Low-frequency bandgap broadening of single-phase shuriken-like acoustic metastructure through coupling design for sound insulation
[Display omitted] •A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the ultra-wide sound insulation frequency range.•The local resonance mechanism of SSAM is proposed to study bandgap broadening.•The transmission, inse...
Saved in:
Published in | Applied acoustics Vol. 236; p. 110725 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the ultra-wide sound insulation frequency range.•The local resonance mechanism of SSAM is proposed to study bandgap broadening.•The transmission, insertion loss, and experiment have verified sound insulation performance.
Sound insulation has long been a prosperous subject with practical interest because it can reduce severe noise from moving vehicles. In this study, a single-phase shuriken-like acoustic metamaterial (SSAM) is proposed to broaden the low-frequency bandgap through gradient coupling design. Based on Bloch's theorem and finite element simulation method, the dispersion relation and transmission are studied, and the influence of structural geometric parameters on bandgap is investigated. The widest bandgap can reach 197.55 Hz, and the lowest frequency can be reduced to 54.96 Hz. Several combinations of metastructures with low-frequency continuous bandgap are constructed by gradient and hybrid coupling design for the SSAM structures. The calculated transmission in the frequency range of 1 to 10000 Hz showed an excellent increase in effective and perfect attenuation width. The influence of geometric configuration and parameters on the trend of the bandgap is qualitatively analyzed by combining the local resonance mechanism and an effective mass-spring system. The insertion loss (IL) of SSAM is obtained through numerical simulation, which is verified by the experiment. The experimental results show that the SSAM exhibits a high-pitched IL value of 24.9 dB at 870 Hz. These results indicate that the proposed SSAM configuration with distributed masses and periodical arrangement can realize a good broadband sound transmission loss (TL) by decreasing the opening frequencies of bandgaps. The proposed strategy of single-phase structural coupling designs facilitates the use of large-scale low-frequency noise canceling efficiently, promoting its potential engineering application. This work provides a new and effective method for generating wide bandgaps of honeycomb structures in complex low-frequency noise environments. |
---|---|
AbstractList | [Display omitted]
•A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the ultra-wide sound insulation frequency range.•The local resonance mechanism of SSAM is proposed to study bandgap broadening.•The transmission, insertion loss, and experiment have verified sound insulation performance.
Sound insulation has long been a prosperous subject with practical interest because it can reduce severe noise from moving vehicles. In this study, a single-phase shuriken-like acoustic metamaterial (SSAM) is proposed to broaden the low-frequency bandgap through gradient coupling design. Based on Bloch's theorem and finite element simulation method, the dispersion relation and transmission are studied, and the influence of structural geometric parameters on bandgap is investigated. The widest bandgap can reach 197.55 Hz, and the lowest frequency can be reduced to 54.96 Hz. Several combinations of metastructures with low-frequency continuous bandgap are constructed by gradient and hybrid coupling design for the SSAM structures. The calculated transmission in the frequency range of 1 to 10000 Hz showed an excellent increase in effective and perfect attenuation width. The influence of geometric configuration and parameters on the trend of the bandgap is qualitatively analyzed by combining the local resonance mechanism and an effective mass-spring system. The insertion loss (IL) of SSAM is obtained through numerical simulation, which is verified by the experiment. The experimental results show that the SSAM exhibits a high-pitched IL value of 24.9 dB at 870 Hz. These results indicate that the proposed SSAM configuration with distributed masses and periodical arrangement can realize a good broadband sound transmission loss (TL) by decreasing the opening frequencies of bandgaps. The proposed strategy of single-phase structural coupling designs facilitates the use of large-scale low-frequency noise canceling efficiently, promoting its potential engineering application. This work provides a new and effective method for generating wide bandgaps of honeycomb structures in complex low-frequency noise environments. |
ArticleNumber | 110725 |
Author | Guo, Dongxu Zhang, Xiaolong Tian, Ruilan Chen, Luqi |
Author_xml | – sequence: 1 givenname: Dongxu surname: Guo fullname: Guo, Dongxu organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China – sequence: 2 givenname: Xiaolong surname: Zhang fullname: Zhang, Xiaolong email: xiaolongzhang@stdu.edu.cn organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China – sequence: 3 givenname: Ruilan surname: Tian fullname: Tian, Ruilan email: tianrl@stdu.edu.cn organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China – sequence: 4 givenname: Luqi surname: Chen fullname: Chen, Luqi organization: Department of Engineering Mechanics, Hebei Research Center of the Basic Discipline Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China |
BookMark | eNqFkMtOwzAQRb0oEm3hF5B_IMF2mkd3oIqXVIkNSOwsPyaJS2oHOwZ1y5fjqrBmM1ejq3tndBZoZp0FhK4oySmh1fUuF6NQLoYpZ4SVOaWkZuUMzQkhRVY17O0cLULYpTXZ5Rx9b91X1nr4iGDVAUthdSdGLL0TGqyxHXYtDkkHyMZeBMChj968g82GNPHpmFF4D5MIk49qih7w1HsXux4ndxyOLRqC6SxuncfBRauxsSEOYjLOXqCzVgwBLn91iV7v7142j9n2-eFpc7vNFG3WU1YyLQBqyWRbS1BVDbKqS1JrplS7IpVa0aISVLF1A81KatBr1tStboBoWYAslqg69SrvQvDQ8tGbvfAHTgk_0uM7_kePH-nxE70UvDkFIX33acDzoEzCBdp4UBPXzvxX8QPYyIXs |
Cites_doi | 10.1016/j.tws.2024.111716 10.1016/j.euromechsol.2022.104835 10.1016/j.compstruct.2024.118399 10.1016/j.engstruct.2024.118003 10.1088/1367-2630/acd0ce 10.1088/1361-6463/ac47c0 10.1016/j.euromechsol.2022.104843 10.1063/1.4991026 10.1016/j.apacoust.2024.110145 10.1016/j.compstruct.2024.118642 10.1063/1.5119754 10.1016/j.dt.2023.11.005 10.1016/j.jsv.2012.08.003 10.1103/PhysRevB.76.205313 10.1016/j.ymssp.2019.106516 10.1016/j.ijmecsci.2023.108389 10.1016/j.engstruct.2022.115379 10.1016/j.compstruct.2022.116584 10.1016/j.apacoust.2023.109822 10.1016/j.apacoust.2024.109881 10.1016/j.jsv.2022.116945 10.1016/j.oceaneng.2021.108804 10.1088/1361-665X/ac7e0d 10.1126/science.289.5485.1734 10.1016/j.ijmecsci.2020.106163 10.1016/j.physb.2022.414596 10.1007/s00339-021-04612-8 10.1007/s10483-024-3156-8 10.1016/j.apacoust.2016.07.028 10.1016/j.ijmecsci.2024.109107 10.1016/j.ijmecsci.2023.108678 10.3390/app14031028 10.1016/j.euromechsol.2021.104350 10.1016/j.ijmecsci.2022.107915 10.1080/15376494.2023.2207173 10.1016/j.ast.2024.108872 10.3390/ma15010373 10.1016/j.euromechsol.2022.104865 10.1038/nmat3043 10.1016/j.ijmecsci.2022.107678 10.1016/j.ymssp.2024.111464 10.1016/j.tws.2024.112137 10.1016/j.apacoust.2019.06.003 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apacoust.2025.110725 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_apacoust_2025_110725 S0003682X25001975 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIIUN AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSH SSQ SST SSZ T5K XPP ZMT ~02 ~G- AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AI. AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c189t-52daee7b2bf7bec67eb67507d2ccf406c4136a1c298e84bded9287fd8e0db3eb3 |
IEDL.DBID | .~1 |
ISSN | 0003-682X |
IngestDate | Tue Jul 01 05:07:09 EDT 2025 Sat May 24 17:04:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Single-phase acoustic metamaterial Local resonance Bandgap Coupling design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c189t-52daee7b2bf7bec67eb67507d2ccf406c4136a1c298e84bded9287fd8e0db3eb3 |
ParticipantIDs | crossref_primary_10_1016_j_apacoust_2025_110725 elsevier_sciencedirect_doi_10_1016_j_apacoust_2025_110725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-05 |
PublicationDateYYYYMMDD | 2025-06-05 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Applied acoustics |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yong, Li, Hu, Wan, Dong, Feng (b0175) 2024; 14 Romero-García, Krynkin, Garcia-Raffi, Umnova, Sánchez-Pérez (b0220) 2013; 332 Lou, Fan, Zhang, Xu, Du (b0150) 2024; 198 Tajsham, Younesian, Goodini, Hosseinkhani (b0105) 2024; 218 Cheng, Li, Yan, Wang, Sun, Xin (b0120) 2023; 97 Thota, Wang (b0215) 2017; 122 Wang, Wang, Wu, Li, Sun, Zhang (b0100) 2024; 45 Kumar, Pal (b0205) 2019; 115 Zhang, Zhang, Zhang, Bi, Hu, Zhang (b0170) 2022; 530 Ding, Chen, Yu, Chen, Zhang, Zhu (b0090) 2024; 261 Liu, Chan, Sheng (b0195) 2005; 71 Li, Zhang, Tian, Luo (b0125) 2024; 346 Cheng, Li, Wang, Wang, Sun, Yan (b0085) 2023; 97 Hou, Zhang, Li (b0010) 2022; 55 Zhang, Li, Wang, Luo (b0030) 2023; 306 Liu, Zhang, Mao, Zhu, Yang, Chan (b0055) 2000; 289 Yan, Li, Wang, Yin, Yao (b0065) 2024; 145 Ruan, Liang, Hua, Zhang, Xia, Li (b0115) 2021; 225 Kumar, Pal (b0075) 2019; 115 Cheng, Li, Yan, Wang, Sun, Xin (b0080) 2023; 31 Yang, Cheng, Li, Yan, Wang, Xin (b0060) 2023; 651 Li, Wang, Yao (b0190) 2021; 193 Hou, Feng, An, Yuan, Fan (b0130) 2024; 216 Wu, Lai, Zhang (b0200) 2007; 76 Li, Yan (b0180) 2021; 90 Li, Wang, Yan (b0185) 2023; 97 Zhang, Lou, Fan, Du (b0035) 2023; 276 Ruan, Li (b0140) 2024; 308 Wang, Cheng, Wang, Sun, Xin (b0095) 2021; 127 Lai, Wu, Sheng, Zhang (b0005) 2011; 10 Zhao, Zheng, Guo, Shi, Feng, Tang (b0135) 2024; 34 Zhang, Huang, Lu (b0070) 2023; 253 Radosz (b0225) 2019; 155 Muhammad, Ogun (b0160) 2023; 25 Rui, Zhang, Yu, Wang, Ma (b0020) 2024; 216 Jia, Bao, Luo, Wang, Zhang, Kang (b0040) 2024; 270 Li, Sun, Han, Jiang (b0155) 2024; 202 Zhao, Huo, Wu, Li (b0145) 2025; 352 Li, Han, Zheng, Han, Li (b0045) 2024; 224 Gao, Yan, Liu, Zhang, Sun, Ding (b0110) 2022; 15 Timorian, Ouisse, Bouhaddi, De Rosa, Franco (b0165) 2020; 136 Jiang, Yin, Xie, Yin (b0025) 2022; 233 Morandi, Miniaci, Marzani, Barbaresi, Garai (b0210) 2016; 114 Hou, Li, Zhang, Ruan, Liu (b0015) 2022; 31 Mazzotti, Foehr, Bilal, Bergamini, Bosia, Daraio (b0050) 2023; 241 Liu (10.1016/j.apacoust.2025.110725_b0055) 2000; 289 Cheng (10.1016/j.apacoust.2025.110725_b0120) 2023; 97 Thota (10.1016/j.apacoust.2025.110725_b0215) 2017; 122 Yong (10.1016/j.apacoust.2025.110725_b0175) 2024; 14 Ding (10.1016/j.apacoust.2025.110725_b0090) 2024; 261 Li (10.1016/j.apacoust.2025.110725_b0180) 2021; 90 Morandi (10.1016/j.apacoust.2025.110725_b0210) 2016; 114 Li (10.1016/j.apacoust.2025.110725_b0185) 2023; 97 Zhang (10.1016/j.apacoust.2025.110725_b0035) 2023; 276 Hou (10.1016/j.apacoust.2025.110725_b0015) 2022; 31 Jiang (10.1016/j.apacoust.2025.110725_b0025) 2022; 233 Ruan (10.1016/j.apacoust.2025.110725_b0115) 2021; 225 Cheng (10.1016/j.apacoust.2025.110725_b0080) 2023; 31 Liu (10.1016/j.apacoust.2025.110725_b0195) 2005; 71 Li (10.1016/j.apacoust.2025.110725_b0190) 2021; 193 Zhang (10.1016/j.apacoust.2025.110725_b0170) 2022; 530 Kumar (10.1016/j.apacoust.2025.110725_b0205) 2019; 115 Yang (10.1016/j.apacoust.2025.110725_b0060) 2023; 651 Tajsham (10.1016/j.apacoust.2025.110725_b0105) 2024; 218 Gao (10.1016/j.apacoust.2025.110725_b0110) 2022; 15 Lai (10.1016/j.apacoust.2025.110725_b0005) 2011; 10 Hou (10.1016/j.apacoust.2025.110725_b0010) 2022; 55 Ruan (10.1016/j.apacoust.2025.110725_b0140) 2024; 308 Radosz (10.1016/j.apacoust.2025.110725_b0225) 2019; 155 Kumar (10.1016/j.apacoust.2025.110725_b0075) 2019; 115 Li (10.1016/j.apacoust.2025.110725_b0045) 2024; 224 Zhang (10.1016/j.apacoust.2025.110725_b0070) 2023; 253 Lou (10.1016/j.apacoust.2025.110725_b0150) 2024; 198 Muhammad (10.1016/j.apacoust.2025.110725_b0160) 2023; 25 Cheng (10.1016/j.apacoust.2025.110725_b0085) 2023; 97 Li (10.1016/j.apacoust.2025.110725_b0125) 2024; 346 Jia (10.1016/j.apacoust.2025.110725_b0040) 2024; 270 Zhao (10.1016/j.apacoust.2025.110725_b0145) 2025; 352 Romero-García (10.1016/j.apacoust.2025.110725_b0220) 2013; 332 Rui (10.1016/j.apacoust.2025.110725_b0020) 2024; 216 Zhang (10.1016/j.apacoust.2025.110725_b0030) 2023; 306 Wang (10.1016/j.apacoust.2025.110725_b0100) 2024; 45 Hou (10.1016/j.apacoust.2025.110725_b0130) 2024; 216 Timorian (10.1016/j.apacoust.2025.110725_b0165) 2020; 136 Yan (10.1016/j.apacoust.2025.110725_b0065) 2024; 145 Wang (10.1016/j.apacoust.2025.110725_b0095) 2021; 127 Zhao (10.1016/j.apacoust.2025.110725_b0135) 2024; 34 Wu (10.1016/j.apacoust.2025.110725_b0200) 2007; 76 Mazzotti (10.1016/j.apacoust.2025.110725_b0050) 2023; 241 Li (10.1016/j.apacoust.2025.110725_b0155) 2024; 202 |
References_xml | – volume: 276 year: 2023 ident: b0035 article-title: A nonlinear acoustic metamaterial beam with tunable flexural wave band gaps publication-title: Eng Struct – volume: 97 year: 2023 ident: b0185 article-title: Analytical dispersion curves and bandgap boundaries for quadrilateral lattices [J] publication-title: Eur J Mech A Solids – volume: 225 year: 2021 ident: b0115 article-title: Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals publication-title: Ocean Eng – volume: 25 year: 2023 ident: b0160 article-title: Design and fabrication of 3D-printed composite metastructure with subwavelength and ultrawide bandgaps publication-title: New J Phys – volume: 253 year: 2023 ident: b0070 article-title: Tunable bandgaps and acoustic characteristics of perforated Miura-ori phononic structures publication-title: Int J Mech Sci – volume: 31 start-page: 4818 year: 2023 end-page: 4838 ident: b0080 article-title: Low frequency band gap and wave propagation mechanism of resonant hammer circular structure publication-title: Mech Adv Mater Struct – volume: 34 start-page: 217 year: 2024 end-page: 224 ident: b0135 article-title: Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials publication-title: Def Technol – volume: 308 year: 2024 ident: b0140 article-title: Band gap characteristics of bionic acoustic metamaterials based on spider web publication-title: Eng Struct – volume: 145 year: 2024 ident: b0065 article-title: Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation publication-title: Aerosp Sci Technol – volume: 97 year: 2023 ident: b0120 article-title: Low and ultra-wide frequency wave attenuation performance and tunability of a new cruciate ligament structure publication-title: Eur J Mech A Solids – volume: 198 year: 2024 ident: b0150 article-title: A graded acoustic metamaterial rod enabling ultra-broadband vibration attenuation and rainbow reflection publication-title: Thin-Walled Struct – volume: 90 year: 2021 ident: b0180 article-title: Vibration characteristics of innovative reentrant-chiral elastic metamaterials [J] publication-title: Eur J Mech A Solids – volume: 114 start-page: 294 year: 2016 end-page: 306 ident: b0210 article-title: Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties publication-title: Appl Acoust – volume: 651 year: 2023 ident: b0060 article-title: Study on bandgap and vibration attenuation mechanism of novel chiral lattices publication-title: Phys B Condens Matter – volume: 261 year: 2024 ident: b0090 article-title: Isotacticity in chiral phononic crystals for low-frequency bandgap publication-title: Int J Mech Sci – volume: 306 year: 2023 ident: b0030 article-title: Ultra-wide low-frequency bandgap design of acoustic metamaterial via multi-material topology optimization publication-title: Compos Struct – volume: 193 year: 2021 ident: b0190 article-title: Multipolar resonance and bandgap formation mechanism of star-shaped lattice structure [J] publication-title: Int J Mech Sci – volume: 289 start-page: 1734 year: 2000 end-page: 1736 ident: b0055 article-title: Locally Resonant Sonic Materials publication-title: Science – volume: 97 year: 2023 ident: b0085 article-title: Multi-frequency band gap and active frequency modulation of snowflake-like convex horn ligament structure publication-title: Eur J Mech A Solids – volume: 216 year: 2024 ident: b0020 article-title: A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption publication-title: Mech Syst Sig Process – volume: 10 start-page: 620 year: 2011 end-page: 624 ident: b0005 article-title: Hybrid elastic solids [J] publication-title: Nat Mater – volume: 55 year: 2022 ident: b0010 article-title: Study on bandgap and directional wave propagation of a two-dimensional lattice with a nested core publication-title: J Phys D Appl Phys – volume: 127 start-page: 495 year: 2021 ident: b0095 article-title: Tunable band gaps and double-negative properties of innovative acoustic metamaterials publication-title: Appl Phys A – volume: 15 start-page: 373 year: 2022 ident: b0110 article-title: Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals publication-title: Materials – volume: 233 year: 2022 ident: b0025 article-title: Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption publication-title: Int J Mech Sci – volume: 352 year: 2025 ident: b0145 article-title: Vibration suppression characteristics of a thin sandwich panel with misaligned stacking spider-web-like phononic crystal cores publication-title: Compos Struct – volume: 202 year: 2024 ident: b0155 article-title: Bandgap tunability and impact mitigation enhancement of hybrid graded origami-inspired metamaterials with multiple resonators publication-title: Thin-Walled Struct – volume: 136 year: 2020 ident: b0165 article-title: Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials publication-title: Mech Syst Sig Process – volume: 115 year: 2019 ident: b0205 article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations publication-title: Appl Phys Lett – volume: 122 year: 2017 ident: b0215 article-title: Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation publication-title: J Appl Phys – volume: 45 start-page: 1261 year: 2024 end-page: 1278 ident: b0100 article-title: Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial publication-title: Appl Math Mech – volume: 14 start-page: 1028 year: 2024 ident: b0175 article-title: Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial publication-title: Appl Sci – volume: 332 start-page: 184 year: 2013 end-page: 198 ident: b0220 article-title: Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial publication-title: J Sound Vib – volume: 218 year: 2024 ident: b0105 article-title: A new polyhedral sonic crystal for broadband sound barriers: Optimization and experimental study publication-title: Appl Acoust – volume: 71 year: 2005 ident: b0195 article-title: Analytic model of phononic crystals with local resonances publication-title: Phys Rev B – volume: 216 year: 2024 ident: b0130 article-title: Hybrid rod-plate lattice metamaterial with broadband vibration attenuation publication-title: Appl Acoust – volume: 270 year: 2024 ident: b0040 article-title: Maximizing acoustic band gap in phononic crystals via topology optimization publication-title: Int J Mech Sci – volume: 224 year: 2024 ident: b0045 article-title: Hierarchical design and vibration suppression of the hexachiral hybrid acoustic metamaterial publication-title: Appl Acoust – volume: 31 year: 2022 ident: b0015 article-title: Bandgap enhancement of two-dimensional lattice metamaterial via re-entrant hierarchy publication-title: Smart Mater Struct – volume: 241 year: 2023 ident: b0050 article-title: Bio-inspired non self-similar hierarchical elastic metamaterials publication-title: Int J Mech Sci – volume: 155 start-page: 492 year: 2019 end-page: 499 ident: b0225 article-title: Acoustic performance of noise barrier based on sonic crystals with resonant elements publication-title: Appl Acoust – volume: 346 year: 2024 ident: b0125 article-title: Topological design of soft substrate acoustic metamaterial for mechanical tuning of sound propagation publication-title: Compos Struct – volume: 530 year: 2022 ident: b0170 article-title: Rainbow zigzag metamaterial beams as broadband vibration isolators for beam-like structures publication-title: J Sound Vib – volume: 115 year: 2019 ident: b0075 article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations publication-title: Appl Phys Lett – volume: 76 year: 2007 ident: b0200 article-title: Effective medium theory for elastic metamaterials in two dimensions publication-title: Phys Rev B – volume: 198 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0150 article-title: A graded acoustic metamaterial rod enabling ultra-broadband vibration attenuation and rainbow reflection publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2024.111716 – volume: 97 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0185 article-title: Analytical dispersion curves and bandgap boundaries for quadrilateral lattices [J] publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2022.104835 – volume: 346 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0125 article-title: Topological design of soft substrate acoustic metamaterial for mechanical tuning of sound propagation publication-title: Compos Struct doi: 10.1016/j.compstruct.2024.118399 – volume: 308 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0140 article-title: Band gap characteristics of bionic acoustic metamaterials based on spider web publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118003 – volume: 25 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0160 article-title: Design and fabrication of 3D-printed composite metastructure with subwavelength and ultrawide bandgaps publication-title: New J Phys doi: 10.1088/1367-2630/acd0ce – volume: 55 year: 2022 ident: 10.1016/j.apacoust.2025.110725_b0010 article-title: Study on bandgap and directional wave propagation of a two-dimensional lattice with a nested core publication-title: J Phys D Appl Phys doi: 10.1088/1361-6463/ac47c0 – volume: 97 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0085 article-title: Multi-frequency band gap and active frequency modulation of snowflake-like convex horn ligament structure publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2022.104843 – volume: 122 year: 2017 ident: 10.1016/j.apacoust.2025.110725_b0215 article-title: Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation publication-title: J Appl Phys doi: 10.1063/1.4991026 – volume: 224 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0045 article-title: Hierarchical design and vibration suppression of the hexachiral hybrid acoustic metamaterial publication-title: Appl Acoust doi: 10.1016/j.apacoust.2024.110145 – volume: 352 year: 2025 ident: 10.1016/j.apacoust.2025.110725_b0145 article-title: Vibration suppression characteristics of a thin sandwich panel with misaligned stacking spider-web-like phononic crystal cores publication-title: Compos Struct doi: 10.1016/j.compstruct.2024.118642 – volume: 115 year: 2019 ident: 10.1016/j.apacoust.2025.110725_b0205 article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations publication-title: Appl Phys Lett doi: 10.1063/1.5119754 – volume: 34 start-page: 217 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0135 article-title: Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials publication-title: Def Technol doi: 10.1016/j.dt.2023.11.005 – volume: 332 start-page: 184 year: 2013 ident: 10.1016/j.apacoust.2025.110725_b0220 article-title: Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial publication-title: J Sound Vib doi: 10.1016/j.jsv.2012.08.003 – volume: 76 year: 2007 ident: 10.1016/j.apacoust.2025.110725_b0200 article-title: Effective medium theory for elastic metamaterials in two dimensions publication-title: Phys Rev B doi: 10.1103/PhysRevB.76.205313 – volume: 136 year: 2020 ident: 10.1016/j.apacoust.2025.110725_b0165 article-title: Numerical investigations and experimental measurements on the structural dynamic behaviour of quasi-periodic meta-materials publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2019.106516 – volume: 253 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0070 article-title: Tunable bandgaps and acoustic characteristics of perforated Miura-ori phononic structures publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2023.108389 – volume: 276 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0035 article-title: A nonlinear acoustic metamaterial beam with tunable flexural wave band gaps publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115379 – volume: 306 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0030 article-title: Ultra-wide low-frequency bandgap design of acoustic metamaterial via multi-material topology optimization publication-title: Compos Struct doi: 10.1016/j.compstruct.2022.116584 – volume: 216 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0130 article-title: Hybrid rod-plate lattice metamaterial with broadband vibration attenuation publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109822 – volume: 115 year: 2019 ident: 10.1016/j.apacoust.2025.110725_b0075 article-title: Low frequency and wide band gap metamaterial with divergent shaped star units: Numerical and experimental investigations publication-title: Appl Phys Lett doi: 10.1063/1.5119754 – volume: 218 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0105 article-title: A new polyhedral sonic crystal for broadband sound barriers: Optimization and experimental study publication-title: Appl Acoust doi: 10.1016/j.apacoust.2024.109881 – volume: 530 year: 2022 ident: 10.1016/j.apacoust.2025.110725_b0170 article-title: Rainbow zigzag metamaterial beams as broadband vibration isolators for beam-like structures publication-title: J Sound Vib doi: 10.1016/j.jsv.2022.116945 – volume: 225 year: 2021 ident: 10.1016/j.apacoust.2025.110725_b0115 article-title: Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.108804 – volume: 31 year: 2022 ident: 10.1016/j.apacoust.2025.110725_b0015 article-title: Bandgap enhancement of two-dimensional lattice metamaterial via re-entrant hierarchy publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ac7e0d – volume: 289 start-page: 1734 year: 2000 ident: 10.1016/j.apacoust.2025.110725_b0055 article-title: Locally Resonant Sonic Materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 193 year: 2021 ident: 10.1016/j.apacoust.2025.110725_b0190 article-title: Multipolar resonance and bandgap formation mechanism of star-shaped lattice structure [J] publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.106163 – volume: 651 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0060 article-title: Study on bandgap and vibration attenuation mechanism of novel chiral lattices publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2022.414596 – volume: 127 start-page: 495 year: 2021 ident: 10.1016/j.apacoust.2025.110725_b0095 article-title: Tunable band gaps and double-negative properties of innovative acoustic metamaterials publication-title: Appl Phys A doi: 10.1007/s00339-021-04612-8 – volume: 45 start-page: 1261 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0100 article-title: Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial publication-title: Appl Math Mech doi: 10.1007/s10483-024-3156-8 – volume: 71 year: 2005 ident: 10.1016/j.apacoust.2025.110725_b0195 article-title: Analytic model of phononic crystals with local resonances publication-title: Phys Rev B – volume: 114 start-page: 294 year: 2016 ident: 10.1016/j.apacoust.2025.110725_b0210 article-title: Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties publication-title: Appl Acoust doi: 10.1016/j.apacoust.2016.07.028 – volume: 270 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0040 article-title: Maximizing acoustic band gap in phononic crystals via topology optimization publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2024.109107 – volume: 261 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0090 article-title: Isotacticity in chiral phononic crystals for low-frequency bandgap publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2023.108678 – volume: 14 start-page: 1028 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0175 article-title: Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial publication-title: Appl Sci doi: 10.3390/app14031028 – volume: 90 year: 2021 ident: 10.1016/j.apacoust.2025.110725_b0180 article-title: Vibration characteristics of innovative reentrant-chiral elastic metamaterials [J] publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2021.104350 – volume: 241 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0050 article-title: Bio-inspired non self-similar hierarchical elastic metamaterials publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107915 – volume: 31 start-page: 4818 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0080 article-title: Low frequency band gap and wave propagation mechanism of resonant hammer circular structure publication-title: Mech Adv Mater Struct doi: 10.1080/15376494.2023.2207173 – volume: 145 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0065 article-title: Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2024.108872 – volume: 15 start-page: 373 year: 2022 ident: 10.1016/j.apacoust.2025.110725_b0110 article-title: Low-Frequency Bandgaps of the Lightweight Single-Phase Acoustic Metamaterials with Locally Resonant Archimedean Spirals publication-title: Materials doi: 10.3390/ma15010373 – volume: 97 year: 2023 ident: 10.1016/j.apacoust.2025.110725_b0120 article-title: Low and ultra-wide frequency wave attenuation performance and tunability of a new cruciate ligament structure publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2022.104865 – volume: 10 start-page: 620 issue: 8 year: 2011 ident: 10.1016/j.apacoust.2025.110725_b0005 article-title: Hybrid elastic solids [J] publication-title: Nat Mater doi: 10.1038/nmat3043 – volume: 233 year: 2022 ident: 10.1016/j.apacoust.2025.110725_b0025 article-title: Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2022.107678 – volume: 216 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0020 article-title: A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption publication-title: Mech Syst Sig Process doi: 10.1016/j.ymssp.2024.111464 – volume: 202 year: 2024 ident: 10.1016/j.apacoust.2025.110725_b0155 article-title: Bandgap tunability and impact mitigation enhancement of hybrid graded origami-inspired metamaterials with multiple resonators publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2024.112137 – volume: 155 start-page: 492 year: 2019 ident: 10.1016/j.apacoust.2025.110725_b0225 article-title: Acoustic performance of noise barrier based on sonic crystals with resonant elements publication-title: Appl Acoust doi: 10.1016/j.apacoust.2019.06.003 |
SSID | ssj0000255 |
Score | 2.40436 |
Snippet | [Display omitted]
•A single-phase acoustic metamaterial (SSAM) can achieve low-frequency sound insulation.•Gradient and hybrid metastructures realize the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 110725 |
SubjectTerms | Bandgap Coupling design Local resonance Single-phase acoustic metamaterial |
Title | Low-frequency bandgap broadening of single-phase shuriken-like acoustic metastructure through coupling design for sound insulation |
URI | https://dx.doi.org/10.1016/j.apacoust.2025.110725 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRdCDaFWsj7IHr2ltunkdS7HUV08Wegv7bFNrEtIW8eLBX-5MHlhB8OAlkM0uLDPLzDfh-3YIuRZcA4rlwupxqE2YK4zFA-1YTJvAsblnG4Zq5KexO5qw-6kzrZFBpYVBWmUZ-4uYnkfrcqRTWrOTRhFqfCH6-vYUkjjgFA-F5ox5eMrbH980D8TMVdc8nL2lEl60IR_JBKUNNkxDRryHLbN_S1BbSWd4SA5KtEj7xYaOSE3HDbK_dYdgg-zmHE65Oiafj8mbZbKCG_1OBY_VjKdUZAmH4AKTaWIo_hpYaiudQ_aiq_kmi150bC3hSYtNRpK-6jUv7pXdZJqWnXwofEX17oyqnPRBAe3SFTZlojmfPffwCZkMb58HI6tssWDJrh-soQxVXGtP2MJ44E0XO6QAhvCULaWBXC8hx7m8K-3A1z4TSqsASiyjfH2jRA8K8VNSj5NYnxEKYy6D-kQY5TCpnABcHnBESF1pesppkk5l1zAtbtIIK4rZIqw8EaInwsITTRJU5g9_nIkQwv0fa8__sfaC7OFbTghzLkkdDK6vAHqsRSs_Wy2y0797GI2_APL33xA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwNBDA61RdSDaFWszzl4XWu3O_s4lmJp7ePUQm_LPPuw7pY-EK_-cjP7wAqCBy97mJnAkAzJl-VLAvDAmUIUy7hVZ5ibOC7XFgsUtRylA2ozz9aOqUbuD9z2yHkZ03EBmnktjKFVZr4_9emJt85Wqpk2q8vZzNT4ovf17TEGccQpHt2DkulORYtQanS67cG3Q7YpzQfnGYGdQuH5I4YkEZvqBhuPGVK8Z6Zm_xajduJO6wSOM8BIGumdTqGgojIc7bQRLMN-QuMU6zP47MXvll6l9OgPwlkkJ2xJ-Cpm6F_wMIk1MX8HFspaTjGAkfV0u5q9qsha4Jekl5wJ8qY2LG0tu10pkg3zIbhrCngnRCa8D4KAl6zNXCaSUNoTI5_DqPU8bLatbMqCJWp-sMFMVDKlPG5z7aFBXTMkBWGEJ20hNIZ7gWHOZTVhB77yHS6VDDDL0tJXT5LXMRe_gGIUR-oSCK65DqYoXEvqCEkDtHrADEiqCV2XtALVXK_hMm2mEeYss3mYWyI0lghTS1QgyNUf_ngWIXr8P2Sv_iF7DwftYb8X9jqD7jUcmp2EH0ZvoIjKV7eIRDb8LntpX5Rw4cE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-frequency+bandgap+broadening+of+single-phase+shuriken-like+acoustic+metastructure+through+coupling+design+for+sound+insulation&rft.jtitle=Applied+acoustics&rft.au=Guo%2C+Dongxu&rft.au=Zhang%2C+Xiaolong&rft.au=Tian%2C+Ruilan&rft.au=Chen%2C+Luqi&rft.date=2025-06-05&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.volume=236&rft_id=info:doi/10.1016%2Fj.apacoust.2025.110725&rft.externalDocID=S0003682X25001975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |