Unsupervised rapid lowlight enhancement via deep curve and statistic loss

Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While supervised approaches to lowlight image enhancement have shown promise, they require paired image datasets, which are often expensive and diffic...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 152; p. 110841
Main Authors Young, Min Si, Lin, Chang Hong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2025
Subjects
Online AccessGet full text
ISSN0952-1976
DOI10.1016/j.engappai.2025.110841

Cover

Loading…
Abstract Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While supervised approaches to lowlight image enhancement have shown promise, they require paired image datasets, which are often expensive and difficult to obtain, limiting their practical applicability. Previous unsupervised network approaches have attempted to address these challenges but often fall short in terms of quality or speed. To overcome these limitations, we present an unsupervised network specifically designed for lowlight image enhancement. Our method employs diverse strategies within the loss functions to guide the model in generating images with normal lighting that appear natural to the human eye. This approach, combining rapid processing, a lightweight model, and decent-quality outputs trained with unpaired data, makes it an ideal choice for real-world applications such as consumer electronics which is helpful for various kinds of engineering. Furthermore, to address the common issue of noise amplification in enhanced images, we incorporate a denoising model trained also with unpaired data, which can effectively remove the noises. Our quantitative comparisons demonstrate that our approach achieves superior and comprehensive scores while maintaining a low number of trainable parameters, around 10k. Additionally, our model processes a 512 × 512 color image in just 43 ms, which highlights its efficiency. Using the LOLv2-real (LOw-Light real-world version 2) dataset, it achieved a PSNR (Peak Signal-to-Noise Ratio) of 20.23 dB, which is 1.27 dB higher than the second-best method, a LPIPS (Learned Perceptual Image Patch Similarity) of 0.168, and an SSIM (Structure SIMilarity) of 0.77, demonstrating its effectiveness.
AbstractList Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While supervised approaches to lowlight image enhancement have shown promise, they require paired image datasets, which are often expensive and difficult to obtain, limiting their practical applicability. Previous unsupervised network approaches have attempted to address these challenges but often fall short in terms of quality or speed. To overcome these limitations, we present an unsupervised network specifically designed for lowlight image enhancement. Our method employs diverse strategies within the loss functions to guide the model in generating images with normal lighting that appear natural to the human eye. This approach, combining rapid processing, a lightweight model, and decent-quality outputs trained with unpaired data, makes it an ideal choice for real-world applications such as consumer electronics which is helpful for various kinds of engineering. Furthermore, to address the common issue of noise amplification in enhanced images, we incorporate a denoising model trained also with unpaired data, which can effectively remove the noises. Our quantitative comparisons demonstrate that our approach achieves superior and comprehensive scores while maintaining a low number of trainable parameters, around 10k. Additionally, our model processes a 512 × 512 color image in just 43 ms, which highlights its efficiency. Using the LOLv2-real (LOw-Light real-world version 2) dataset, it achieved a PSNR (Peak Signal-to-Noise Ratio) of 20.23 dB, which is 1.27 dB higher than the second-best method, a LPIPS (Learned Perceptual Image Patch Similarity) of 0.168, and an SSIM (Structure SIMilarity) of 0.77, demonstrating its effectiveness.
ArticleNumber 110841
Author Lin, Chang Hong
Young, Min Si
Author_xml – sequence: 1
  givenname: Min Si
  orcidid: 0009-0006-7795-6061
  surname: Young
  fullname: Young, Min Si
– sequence: 2
  givenname: Chang Hong
  orcidid: 0000-0003-3646-3261
  surname: Lin
  fullname: Lin, Chang Hong
  email: chlin@mail.ntust.edu.tw
BookMark eNqFkMtuwjAQRb2gUoH2Fyr_QFLbxE68a4X6QELqpqwtZzwBIzCRbVL17xtEu65mMatz78yZkUk4BSTkgbOSM64e9yWGre1760vBhCw5Z03FJ2TKtBQF17W6JbOU9oyxRVOpKVltQjr3GAef0NFoe-_o4fR18Ntdphh2NgAeMWQ6eEsdYk_hHAekNjiass0-ZQ8jkdIduensIeH9756TzevL5_K9WH-8rZbP6wJ4o3OhsXbdonVMdI0ECULWjrWykqqqJFeNdtAKaGtV21a3oC8jWiYcAwW1axZzoq65EMfWiJ3poz_a-G04MxcJZm_-JJiLBHOVMIJPVxDH6waP0STwOP7nfETIxp38fxE_LAduWw
Cites_doi 10.1016/S0734-189X(87)80186-X
10.1016/j.jvcir.2022.103712
10.1109/TIP.2021.3062184
10.1109/TCE.2007.4429280
10.1109/TIP.2021.3051462
10.1109/TIP.2016.2639450
10.1109/TIP.2018.2810539
10.1109/TIP.2005.864170
10.1016/j.patcog.2016.06.008
10.1109/83.951529
10.1109/TIP.2013.2261309
10.3390/e25060932
10.1364/JOSA.61.000001
10.1609/aaai.v37i3.25364
10.1016/0016-0032(80)90058-7
10.1109/TIP.2018.2794218
10.1609/aaai.v36i3.20162
10.1007/s11263-020-01407-x
10.1016/j.sigpro.2019.107284
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.110841
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_110841
S0952197625008413
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c189t-9e7df3bd02f85c5c257d0b54564451689dcb2cb767ab9bc9c9c92b02d0c6c7d83
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Tue Jul 01 05:05:44 EDT 2025
Sat Jun 07 17:01:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lowlight enhancement
Statistic loss function
Unsupervised network
Denoising
Zero-reference data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c189t-9e7df3bd02f85c5c257d0b54564451689dcb2cb767ab9bc9c9c92b02d0c6c7d83
ORCID 0009-0006-7795-6061
0000-0003-3646-3261
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_110841
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Liu, Li, Han (bib35) 2022
Yu, Koltun (bib44) 2015
Chen, He (bib3) 2021
Li, Zhang, Liu, Feng, Wang, Lei, Zuo (bib21) 2023
Li, Guo, Loy (bib20) 2021; 44
Hai, Xuan, Yang, Hao, Zou, Lin, Han (bib12) 2023; 90
Wu, Weng, Zhang, Wang, Yang, Jiang (bib40) 2022
Wang, Fu, Liu, Zhang (bib37) 2023
Coltuc, Bolon, Chassery (bib5) 2006; 15
Wang, Zhang, Shen, Luo, Stenger, Lu (bib36) 2023; 37
Zhang, Guo, Ma, Liu, Zhang (bib48) 2021; 129
Krull, Buchholz, Jug (bib17) 2019
Yu, Zhao, Zhong (bib45) 2023; 25
Fu, Zeng, Huang, Zhang, Ding (bib7) 2016
Jiang, Gong, Liu, Cheng, Fang, Shen, Yang, Zhou, Wang (bib16) 2021; 30
Ronneberger, Fischer, Brox (bib29) 2015
Wei, Wang, Yang, Liu (bib38) 2018
Ibrahim, Kong (bib15) 2007; 53
Yang, Wang, Fang, Wang, Liu (bib42) 2020
Land, McCann (bib18) 1971; 61
Wang, Chen, Yuan, Liu, Huang, Hou, Cottrell (bib33) 2018
Wang, Zheng, Hu, Li (bib32) 2013; 22
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib13) 2017
Yang, Wang, Fang, Wang, Liu (bib43) 2021; 30
Li, Liu, Yang, Sun, Guo (bib19) 2018; 27
Zhang, Zhang, Guo (bib46) 2019
Simonyan, Zisserman (bib31) 2014
Rezatofighi, Tsoi, Gwak, Sadeghian, Reid, Savarese (bib28) 2019
Zheng, Gupta (bib50) 2022
Ma, Ma, Liu, Fan, Luo (bib23) 2022
Xu, Wang, Fu, Jia (bib41) 2022
Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (bib27) 1987; 39
Wang, Wan, Yang, Li, Chau, Kot (bib34) 2022; 36
Buchsbaum (bib1) 1980; 310
Fu, Yang, Tu, Huang, Ding, Ma (bib8) 2023
Shi, Liu, Zhang, Tian, Xia, Fu (bib30) 2024
Mertens, Kautz, Van Reeth (bib24) 2007
Gao, Su, Li, Li, Li (bib9) 2020; 167
Guo, Li, Guo, Loy, Hou, Kwong, Cong (bib11) 2020
Pizer (bib26) 1990; 337
Farid (bib6) 2001; 10
Guo, Li, Ling (bib10) 2016; 26
Huang, Li, Jia, Lu, Liu (bib14) 2021
Cai, Gu, Zhang (bib2) 2018; 27
Wen, Wu, Zhang, Yu, Swierczynski (bib39) 2023
Lore, Akintayo, Sarkar (bib22) 2017; 61
Zhang, Zhang, Liu, Shen, Zhang, Zhao (bib47) 2019
Chen, Papandreou, Schroff, Adam (bib4) 2017
Zhang, Shao, Sun, Zhu, Gao, Sang (bib49) 2021
Moran, Schmidt, Zhong, Coady (bib25) 2020
Gao (10.1016/j.engappai.2025.110841_bib9) 2020; 167
Hai (10.1016/j.engappai.2025.110841_bib12) 2023; 90
Rezatofighi (10.1016/j.engappai.2025.110841_bib28) 2019
Krull (10.1016/j.engappai.2025.110841_bib17) 2019
Zhang (10.1016/j.engappai.2025.110841_bib47) 2019
Yu (10.1016/j.engappai.2025.110841_bib45) 2023; 25
Wang (10.1016/j.engappai.2025.110841_bib36) 2023; 37
Wang (10.1016/j.engappai.2025.110841_bib32) 2013; 22
Li (10.1016/j.engappai.2025.110841_bib21) 2023
Simonyan (10.1016/j.engappai.2025.110841_bib31) 2014
Pizer (10.1016/j.engappai.2025.110841_bib26) 1990; 337
Shi (10.1016/j.engappai.2025.110841_bib30) 2024
Wang (10.1016/j.engappai.2025.110841_bib35) 2022
Fu (10.1016/j.engappai.2025.110841_bib8) 2023
Wang (10.1016/j.engappai.2025.110841_bib34) 2022; 36
Yu (10.1016/j.engappai.2025.110841_bib44) 2015
Chen (10.1016/j.engappai.2025.110841_bib4) 2017
Ibrahim (10.1016/j.engappai.2025.110841_bib15) 2007; 53
Ronneberger (10.1016/j.engappai.2025.110841_bib29) 2015
Zhang (10.1016/j.engappai.2025.110841_bib48) 2021; 129
Xu (10.1016/j.engappai.2025.110841_bib41) 2022
Land (10.1016/j.engappai.2025.110841_bib18) 1971; 61
Farid (10.1016/j.engappai.2025.110841_bib6) 2001; 10
Li (10.1016/j.engappai.2025.110841_bib19) 2018; 27
Wei (10.1016/j.engappai.2025.110841_bib38) 2018
Zheng (10.1016/j.engappai.2025.110841_bib50) 2022
Moran (10.1016/j.engappai.2025.110841_bib25) 2020
Yang (10.1016/j.engappai.2025.110841_bib43) 2021; 30
Lore (10.1016/j.engappai.2025.110841_bib22) 2017; 61
Huang (10.1016/j.engappai.2025.110841_bib14) 2021
Wang (10.1016/j.engappai.2025.110841_bib33) 2018
Cai (10.1016/j.engappai.2025.110841_bib2) 2018; 27
Coltuc (10.1016/j.engappai.2025.110841_bib5) 2006; 15
Ma (10.1016/j.engappai.2025.110841_bib23) 2022
Yang (10.1016/j.engappai.2025.110841_bib42) 2020
Mertens (10.1016/j.engappai.2025.110841_bib24) 2007
Chen (10.1016/j.engappai.2025.110841_bib3) 2021
Guo (10.1016/j.engappai.2025.110841_bib11) 2020
Li (10.1016/j.engappai.2025.110841_bib20) 2021; 44
Howard (10.1016/j.engappai.2025.110841_bib13) 2017
Guo (10.1016/j.engappai.2025.110841_bib10) 2016; 26
Fu (10.1016/j.engappai.2025.110841_bib7) 2016
Zhang (10.1016/j.engappai.2025.110841_bib49) 2021
Pizer (10.1016/j.engappai.2025.110841_bib27) 1987; 39
Wang (10.1016/j.engappai.2025.110841_bib37) 2023
Buchsbaum (10.1016/j.engappai.2025.110841_bib1) 1980; 310
Jiang (10.1016/j.engappai.2025.110841_bib16) 2021; 30
Zhang (10.1016/j.engappai.2025.110841_bib46) 2019
Wen (10.1016/j.engappai.2025.110841_bib39) 2023
Wu (10.1016/j.engappai.2025.110841_bib40) 2022
References_xml – year: 2017
  ident: bib13
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: ArXiv Preprint ArXiv:1704.04861
– volume: 37
  start-page: 2654
  year: 2023
  end-page: 2662
  ident: bib36
  article-title: Ultra-high-definition low-light image enhancement: a benchmark and transformer-based method
  publication-title: AAAI Conference on Artificial Intelligence
– volume: 167
  year: 2020
  ident: bib9
  article-title: Single image dehazing via self-constructing image fusion
  publication-title: Signal Process.
– start-page: 14781
  year: 2021
  end-page: 14790
  ident: bib14
  article-title: Neighbor2neighbor: self-supervised denoising from single noisy images
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 3063
  year: 2020
  end-page: 3072
  ident: bib42
  article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1780
  year: 2020
  end-page: 1789
  ident: bib11
  article-title: Zero-reference deep curve estimation for low-light image enhancement
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 2027
  year: 2022
  end-page: 2036
  ident: bib35
  article-title: Blind2unblind: self-supervised image denoising with visible blind spots
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 17714
  year: 2022
  end-page: 17724
  ident: bib41
  article-title: SNR-aware low-light image enhancement
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2023
  ident: bib39
  article-title: Self-reference deep adaptive curve estimation for low-light image enhancement
  publication-title: ArXiv Preprint ArXiv:2308.08197
– start-page: 5901
  year: 2022
  end-page: 5910
  ident: bib40
  article-title: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 15750
  year: 2021
  end-page: 15758
  ident: bib3
  article-title: Exploring simple siamese representation learning
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: bib49
  article-title: Unsupervised low-light image enhancement via histogram equalization prior
  publication-title: ArXiv Preprint ArXiv:2112.01766
– volume: 53
  start-page: 1752
  year: 2007
  end-page: 1758
  ident: bib15
  article-title: Brightness preserving dynamic histogram equalization for image contrast enhancement
  publication-title: IEEE Trans. Consum. Electron.
– volume: 27
  start-page: 2828
  year: 2018
  end-page: 2841
  ident: bib19
  article-title: Structure-revealing low-light image enhancement via robust retinex model
  publication-title: IEEE Trans. Image Process.
– start-page: 2129
  year: 2019
  end-page: 2137
  ident: bib17
  article-title: Noise2void-learning denoising from single noisy images
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 90
  year: 2023
  ident: bib12
  article-title: R2rnet: low-light image enhancement via real-low to real-normal network
  publication-title: J. Vis. Commun. Image Represent.
– start-page: 1632
  year: 2019
  end-page: 1640
  ident: bib46
  article-title: Kindling the darkness: a practical low-light image enhancer
  publication-title: ACM International Conference on Multimedia
– volume: 310
  start-page: 1
  year: 1980
  end-page: 26
  ident: bib1
  article-title: A spatial processor model for object colour perception
  publication-title: J. Franklin Inst.
– start-page: 3015
  year: 2024
  end-page: 3024
  ident: bib30
  article-title: ZERO-IG: zero-shot illumination-guided joint denoising and adaptive enhancement for low-light images
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 5637
  year: 2022
  end-page: 5646
  ident: bib23
  article-title: Toward fast, flexible, and robust low-light image enhancement
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 3538
  year: 2013
  end-page: 3548
  ident: bib32
  article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 2049
  year: 2018
  end-page: 2062
  ident: bib2
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
– start-page: 9914
  year: 2023
  end-page: 9924
  ident: bib21
  article-title: Spatially adaptive self-supervised learning for real-world image denoising
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 982
  year: 2016
  end-page: 993
  ident: bib10
  article-title: LIME: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
– year: 2018
  ident: bib38
  article-title: Deep retinex decomposition for low-light enhancement
  publication-title: ArXiv Preprint ArXiv:1808.04560
– start-page: 1623
  year: 2019
  end-page: 1631
  ident: bib47
  article-title: Zero-shot restoration of back-lit images using deep internal learning
  publication-title: ACM International Conference on Multimedia
– volume: 39
  start-page: 355
  year: 1987
  end-page: 368
  ident: bib27
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph Image Process
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib29
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer Assisted Intervention
– volume: 44
  start-page: 4225
  year: 2021
  end-page: 4238
  ident: bib20
  article-title: Learning to enhance low-light image via zero-reference deep curve estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2782
  year: 2016
  end-page: 2790
  ident: bib7
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 10
  start-page: 1428
  year: 2001
  end-page: 1433
  ident: bib6
  article-title: Blind inverse gamma correction
  publication-title: IEEE Trans. Image Process.
– start-page: 22252
  year: 2023
  end-page: 22261
  ident: bib8
  article-title: Learning a simple low-light image enhancer from paired low-light instances
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 18156
  year: 2023
  end-page: 18165
  ident: bib37
  article-title: Lg-bpn: local and global blind-patch network for self-supervised real-world denoising
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 2604
  year: 2022
  end-page: 2612
  ident: bib34
  article-title: Low-light image enhancement with normalizing flow
  publication-title: AAAI Conference on Artificial Intelligence
– volume: 61
  start-page: 1
  year: 1971
  end-page: 11
  ident: bib18
  article-title: Lightness and retinex theory
  publication-title: J. Opt. Soc. Am.
– year: 2014
  ident: bib31
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: ArXiv Preprint ArXiv:1409.1556
– year: 2017
  ident: bib4
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: ArXiv Preprint ArXiv:1706.05587
– start-page: 382
  year: 2007
  end-page: 390
  ident: bib24
  article-title: Exposure fusion
  publication-title: Pacific Conference on Computer Graphics and Applications
– volume: 337
  start-page: 2
  year: 1990
  ident: bib26
  article-title: Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group
  publication-title: Conference on Visualization in Biomedical Computing
– start-page: 12064
  year: 2020
  end-page: 12072
  ident: bib25
  article-title: Noisier2noise: learning to denoise from unpaired noisy data
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 581
  year: 2022
  end-page: 590
  ident: bib50
  article-title: Semantic-guided zero-shot learning for low-light image/video enhancement
  publication-title: IEEE/CVF Winter Conference on Applications of Computer Vision
– year: 2015
  ident: bib44
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: ArXiv Preprint ArXiv:1511.07122
– start-page: 1451
  year: 2018
  end-page: 1460
  ident: bib33
  article-title: Understanding convolution for semantic segmentation
  publication-title: IEEE Winter Conference on Applications of Computer Vision
– volume: 30
  start-page: 2340
  year: 2021
  end-page: 2349
  ident: bib16
  article-title: Enlightengan: deep light enhancement without paired supervision
  publication-title: IEEE Trans. Image Process.
– start-page: 658
  year: 2019
  end-page: 666
  ident: bib28
  article-title: Generalized intersection over union: a metric and a loss for bounding box regression
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 932
  year: 2023
  ident: bib45
  article-title: Unsupervised low-light image enhancement based on generative adversarial network
  publication-title: Entropy
– volume: 129
  start-page: 1013
  year: 2021
  end-page: 1037
  ident: bib48
  article-title: Beyond brightening low-light images
  publication-title: Int. J. Comput. Vis.
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  ident: bib22
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recogn.
– volume: 30
  start-page: 3461
  year: 2021
  end-page: 3473
  ident: bib43
  article-title: Band representation-based semi-supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 1143
  year: 2006
  end-page: 1152
  ident: bib5
  article-title: Exact histogram specification
  publication-title: IEEE Trans. Image Process.
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  ident: 10.1016/j.engappai.2025.110841_bib27
  article-title: Adaptive histogram equalization and its variations
  publication-title: Comput. Vis. Graph Image Process
  doi: 10.1016/S0734-189X(87)80186-X
– volume: 90
  year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib12
  article-title: R2rnet: low-light image enhancement via real-low to real-normal network
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2022.103712
– volume: 30
  start-page: 3461
  year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib43
  article-title: Band representation-based semi-supervised low-light image enhancement: bridging the gap between signal fidelity and perceptual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3062184
– year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib49
  article-title: Unsupervised low-light image enhancement via histogram equalization prior
  publication-title: ArXiv Preprint ArXiv:2112.01766
– year: 2014
  ident: 10.1016/j.engappai.2025.110841_bib31
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: ArXiv Preprint ArXiv:1409.1556
– start-page: 3063
  year: 2020
  ident: 10.1016/j.engappai.2025.110841_bib42
  article-title: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement
– volume: 53
  start-page: 1752
  issue: 4
  year: 2007
  ident: 10.1016/j.engappai.2025.110841_bib15
  article-title: Brightness preserving dynamic histogram equalization for image contrast enhancement
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.4429280
– volume: 30
  start-page: 2340
  year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib16
  article-title: Enlightengan: deep light enhancement without paired supervision
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3051462
– volume: 26
  start-page: 982
  issue: 2
  year: 2016
  ident: 10.1016/j.engappai.2025.110841_bib10
  article-title: LIME: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2639450
– start-page: 2129
  year: 2019
  ident: 10.1016/j.engappai.2025.110841_bib17
  article-title: Noise2void-learning denoising from single noisy images
– volume: 44
  start-page: 4225
  issue: 8
  year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib20
  article-title: Learning to enhance low-light image via zero-reference deep curve estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 2828
  issue: 6
  year: 2018
  ident: 10.1016/j.engappai.2025.110841_bib19
  article-title: Structure-revealing low-light image enhancement via robust retinex model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2810539
– year: 2017
  ident: 10.1016/j.engappai.2025.110841_bib13
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: ArXiv Preprint ArXiv:1704.04861
– year: 2017
  ident: 10.1016/j.engappai.2025.110841_bib4
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: ArXiv Preprint ArXiv:1706.05587
– volume: 15
  start-page: 1143
  issue: 5
  year: 2006
  ident: 10.1016/j.engappai.2025.110841_bib5
  article-title: Exact histogram specification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.864170
– start-page: 1632
  year: 2019
  ident: 10.1016/j.engappai.2025.110841_bib46
  article-title: Kindling the darkness: a practical low-light image enhancer
– volume: 61
  start-page: 650
  year: 2017
  ident: 10.1016/j.engappai.2025.110841_bib22
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 10
  start-page: 1428
  issue: 10
  year: 2001
  ident: 10.1016/j.engappai.2025.110841_bib6
  article-title: Blind inverse gamma correction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.951529
– volume: 22
  start-page: 3538
  issue: 9
  year: 2013
  ident: 10.1016/j.engappai.2025.110841_bib32
  article-title: Naturalness preserved enhancement algorithm for non-uniform illumination images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2261309
– volume: 25
  start-page: 932
  issue: 6
  year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib45
  article-title: Unsupervised low-light image enhancement based on generative adversarial network
  publication-title: Entropy
  doi: 10.3390/e25060932
– volume: 61
  start-page: 1
  issue: 1
  year: 1971
  ident: 10.1016/j.engappai.2025.110841_bib18
  article-title: Lightness and retinex theory
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.61.000001
– start-page: 1451
  year: 2018
  ident: 10.1016/j.engappai.2025.110841_bib33
  article-title: Understanding convolution for semantic segmentation
– start-page: 12064
  year: 2020
  ident: 10.1016/j.engappai.2025.110841_bib25
  article-title: Noisier2noise: learning to denoise from unpaired noisy data
– start-page: 15750
  year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib3
  article-title: Exploring simple siamese representation learning
– start-page: 2782
  year: 2016
  ident: 10.1016/j.engappai.2025.110841_bib7
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
– volume: 37
  start-page: 2654
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib36
  article-title: Ultra-high-definition low-light image enhancement: a benchmark and transformer-based method
  publication-title: AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v37i3.25364
– start-page: 5901
  year: 2022
  ident: 10.1016/j.engappai.2025.110841_bib40
  article-title: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement
– start-page: 1623
  year: 2019
  ident: 10.1016/j.engappai.2025.110841_bib47
  article-title: Zero-shot restoration of back-lit images using deep internal learning
– start-page: 658
  year: 2019
  ident: 10.1016/j.engappai.2025.110841_bib28
  article-title: Generalized intersection over union: a metric and a loss for bounding box regression
– start-page: 382
  year: 2007
  ident: 10.1016/j.engappai.2025.110841_bib24
  article-title: Exposure fusion
– volume: 310
  start-page: 1
  issue: 1
  year: 1980
  ident: 10.1016/j.engappai.2025.110841_bib1
  article-title: A spatial processor model for object colour perception
  publication-title: J. Franklin Inst.
  doi: 10.1016/0016-0032(80)90058-7
– volume: 27
  start-page: 2049
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2025.110841_bib2
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2794218
– year: 2015
  ident: 10.1016/j.engappai.2025.110841_bib44
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: ArXiv Preprint ArXiv:1511.07122
– start-page: 18156
  year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib37
  article-title: Lg-bpn: local and global blind-patch network for self-supervised real-world denoising
– volume: 337
  start-page: 2
  year: 1990
  ident: 10.1016/j.engappai.2025.110841_bib26
  article-title: Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group
– start-page: 234
  year: 2015
  ident: 10.1016/j.engappai.2025.110841_bib29
  article-title: U-net: convolutional networks for biomedical image segmentation
– volume: 36
  start-page: 2604
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2025.110841_bib34
  article-title: Low-light image enhancement with normalizing flow
  publication-title: AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v36i3.20162
– start-page: 17714
  year: 2022
  ident: 10.1016/j.engappai.2025.110841_bib41
  article-title: SNR-aware low-light image enhancement
– volume: 129
  start-page: 1013
  year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib48
  article-title: Beyond brightening low-light images
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01407-x
– start-page: 1780
  year: 2020
  ident: 10.1016/j.engappai.2025.110841_bib11
  article-title: Zero-reference deep curve estimation for low-light image enhancement
– start-page: 5637
  year: 2022
  ident: 10.1016/j.engappai.2025.110841_bib23
  article-title: Toward fast, flexible, and robust low-light image enhancement
– start-page: 2027
  year: 2022
  ident: 10.1016/j.engappai.2025.110841_bib35
  article-title: Blind2unblind: self-supervised image denoising with visible blind spots
– start-page: 9914
  year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib21
  article-title: Spatially adaptive self-supervised learning for real-world image denoising
– start-page: 3015
  year: 2024
  ident: 10.1016/j.engappai.2025.110841_bib30
  article-title: ZERO-IG: zero-shot illumination-guided joint denoising and adaptive enhancement for low-light images
– year: 2018
  ident: 10.1016/j.engappai.2025.110841_bib38
  article-title: Deep retinex decomposition for low-light enhancement
  publication-title: ArXiv Preprint ArXiv:1808.04560
– year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib39
  article-title: Self-reference deep adaptive curve estimation for low-light image enhancement
  publication-title: ArXiv Preprint ArXiv:2308.08197
– volume: 167
  year: 2020
  ident: 10.1016/j.engappai.2025.110841_bib9
  article-title: Single image dehazing via self-constructing image fusion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107284
– start-page: 581
  year: 2022
  ident: 10.1016/j.engappai.2025.110841_bib50
  article-title: Semantic-guided zero-shot learning for low-light image/video enhancement
– start-page: 14781
  year: 2021
  ident: 10.1016/j.engappai.2025.110841_bib14
  article-title: Neighbor2neighbor: self-supervised denoising from single noisy images
– start-page: 22252
  year: 2023
  ident: 10.1016/j.engappai.2025.110841_bib8
  article-title: Learning a simple low-light image enhancer from paired low-light instances
SSID ssj0003846
Score 2.4293082
Snippet Lowlight images suffer from poor illumination and noise due to the limited information captured by smaller sensor devices such as smartphone cameras. While...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110841
SubjectTerms Denoising
Lowlight enhancement
Statistic loss function
Unsupervised network
Zero-reference data
Title Unsupervised rapid lowlight enhancement via deep curve and statistic loss
URI https://dx.doi.org/10.1016/j.engappai.2025.110841
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXrz4Fuuj7MHrNslms8keS7G0FntQi72FfUVTShqatt787e7mgRUED5JDyDAD4dud2ZllHgDcJUQknEuMpJ9QREwIgVhCMPKx0Ix6VLvl5LnHCR1OycMsmLVAv6mFsWmVte2vbHpprWuKU6Pp5GnqPBvnwKibUebANoUvJ9cSEtr--d3P7zQPP6qKdQwzstw7VcLzrs7eeJ7z1MSJOCgz4on3-wG1c-gMjsFh7S3CXvVDJ6Cls1NwVHuOsNbLwpCa4QwN7QyMplmxya0lKAzriuepgovlx8IG41Bn73a17c0g3KYcKq1zKDerrYY8U9BWGZUNnI1EUZyD6eD-pT9E9dwEJL2IrRHToUp8oVycRIEMpNFK5QrrKtluZDRiSgosRUhDLpiQzD5YuFi5kspQRf4F2MuWmb4E0I-MLOE81IE02BKuJebGJaCcECEVawOnASvOq_YYcZM3No8beGMLb1zB2waswTT-sdCxseF_yF79Q_YaHNgvey3rBTdgb73a6FvjT6xFp9wwHbDfG42HE_seP72OvwDU381l
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMsDCG1GeHljdpI6dxCOqqFpou9BK3SK_AqmqNGrasvHbsfMQRUJiQNkud5L12Xe-s-4BwENMRMy5xEh6sY-ICSEQiwlGHhaa-R1fu8XkudHY70_J84zOGqBb18LYtMrK9pc2vbDWFcWp0HSyJHFejXNg1M0oM7VN4e3k2j1CvcAe7fbnd56HF5bVOoYbWfadMuF5W6dvPMt4YgJFTIuUeNL5_YbauXV6x-CwchfhY7miE9DQ6Sk4qlxHWClmbkj1dIaadgYG0zTfZNYU5IZ1xbNEwcXyY2GjcajTd7vd9mkQbhMOldYZlJvVVkOeKmjLjIoOzkYiz8_BtPc06fZRNTgByU7I1ojpQMWeUC6OQyqpNGqpXGF9JduOzA-ZkgJLEfgBF0xIZj8sXKxc6ctAhd4FaKbLVF8C6IVGlnAeaCpJQAjXEnPjE_icECEVawGnBivKyv4YUZ04No9qeCMLb1TC2wKsxjT6sdORMeJ_yF79Q_Ye7Pcno2E0HIxfrsGB_WPfaDv0BjTXq42-Nc7FWtwVh-cLXMbNWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+rapid+lowlight+enhancement+via+deep+curve+and+statistic+loss&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Young%2C+Min+Si&rft.au=Lin%2C+Chang+Hong&rft.date=2025-07-15&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=152&rft_id=info:doi/10.1016%2Fj.engappai.2025.110841&rft.externalDocID=S0952197625008413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon