising and adaptive enhancement for low-light images – year: 2018 ident: 10.1016/j.engappai.2025.110841_bib38 article-title: Deep retinex decomposition for low-light enhancement publication-title: ArXiv Preprint ArXiv:1808.04560 – year: 2023 ident: 10.1016/j.engappai.2025.110841_bib39 article-title: Self-reference deep adaptive curve estimation for low-light image enhancement publication-title: ArXiv Preprint ArXiv:2308.08197 – volume: 167 year: 2020 ident: 10.1016/j.engappai.2025.110841_bib9 article-title: Single image dehazing via self-constructing image fusion publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107284 – start-page: 581 year: 2022 ident: 10.1016/j.engappai.2025.110841_bib50 article-title: Semantic-guided zero-shot learning for low-light image/video enhancement – start-page: 14781 year: 2021 ident: 10.1016/j.engappai.2025.110841_bib14 article-title: Neighbor2neighbor: self-supervised denoising from single noisy images – start-page: 22252 year: 2023 ident: 10.1016/j.engappai.2025.110841_bib8 article-title: Learning a simple low-light image enhancer from paired low-light instances |
SSID | ssj0003846 |
Score | 2.4293082 |
Snippet | Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 110841 |
SubjectTerms | Denoising Lowlight enhancement Statistic loss function Unsupervised network Zero-reference data |
Title | Unsupervised rapid lowlight enhancement via deep curve and statistic loss |
URI | https://dx.doi.org/10.1016/j.engappai.2025.110841 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXrz4Fuuj7MHrNslms8keS7G0FntQi72FfUVTShqatt787e7mgRUED5JDyDAD4dud2ZllHgDcJUQknEuMpJ9QREwIgVhCMPKx0Ix6VLvl5LnHCR1OycMsmLVAv6mFsWmVte2vbHpprWuKU6Pp5GnqPBvnwKibUebANoUvJ9cSEtr--d3P7zQPP6qKdQwzstw7VcLzrs7eeJ7z1MSJOCgz4on3-wG1c-gMjsFh7S3CXvVDJ6Cls1NwVHuOsNbLwpCa4QwN7QyMplmxya0lKAzriuepgovlx8IG41Bn73a17c0g3KYcKq1zKDerrYY8U9BWGZUNnI1EUZyD6eD-pT9E9dwEJL2IrRHToUp8oVycRIEMpNFK5QrrKtluZDRiSgosRUhDLpiQzD5YuFi5kspQRf4F2MuWmb4E0I-MLOE81IE02BKuJebGJaCcECEVawOnASvOq_YYcZM3No8beGMLb1zB2waswTT-sdCxseF_yF79Q_YaHNgvey3rBTdgb73a6FvjT6xFp9wwHbDfG42HE_seP72OvwDU381l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMsDCG1GeHljdpI6dxCOqqFpou9BK3SK_AqmqNGrasvHbsfMQRUJiQNkud5L12Xe-s-4BwENMRMy5xEh6sY-ICSEQiwlGHhaa-R1fu8XkudHY70_J84zOGqBb18LYtMrK9pc2vbDWFcWp0HSyJHFejXNg1M0oM7VN4e3k2j1CvcAe7fbnd56HF5bVOoYbWfadMuF5W6dvPMt4YgJFTIuUeNL5_YbauXV6x-CwchfhY7miE9DQ6Sk4qlxHWClmbkj1dIaadgYG0zTfZNYU5IZ1xbNEwcXyY2GjcajTd7vd9mkQbhMOldYZlJvVVkOeKmjLjIoOzkYiz8_BtPc06fZRNTgByU7I1ojpQMWeUC6OQyqpNGqpXGF9JduOzA-ZkgJLEfgBF0xIZj8sXKxc6ctAhd4FaKbLVF8C6IVGlnAeaCpJQAjXEnPjE_icECEVawGnBivKyv4YUZ04No9qeCMLb1TC2wKsxjT6sdORMeJ_yF79Q_Ye7Pcno2E0HIxfrsGB_WPfaDv0BjTXq42-Nc7FWtwVh-cLXMbNWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+rapid+lowlight+enhancement+via+deep+curve+and+statistic+loss&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Young%2C+Min+Si&rft.au=Lin%2C+Chang+Hong&rft.date=2025-07-15&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=152&rft_id=info:doi/10.1016%2Fj.engappai.2025.110841&rft.externalDocID=S0952197625008413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |