Low-frequency bandgap broadening of single-phase shuriken-like acoustic metastructure through coupling design for sound insulation

[Display omitted] •A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the ultra-wide sound insulation frequency range.•The local resonance mechanism of SSAM is proposed to study bandgap broadening.•The transmission, inse...

Full description

Saved in:
Bibliographic Details
Published inApplied acoustics Vol. 236; p. 110725
Main Authors Guo, Dongxu, Zhang, Xiaolong, Tian, Ruilan, Chen, Luqi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the ultra-wide sound insulation frequency range.•The local resonance mechanism of SSAM is proposed to study bandgap broadening.•The transmission, insertion loss, and experiment have verified sound insulation performance. Sound insulation has long been a prosperous subject with practical interest because it can reduce severe noise from moving vehicles. In this study, a single-phase shuriken-like acoustic metamaterial (SSAM) is proposed to broaden the low-frequency bandgap through gradient coupling design. Based on Bloch's theorem and finite element simulation method, the dispersion relation and transmission are studied, and the influence of structural geometric parameters on bandgap is investigated. The widest bandgap can reach 197.55 Hz, and the lowest frequency can be reduced to 54.96 Hz. Several combinations of metastructures with low-frequency continuous bandgap are constructed by gradient and hybrid coupling design for the SSAM structures. The calculated transmission in the frequency range of 1 to 10000 Hz showed an excellent increase in effective and perfect attenuation width. The influence of geometric configuration and parameters on the trend of the bandgap is qualitatively analyzed by combining the local resonance mechanism and an effective mass-spring system. The insertion loss (IL) of SSAM is obtained through numerical simulation, which is verified by the experiment. The experimental results show that the SSAM exhibits a high-pitched IL value of 24.9 dB at 870 Hz. These results indicate that the proposed SSAM configuration with distributed masses and periodical arrangement can realize a good broadband sound transmission loss (TL) by decreasing the opening frequencies of bandgaps. The proposed strategy of single-phase structural coupling designs facilitates the use of large-scale low-frequency noise canceling efficiently, promoting its potential engineering application. This work provides a new and effective method for generating wide bandgaps of honeycomb structures in complex low-frequency noise environments.
AbstractList [Display omitted] •A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the ultra-wide sound insulation frequency range.•The local resonance mechanism of SSAM is proposed to study bandgap broadening.•The transmission, insertion loss, and experiment have verified sound insulation performance. Sound insulation has long been a prosperous subject with practical interest because it can reduce severe noise from moving vehicles. In this study, a single-phase shuriken-like acoustic metamaterial (SSAM) is proposed to broaden the low-frequency bandgap through gradient coupling design. Based on Bloch's theorem and finite element simulation method, the dispersion relation and transmission are studied, and the influence of structural geometric parameters on bandgap is investigated. The widest bandgap can reach 197.55 Hz, and the lowest frequency can be reduced to 54.96 Hz. Several combinations of metastructures with low-frequency continuous bandgap are constructed by gradient and hybrid coupling design for the SSAM structures. The calculated transmission in the frequency range of 1 to 10000 Hz showed an excellent increase in effective and perfect attenuation width. The influence of geometric configuration and parameters on the trend of the bandgap is qualitatively analyzed by combining the local resonance mechanism and an effective mass-spring system. The insertion loss (IL) of SSAM is obtained through numerical simulation, which is verified by the experiment. The experimental results show that the SSAM exhibits a high-pitched IL value of 24.9 dB at 870 Hz. These results indicate that the proposed SSAM configuration with distributed masses and periodical arrangement can realize a good broadband sound transmission loss (TL) by decreasing the opening frequencies of bandgaps. The proposed strategy of single-phase structural coupling designs facilitates the use of large-scale low-frequency noise canceling efficiently, promoting its potential engineering application. This work provides a new and effective method for generating wide bandgaps of honeycomb structures in complex low-frequency noise environments.
ArticleNumber 110725
Author Guo, Dongxu
Zhang, Xiaolong
Tian, Ruilan
Chen, Luqi
Author_xml – sequence: 1
  givenname: Dongxu
  surname: Guo
  fullname: Guo, Dongxu
  organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
– sequence: 2
  givenname: Xiaolong
  surname: Zhang
  fullname: Zhang, Xiaolong
  email: xiaolongzhang@stdu.edu.cn
  organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
– sequence: 3
  givenname: Ruilan
  surname: Tian
  fullname: Tian, Ruilan
  email: tianrl@stdu.edu.cn
  organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
– sequence: 4
  givenname: Luqi
  surname: Chen
  fullname: Chen, Luqi
  organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMF2mkd3oIqXVIkNSOwsPyaJS2oHOwZ1y5fjqrBmM1ejq3tndBZoZp0FhK4oySmh1fUuF6NQLoYpZ4SVOaWkZuUMzQkhRVY17O0cLULYpTXZ5Rx9b91X1nr4iGDVAUthdSdGLL0TGqyxHXYtDkkHyMZeBMChj968g82GNPHpmFF4D5MIk49qih7w1HsXux4ndxyOLRqC6SxuncfBRauxsSEOYjLOXqCzVgwBLn91iV7v7142j9n2-eFpc7vNFG3WU1YyLQBqyWRbS1BVDbKqS1JrplS7IpVa0aISVLF1A81KatBr1tStboBoWYAslqg69SrvQvDQ8tGbvfAHTgk_0uM7_kePH-nxE70UvDkFIX33acDzoEzCBdp4UBPXzvxX8QPYyIXs
Cites_doi 10.1016/j.tws.2024.111716
10.1016/j.euromechsol.2022.104835
10.1016/j.compstruct.2024.118399
10.1016/j.engstruct.2024.118003
10.1088/1367-2630/acd0ce
10.1088/1361-6463/ac47c0
10.1016/j.euromechsol.2022.104843
10.1063/1.4991026
10.1016/j.apacoust.2024.110145
10.1016/j.compstruct.2024.118642
10.1063/1.5119754
10.1016/j.dt.2023.11.005
10.1016/j.jsv.2012.08.003
10.1103/PhysRevB.76.205313
10.1016/j.ymssp.2019.106516
10.1016/j.ijmecsci.2023.108389
10.1016/j.engstruct.2022.115379
10.1016/j.compstruct.2022.116584
10.1016/j.apacoust.2023.109822
10.1016/j.apacoust.2024.109881
10.1016/j.jsv.2022.116945
10.1016/j.oceaneng.2021.108804
10.1088/1361-665X/ac7e0d
10.1126/science.289.5485.1734
10.1016/j.ijmecsci.2020.106163
10.1016/j.physb.2022.414596
10.1007/s00339-021-04612-8
10.1007/s10483-024-3156-8
10.1016/j.apacoust.2016.07.028
10.1016/j.ijmecsci.2024.109107
10.1016/j.ijmecsci.2023.108678
10.3390/app14031028
10.1016/j.euromechsol.2021.104350
10.1016/j.ijmecsci.2022.107915
10.1080/15376494.2023.2207173
10.1016/j.ast.2024.108872
10.3390/ma15010373
10.1016/j.euromechsol.2022.104865
10.1038/nmat3043
10.1016/j.ijmecsci.2022.107678
10.1016/j.ymssp.2024.111464
10.1016/j.tws.2024.112137
10.1016/j.apacoust.2019.06.003
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2025.110725
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_apacoust_2025_110725
S0003682X25001975
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c189t-52daee7b2bf7bec67eb67507d2ccf406c4136a1c298e84bded9287fd8e0db3eb3
IEDL.DBID .~1
ISSN 0003-682X
IngestDate Tue Jul 01 05:07:09 EDT 2025
Sat May 24 17:04:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Single-phase acoustic metamaterial
Local resonance
Bandgap
Coupling design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c189t-52daee7b2bf7bec67eb67507d2ccf406c4136a1c298e84bded9287fd8e0db3eb3
ParticipantIDs crossref_primary_10_1016_j_apacoust_2025_110725
elsevier_sciencedirect_doi_10_1016_j_apacoust_2025_110725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-05
PublicationDateYYYYMMDD 2025-06-05
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yong, Li, Hu, Wan, Dong, Feng (b0175) 2024; 14
Romero-García, Krynkin, Garcia-Raffi, Umnova, Sánchez-Pérez (b0220) 2013; 332
Lou, Fan, Zhang, Xu, Du (b0150) 2024; 198
Tajsham, Younesian, Goodini, Hosseinkhani (b0105) 2024; 218
Cheng, Li, Yan, Wang, Sun, Xin (b0120) 2023; 97
Thota, Wang (b0215) 2017; 122
Wang, Wang, Wu, Li, Sun, Zhang (b0100) 2024; 45
Kumar, Pal (b0205) 2019; 115
Zhang, Zhang, Zhang, Bi, Hu, Zhang (b0170) 2022; 530
Ding, Chen, Yu, Chen, Zhang, Zhu (b0090) 2024; 261
Liu, Chan, Sheng (b0195) 2005; 71
Li, Zhang, Tian, Luo (b0125) 2024; 346
Cheng, Li, Wang, Wang, Sun, Yan (b0085) 2023; 97
Hou, Zhang, Li (b0010) 2022; 55
Zhang, Li, Wang, Luo (b0030) 2023; 306
Liu, Zhang, Mao, Zhu, Yang, Chan (b0055) 2000; 289
Yan, Li, Wang, Yin, Yao (b0065) 2024; 145
Ruan, Liang, Hua, Zhang, Xia, Li (b0115) 2021; 225
Kumar, Pal (b0075) 2019; 115
Cheng, Li, Yan, Wang, Sun, Xin (b0080) 2023; 31
Yang, Cheng, Li, Yan, Wang, Xin (b0060) 2023; 651
Li, Wang, Yao (b0190) 2021; 193
Hou, Feng, An, Yuan, Fan (b0130) 2024; 216
Wu, Lai, Zhang (b0200) 2007; 76
Li, Yan (b0180) 2021; 90
Li, Wang, Yan (b0185) 2023; 97
Zhang, Lou, Fan, Du (b0035) 2023; 276
Ruan, Li (b0140) 2024; 308
Wang, Cheng, Wang, Sun, Xin (b0095) 2021; 127
Lai, Wu, Sheng, Zhang (b0005) 2011; 10
Zhao, Zheng, Guo, Shi, Feng, Tang (b0135) 2024; 34
Zhang, Huang, Lu (b0070) 2023; 253
Radosz (b0225) 2019; 155
Muhammad, Ogun (b0160) 2023; 25
Rui, Zhang, Yu, Wang, Ma (b0020) 2024; 216
Jia, Bao, Luo, Wang, Zhang, Kang (b0040) 2024; 270
Li, Sun, Han, Jiang (b0155) 2024; 202
Zhao, Huo, Wu, Li (b0145) 2025; 352
Li, Han, Zheng, Han, Li (b0045) 2024; 224
Gao, Yan, Liu, Zhang, Sun, Ding (b0110) 2022; 15
Timorian, Ouisse, Bouhaddi, De Rosa, Franco (b0165) 2020; 136
Jiang, Yin, Xie, Yin (b0025) 2022; 233
Morandi, Miniaci, Marzani, Barbaresi, Garai (b0210) 2016; 114
Hou, Li, Zhang, Ruan, Liu (b0015) 2022; 31
Mazzotti, Foehr, Bilal, Bergamini, Bosia, Daraio (b0050) 2023; 241
Liu (10.1016/j.apacoust.2025.110725_b0055) 2000; 289
Cheng (10.1016/j.apacoust.2025.110725_b0120) 2023; 97
Thota (10.1016/j.apacoust.2025.110725_b0215) 2017; 122
Yong (10.1016/j.apacoust.2025.110725_b0175) 2024; 14
Ding (10.1016/j.apacoust.2025.110725_b0090) 2024; 261
Li (10.1016/j.apacoust.2025.110725_b0180) 2021; 90
Morandi (10.1016/j.apacoust.2025.110725_b0210) 2016; 114
Li (10.1016/j.apacoust.2025.110725_b0185) 2023; 97
Zhang (10.1016/j.apacoust.2025.110725_b0035) 2023; 276
Hou (10.1016/j.apacoust.2025.110725_b0015) 2022; 31
Jiang (10.1016/j.apacoust.2025.110725_b0025) 2022; 233
Ruan (10.1016/j.apacoust.2025.110725_b0115) 2021; 225
Cheng (10.1016/j.apacoust.2025.110725_b0080) 2023; 31
Liu (10.1016/j.apacoust.2025.110725_b0195) 2005; 71
Li (10.1016/j.apacoust.2025.110725_b0190) 2021; 193
Zhang (10.1016/j.apacoust.2025.110725_b0170) 2022; 530
Kumar (10.1016/j.apacoust.2025.110725_b0205) 2019; 115
Yang (10.1016/j.apacoust.2025.110725_b0060) 2023; 651
Tajsham (10.1016/j.apacoust.2025.110725_b0105) 2024; 218
Gao (10.1016/j.apacoust.2025.110725_b0110) 2022; 15
Lai (10.1016/j.apacoust.2025.110725_b0005) 2011; 10
Hou (10.1016/j.apacoust.2025.110725_b0010) 2022; 55
Ruan (10.1016/j.apacoust.2025.110725_b0140) 2024; 308
Radosz (10.1016/j.apacoust.2025.110725_b0225) 2019; 155
Kumar (10.1016/j.apacoust.2025.110725_b0075) 2019; 115
Li (10.1016/j.apacoust.2025.110725_b0045) 2024; 224
Zhang (10.1016/j.apacoust.2025.110725_b0070) 2023; 253
Lou (10.1016/j.apacoust.2025.110725_b0150) 2024; 198
Muhammad (10.1016/j.apacoust.2025.110725_b0160) 2023; 25
Cheng (10.1016/j.apacoust.2025.110725_b0085) 2023; 97
Li (10.1016/j.apacoust.2025.110725_b0125) 2024; 346
Jia (10.1016/j.apacoust.2025.110725_b0040) 2024; 270
Zhao (10.1016/j.apacoust.2025.110725_b0145) 2025; 352
Romero-García (10.1016/j.apacoust.2025.110725_b0220) 2013; 332
Rui (10.1016/j.apacoust.2025.110725_b0020) 2024; 216
Zhang (10.1016/j.apacoust.2025.110725_b0030) 2023; 306
Wang (10.1016/j.apacoust.2025.110725_b0100) 2024; 45
Hou (10.1016/j.apacoust.2025.110725_b0130) 2024; 216
Timorian (10.1016/j.apacoust.2025.110725_b0165) 2020; 136
Yan (10.1016/j.apacoust.2025.110725_b0065) 2024; 145
Wang (10.1016/j.apacoust.2025.110725_b0095) 2021; 127
Zhao (10.1016/j.apacoust.2025.110725_b0135) 2024; 34
Wu (10.1016/j.apacoust.2025.110725_b0200) 2007; 76
Mazzotti (10.1016/j.apacoust.2025.110725_b0050) 2023; 241
Li (10.1016/j.apacoust.2025.110725_b0155) 2024; 202
References_xml – volume: 276
  year: 2023
  ident: b0035
  article-title: A nonlinear acoustic metamaterial beam with tunable flexural wave band gaps
  publication-title: Eng Struct
– volume: 97
  year: 2023
  ident: b0185
  article-title: Analytical dispersion curves and bandgap boundaries for quadrilateral lattices [J]
  publication-title: Eur J Mech A Solids
– volume: 225
  year: 2021
  ident: b0115
  article-title: Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals
  publication-title: Ocean Eng
– volume: 25
  year: 2023
  ident: b0160
  article-title: Design and fabrication of 3D-printed composite metastructure with subwavelength and ultrawide bandgaps
  publication-title: New J Phys
– volume: 253
  year: 2023
  ident: b0070
  article-title: Tunable bandgaps and acoustic characteristics of perforated Miura-ori phononic structures
  publication-title: Int J Mech Sci
– volume: 31
  start-page: 4818
  year: 2023
  end-page: 4838
  ident: b0080
  article-title: Low frequency band gap and wave propagation mechanism of resonant hammer circular structure
  publication-title: Mech Adv Mater Struct
– volume: 34
  start-page: 217
  year: 2024
  end-page: 224
  ident: b0135
  article-title: Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
  publication-title: Def Technol
– volume: 308
  year: 2024
  ident: b0140
  article-title: Band gap characteristics of bionic acoustic metamaterials based on spider web
  publication-title: Eng Struct
– volume: 145
  year: 2024
  ident: b0065
  article-title: Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation
  publication-title: Aerosp Sci Technol
– volume: 97
  year: 2023
  ident: b0120
  article-title: Low and ultra-wide frequency wave attenuation performance and tunability of a new cruciate ligament structure
  publication-title: Eur J Mech A Solids
– volume: 198
  year: 2024
  ident: b0150
  article-title: A graded acoustic metamaterial rod enabling ultra-broadband vibration attenuation and rainbow reflection
  publication-title: Thin-Walled Struct
– volume: 90
  year: 2021
  ident: b0180
  article-title: Vibration characteristics of innovative reentrant-chiral elastic metamaterials [J]
  publication-title: Eur J Mech A Solids
– volume: 114
  start-page: 294
  year: 2016
  end-page: 306
  ident: b0210
  article-title: Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties
  publication-title: Appl Acoust
– volume: 651
  year: 2023
  ident: b0060
  article-title: Study on bandgap and vibration attenuation mechanism of novel chiral lattices
  publication-title: Phys B Condens Matter
– volume: 261
  year: 2024
  ident: b0090
  article-title: Isotacticity in chiral phononic crystals for low-frequency bandgap
  publication-title: Int J Mech Sci
– volume: 306
  year: 2023
  ident: b0030
  article-title: Ultra-wide low-frequency bandgap design of acoustic metamaterial via multi-material topology optimization
  publication-title: Compos Struct
– volume: 193
  year: 2021
  ident: b0190
  article-title: Multipolar resonance and bandgap formation mechanism of star-shaped lattice structure [J]
  publication-title: Int J Mech Sci
– volume: 289
  start-page: 1734
  year: 2000
  end-page: 1736
  ident: b0055
  article-title: Locally Resonant Sonic Materials
  publication-title: Science
– volume: 97
  year: 2023
  ident: b0085
  article-title: Multi-frequency band gap and active frequency modulation of snowflake-like convex horn ligament structure
  publication-title: Eur J Mech A Solids
– volume: 216
  year: 2024
  ident: b0020
  article-title: A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption
  publication-title: Mech Syst Sig Process
– volume: 10
  start-page: 620
  year: 2011
  end-page: 624
  ident: b0005
  article-title: Hybrid elastic solids [J]
  publication-title: Nat Mater
– volume: 55
  year: 2022
  ident: b0010
  article-title: Study on bandgap and directional wave propagation of a two-dimensional lattice with a nested core
  publication-title: J Phys D Appl Phys
– volume: 127
  start-page: 495
  year: 2021
  ident: b0095
  article-title: Tunable band gaps and double-negative properties of innovative acoustic metamaterials
  publication-title: Appl Phys A
– volume: 15
  start-page: 373
  year: 2022
  ident: b0110
  article-title: Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals
  publication-title: Materials
– volume: 233
  year: 2022
  ident: b0025
  article-title: Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption
  publication-title: Int J Mech Sci
– volume: 352
  year: 2025
  ident: b0145
  article-title: Vibration suppression characteristics of a thin sandwich panel with misaligned stacking spider-web-like phononic crystal cores
  publication-title: Compos Struct
– volume: 202
  year: 2024
  ident: b0155
  article-title: Bandgap tunability and impact mitigation enhancement of hybrid graded origami-inspired metamaterials with multiple resonators
  publication-title: Thin-Walled Struct
– volume: 136
  year: 2020
  ident: b0165
  article-title: Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials
  publication-title: Mech Syst Sig Process
– volume: 115
  year: 2019
  ident: b0205
  article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations
  publication-title: Appl Phys Lett
– volume: 122
  year: 2017
  ident: b0215
  article-title: Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation
  publication-title: J Appl Phys
– volume: 45
  start-page: 1261
  year: 2024
  end-page: 1278
  ident: b0100
  article-title: Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial
  publication-title: Appl Math Mech
– volume: 14
  start-page: 1028
  year: 2024
  ident: b0175
  article-title: Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial
  publication-title: Appl Sci
– volume: 332
  start-page: 184
  year: 2013
  end-page: 198
  ident: b0220
  article-title: Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial
  publication-title: J Sound Vib
– volume: 218
  year: 2024
  ident: b0105
  article-title: A new polyhedral sonic crystal for broadband sound barriers: Optimization and experimental study
  publication-title: Appl Acoust
– volume: 71
  year: 2005
  ident: b0195
  article-title: Analytic model of phononic crystals with local resonances
  publication-title: Phys Rev B
– volume: 216
  year: 2024
  ident: b0130
  article-title: Hybrid rod-plate lattice metamaterial with broadband vibration attenuation
  publication-title: Appl Acoust
– volume: 270
  year: 2024
  ident: b0040
  article-title: Maximizing acoustic band gap in phononic crystals via topology optimization
  publication-title: Int J Mech Sci
– volume: 224
  year: 2024
  ident: b0045
  article-title: Hierarchical design and vibration suppression of the hexachiral hybrid acoustic metamaterial
  publication-title: Appl Acoust
– volume: 31
  year: 2022
  ident: b0015
  article-title: Bandgap enhancement of two-dimensional lattice metamaterial via re-entrant hierarchy
  publication-title: Smart Mater Struct
– volume: 241
  year: 2023
  ident: b0050
  article-title: Bio-inspired non self-similar hierarchical elastic metamaterials
  publication-title: Int J Mech Sci
– volume: 155
  start-page: 492
  year: 2019
  end-page: 499
  ident: b0225
  article-title: Acoustic performance of noise barrier based on sonic crystals with resonant elements
  publication-title: Appl Acoust
– volume: 346
  year: 2024
  ident: b0125
  article-title: Topological design of soft substrate acoustic metamaterial for mechanical tuning of sound propagation
  publication-title: Compos Struct
– volume: 530
  year: 2022
  ident: b0170
  article-title: Rainbow zigzag metamaterial beams as broadband vibration isolators for beam-like structures
  publication-title: J Sound Vib
– volume: 115
  year: 2019
  ident: b0075
  article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations
  publication-title: Appl Phys Lett
– volume: 76
  year: 2007
  ident: b0200
  article-title: Effective medium theory for elastic metamaterials in two dimensions
  publication-title: Phys Rev B
– volume: 198
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0150
  article-title: A graded acoustic metamaterial rod enabling ultra-broadband vibration attenuation and rainbow reflection
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2024.111716
– volume: 97
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0185
  article-title: Analytical dispersion curves and bandgap boundaries for quadrilateral lattices [J]
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2022.104835
– volume: 346
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0125
  article-title: Topological design of soft substrate acoustic metamaterial for mechanical tuning of sound propagation
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2024.118399
– volume: 308
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0140
  article-title: Band gap characteristics of bionic acoustic metamaterials based on spider web
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.118003
– volume: 25
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0160
  article-title: Design and fabrication of 3D-printed composite metastructure with subwavelength and ultrawide bandgaps
  publication-title: New J Phys
  doi: 10.1088/1367-2630/acd0ce
– volume: 55
  year: 2022
  ident: 10.1016/j.apacoust.2025.110725_b0010
  article-title: Study on bandgap and directional wave propagation of a two-dimensional lattice with a nested core
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/ac47c0
– volume: 97
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0085
  article-title: Multi-frequency band gap and active frequency modulation of snowflake-like convex horn ligament structure
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2022.104843
– volume: 122
  year: 2017
  ident: 10.1016/j.apacoust.2025.110725_b0215
  article-title: Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation
  publication-title: J Appl Phys
  doi: 10.1063/1.4991026
– volume: 224
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0045
  article-title: Hierarchical design and vibration suppression of the hexachiral hybrid acoustic metamaterial
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2024.110145
– volume: 352
  year: 2025
  ident: 10.1016/j.apacoust.2025.110725_b0145
  article-title: Vibration suppression characteristics of a thin sandwich panel with misaligned stacking spider-web-like phononic crystal cores
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2024.118642
– volume: 115
  year: 2019
  ident: 10.1016/j.apacoust.2025.110725_b0205
  article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5119754
– volume: 34
  start-page: 217
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0135
  article-title: Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
  publication-title: Def Technol
  doi: 10.1016/j.dt.2023.11.005
– volume: 332
  start-page: 184
  year: 2013
  ident: 10.1016/j.apacoust.2025.110725_b0220
  article-title: Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2012.08.003
– volume: 76
  year: 2007
  ident: 10.1016/j.apacoust.2025.110725_b0200
  article-title: Effective medium theory for elastic metamaterials in two dimensions
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.76.205313
– volume: 136
  year: 2020
  ident: 10.1016/j.apacoust.2025.110725_b0165
  article-title: Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2019.106516
– volume: 253
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0070
  article-title: Tunable bandgaps and acoustic characteristics of perforated Miura-ori phononic structures
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2023.108389
– volume: 276
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0035
  article-title: A nonlinear acoustic metamaterial beam with tunable flexural wave band gaps
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115379
– volume: 306
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0030
  article-title: Ultra-wide low-frequency bandgap design of acoustic metamaterial via multi-material topology optimization
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2022.116584
– volume: 216
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0130
  article-title: Hybrid rod-plate lattice metamaterial with broadband vibration attenuation
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2023.109822
– volume: 115
  year: 2019
  ident: 10.1016/j.apacoust.2025.110725_b0075
  article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5119754
– volume: 218
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0105
  article-title: A new polyhedral sonic crystal for broadband sound barriers: Optimization and experimental study
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2024.109881
– volume: 530
  year: 2022
  ident: 10.1016/j.apacoust.2025.110725_b0170
  article-title: Rainbow zigzag metamaterial beams as broadband vibration isolators for beam-like structures
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2022.116945
– volume: 225
  year: 2021
  ident: 10.1016/j.apacoust.2025.110725_b0115
  article-title: Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.108804
– volume: 31
  year: 2022
  ident: 10.1016/j.apacoust.2025.110725_b0015
  article-title: Bandgap enhancement of two-dimensional lattice metamaterial via re-entrant hierarchy
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ac7e0d
– volume: 289
  start-page: 1734
  year: 2000
  ident: 10.1016/j.apacoust.2025.110725_b0055
  article-title: Locally Resonant Sonic Materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 193
  year: 2021
  ident: 10.1016/j.apacoust.2025.110725_b0190
  article-title: Multipolar resonance and bandgap formation mechanism of star-shaped lattice structure [J]
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2020.106163
– volume: 651
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0060
  article-title: Study on bandgap and vibration attenuation mechanism of novel chiral lattices
  publication-title: Phys B Condens Matter
  doi: 10.1016/j.physb.2022.414596
– volume: 127
  start-page: 495
  year: 2021
  ident: 10.1016/j.apacoust.2025.110725_b0095
  article-title: Tunable band gaps and double-negative properties of innovative acoustic metamaterials
  publication-title: Appl Phys A
  doi: 10.1007/s00339-021-04612-8
– volume: 45
  start-page: 1261
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0100
  article-title: Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial
  publication-title: Appl Math Mech
  doi: 10.1007/s10483-024-3156-8
– volume: 71
  year: 2005
  ident: 10.1016/j.apacoust.2025.110725_b0195
  article-title: Analytic model of phononic crystals with local resonances
  publication-title: Phys Rev B
– volume: 114
  start-page: 294
  year: 2016
  ident: 10.1016/j.apacoust.2025.110725_b0210
  article-title: Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2016.07.028
– volume: 270
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0040
  article-title: Maximizing acoustic band gap in phononic crystals via topology optimization
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2024.109107
– volume: 261
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0090
  article-title: Isotacticity in chiral phononic crystals for low-frequency bandgap
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2023.108678
– volume: 14
  start-page: 1028
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0175
  article-title: Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial
  publication-title: Appl Sci
  doi: 10.3390/app14031028
– volume: 90
  year: 2021
  ident: 10.1016/j.apacoust.2025.110725_b0180
  article-title: Vibration characteristics of innovative reentrant-chiral elastic metamaterials [J]
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2021.104350
– volume: 241
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0050
  article-title: Bio-inspired non self-similar hierarchical elastic metamaterials
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107915
– volume: 31
  start-page: 4818
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0080
  article-title: Low frequency band gap and wave propagation mechanism of resonant hammer circular structure
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2023.2207173
– volume: 145
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0065
  article-title: Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2024.108872
– volume: 15
  start-page: 373
  year: 2022
  ident: 10.1016/j.apacoust.2025.110725_b0110
  article-title: Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals
  publication-title: Materials
  doi: 10.3390/ma15010373
– volume: 97
  year: 2023
  ident: 10.1016/j.apacoust.2025.110725_b0120
  article-title: Low and ultra-wide frequency wave attenuation performance and tunability of a new cruciate ligament structure
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2022.104865
– volume: 10
  start-page: 620
  issue: 8
  year: 2011
  ident: 10.1016/j.apacoust.2025.110725_b0005
  article-title: Hybrid elastic solids [J]
  publication-title: Nat Mater
  doi: 10.1038/nmat3043
– volume: 233
  year: 2022
  ident: 10.1016/j.apacoust.2025.110725_b0025
  article-title: Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2022.107678
– volume: 216
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0020
  article-title: A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption
  publication-title: Mech Syst Sig Process
  doi: 10.1016/j.ymssp.2024.111464
– volume: 202
  year: 2024
  ident: 10.1016/j.apacoust.2025.110725_b0155
  article-title: Bandgap tunability and impact mitigation enhancement of hybrid graded origami-inspired metamaterials with multiple resonators
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2024.112137
– volume: 155
  start-page: 492
  year: 2019
  ident: 10.1016/j.apacoust.2025.110725_b0225
  article-title: Acoustic performance of noise barrier based on sonic crystals with resonant elements
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.06.003
SSID ssj0000255
Score 2.40436
Snippet [Display omitted] •A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110725
SubjectTerms Bandgap
Coupling design
Local resonance
Single-phase acoustic metamaterial
Title Low-frequency bandgap broadening of single-phase shuriken-like acoustic metastructure through coupling design for sound insulation
URI https://dx.doi.org/10.1016/j.apacoust.2025.110725
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRdCDaFWsj7IHr2ltunkdS7HUV08Wegv7bFNrEtIW8eLBX-5MHlhB8OAlkM0uLDPLzDfh-3YIuRZcA4rlwupxqE2YK4zFA-1YTJvAsblnG4Zq5KexO5qw-6kzrZFBpYVBWmUZ-4uYnkfrcqRTWrOTRhFqfCH6-vYUkjjgFA-F5ox5eMrbH980D8TMVdc8nL2lEl60IR_JBKUNNkxDRryHLbN_S1BbSWd4SA5KtEj7xYaOSE3HDbK_dYdgg-zmHE65Oiafj8mbZbKCG_1OBY_VjKdUZAmH4AKTaWIo_hpYaiudQ_aiq_kmi150bC3hSYtNRpK-6jUv7pXdZJqWnXwofEX17oyqnPRBAe3SFTZlojmfPffwCZkMb58HI6tssWDJrh-soQxVXGtP2MJ44E0XO6QAhvCULaWBXC8hx7m8K-3A1z4TSqsASiyjfH2jRA8K8VNSj5NYnxEKYy6D-kQY5TCpnABcHnBESF1pesppkk5l1zAtbtIIK4rZIqw8EaInwsITTRJU5g9_nIkQwv0fa8__sfaC7OFbTghzLkkdDK6vAHqsRSs_Wy2y0797GI2_APL33xA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwNBDA61RdSDaFWszzl4XWu3O_s4lmJp7ePUQm_LPPuw7pY-EK_-cjP7wAqCBy97mJnAkAzJl-VLAvDAmUIUy7hVZ5ibOC7XFgsUtRylA2ozz9aOqUbuD9z2yHkZ03EBmnktjKFVZr4_9emJt85Wqpk2q8vZzNT4ovf17TEGccQpHt2DkulORYtQanS67cG3Q7YpzQfnGYGdQuH5I4YkEZvqBhuPGVK8Z6Zm_xajduJO6wSOM8BIGumdTqGgojIc7bQRLMN-QuMU6zP47MXvll6l9OgPwlkkJ2xJ-Cpm6F_wMIk1MX8HFspaTjGAkfV0u5q9qsha4Jekl5wJ8qY2LG0tu10pkg3zIbhrCngnRCa8D4KAl6zNXCaSUNoTI5_DqPU8bLatbMqCJWp-sMFMVDKlPG5z7aFBXTMkBWGEJ20hNIZ7gWHOZTVhB77yHS6VDDDL0tJXT5LXMRe_gGIUR-oSCK65DqYoXEvqCEkDtHrADEiqCV2XtALVXK_hMm2mEeYss3mYWyI0lghTS1QgyNUf_ngWIXr8P2Sv_iF7DwftYb8X9jqD7jUcmp2EH0ZvoIjKV7eIRDb8LntpX5Rw4cE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-frequency+bandgap+broadening+of+single-phase+shuriken-like+acoustic+metastructure+through+coupling+design+for+sound+insulation&rft.jtitle=Applied+acoustics&rft.au=Guo%2C+Dongxu&rft.au=Zhang%2C+Xiaolong&rft.au=Tian%2C+Ruilan&rft.au=Chen%2C+Luqi&rft.date=2025-06-05&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.volume=236&rft_id=info:doi/10.1016%2Fj.apacoust.2025.110725&rft.externalDocID=S0003682X25001975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon