Credit Card Fraud Detection Using Selective Class Sampling and Random Forest Classifier
The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking forward to some robust and reliable ways of detecting credit card fraudulent transactions. The task is challenging due to non-availability o...
Saved in:
Published in | ECS transactions Vol. 107; no. 1; pp. 4885 - 4894 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Electrochemical Society, Inc
24.04.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking forward to some robust and reliable ways of detecting credit card fraudulent transactions. The task is challenging due to non-availability of enough data, high class imbalance, and high stake on false negative rates (FNR). Most of the methods available in literature perform well on the accuracy-based performance metrics. However, they fail to yield satisfactory ROC-AUC performance due to the high false positive or false negative rates. Mitigating this issue is the real challenge for the task of fraudulent credit card transaction detection. This paper investigates the problem of credit card fraudulent transaction detection and proposes a technique for it. The proposed method uses a custom selective class sampling-based class balancing technique, and subsequently, it uses random forest for classification. The experimental results show that the proposed technique has better AUC score, accuracy, precision, and recall values as compared with other similar approaches. |
---|---|
AbstractList | The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking forward to some robust and reliable ways of detecting credit card fraudulent transactions. The task is challenging due to non-availability of enough data, high class imbalance, and high stake on false negative rates (FNR). Most of the methods available in literature perform well on the accuracy-based performance metrics. However, they fail to yield satisfactory ROC-AUC performance due to the high false positive or false negative rates. Mitigating this issue is the real challenge for the task of fraudulent credit card transaction detection. This paper investigates the problem of credit card fraudulent transaction detection and proposes a technique for it. The proposed method uses a custom selective class sampling-based class balancing technique, and subsequently, it uses random forest for classification. The experimental results show that the proposed technique has better AUC score, accuracy, precision, and recall values as compared with other similar approaches. |
Author | Verma, Pradeep Tyagi, Poornima |
Author_xml | – sequence: 1 givenname: Pradeep orcidid: 0000-0002-9539-0990 surname: Verma fullname: Verma, Pradeep organization: Himalayan Garhwal University, Uttarakhand, India – sequence: 2 givenname: Poornima surname: Tyagi fullname: Tyagi, Poornima organization: Himalayan Garhwal University, Uttarakhand, India |
BookMark | eNp1kM1LAzEQxYNUsK1ePecsbE22ySY5ympVKAjW4nFJk4mkbDclSQX_e3etXoRe5oN5v4H3JmjUhQ4QuqZkRilTt5QIQmdMSg4m5TM0pmoui0rMxeh35rIqL9AkpS0hVc-IMXqvI1ifca2jxYuoDxbfQwaTfejwOvnuA6-gHfZPwHWrU8Irvdu3w0F3Fr_2JezwIkRI-SjwzkO8ROdOtwmufvsUrRcPb_VTsXx5fK7vloWhUuWCEm2lU04QWbINEYZpp7jlRgsAp0AayWVphCytgopthBOCOSsNVJyDdvMpmh3_mhhSiuCaffQ7Hb8aSpohluYnluYvlh5g_wDjsx7s5qh9exq7OWI-7JttOMSud3VK_A0gIngC |
CitedBy_id | crossref_primary_10_59324_ejtas_2024_2_6__22 |
ContentType | Journal Article |
Copyright | 2022 ECS - The Electrochemical Society |
Copyright_xml | – notice: 2022 ECS - The Electrochemical Society |
DBID | AAYXX CITATION |
DOI | 10.1149/10701.4885ecst |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1938-6737 |
EndPage | 4894 |
ExternalDocumentID | 10_1149_10701_4885ecst 10.1149/10701.4885ecst |
GroupedDBID | 0R~ 29G AATNI ABDNZ ABJNI ACHIP ADNWM AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CJUJL EBS EJD IOP JGOPE KOT MV1 N5L NFQFE REC RHI RNS ROL RPA AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c189t-10ad8f9f70824b07c4af95d5ca7eef9e8c8582c782d9e64b7f774fd8ce655eaf3 |
IEDL.DBID | IOP |
ISSN | 1938-5862 |
IngestDate | Tue Jul 01 03:47:24 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Wed Aug 21 03:33:27 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c189t-10ad8f9f70824b07c4af95d5ca7eef9e8c8582c782d9e64b7f774fd8ce655eaf3 |
ORCID | 0000-0002-9539-0990 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1149_10701_4885ecst iop_journals_10_1149_10701_4885ecst crossref_citationtrail_10_1149_10701_4885ecst |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220424 |
PublicationDateYYYYMMDD | 2022-04-24 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220424 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | ECS transactions |
PublicationTitleAlternate | ECS Trans |
PublicationYear | 2022 |
Publisher | The Electrochemical Society, Inc |
Publisher_xml | – name: The Electrochemical Society, Inc |
SSID | ssj0061147 |
Score | 2.3839552 |
Snippet | The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4885 |
Title | Credit Card Fraud Detection Using Selective Class Sampling and Random Forest Classifier |
URI | https://iopscience.iop.org/article/10.1149/10701.4885ecst |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5sPejFt1hfLCh4SkibbLJ7lGgpgg-sxeIlbPYBRU1Lu734653NJlKVgnhJAvlClslm5lt2Zj6EzgkTQgSUe4LzHBYoWnqUssBTOc-JDCHIlFX8t3dxbxDdDMlwQeprNJ5Urt-HS9co2JmwamzL4JwEbR8mHlFiZhpoNaQQNm3t3v1D7YRjQCZuQ9kWFsWdql_j7-e_xaMGvHMhvHQ30Us9MJdV8urPTe6Ljx89G_818i20UZFOfOmA22hFFTtoLa213nbRczqFIGZwCvMFA5edS3ylTJmlVeAyqwD3S8Ec8I241NHEfW5z0eEGLyR-hMP4HVudz5lxgJGGgLuHBt3rp7TnVZILnmhTZsApc0k10wkwgygPEhFxzYgkgidKaaaooIR2BNAKyVQc5YkG-qglFSomRHEd7qNmMS7UAcJADDmsXhjl2uobxzmF1U8o4kQqasUMW8irDZ-Jqh-5lcV4y1ytNMtKc2W1uVro4gs_cZ04liLP4Atk1c84W4I6_BPqCK13bMFDEHmd6Bg1zXSuToCGmPy0nHCfa6PXig |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5sBfXiW6zPBQVPqWmbTXaPklrqqxZrsbew2QeImpYmvfjrnd0k4oOCeEkC-UjCZDPzDZmZD6FTwoQQLuWO4DyGBEVLh1LmOirmMZEtCDK2i_-u53eH3vWIjIraHNsLM54Urr8Oh_mg4NyExWBbBvvAbdRh4REl0ux8InUFLZIWRE7Tv3ffLx2xD-gg_6lsmov8ZjGz8fc1vsWkCtz3S4jprOU6qqmdTGgqS17qsyyui_cfcxv__fTraLUgn_giB2-gBZVsouWw1HzbQk_hFIJZhkNYNxg47UzitspstVaCbXUBHljhHPCR2Opp4gE3NelwgicSP8Bm_IaN3mea5YBnDYF3Gw07l49h1ymkFxzRoCwD58wl1UwHwBC82A2ExzUjkggeKKWZooIS2hRALyRTvhcHGmikllQonxDFdWsHVZNxonYRBoLIIYthlGujc-zHFLKglvADqagRNawhpzR-JIq55EYe4zXKe6ZZZE0WlSarobNP_CSfyDEXeQJvISo-ynQOau9PqGO01G93otur3s0-WmmaHgjXc5reAapm05k6BGaSxUd2_X0Av1Hc7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Credit+Card+Fraud+Detection+Using+Selective+Class+Sampling+and+Random+Forest+Classifier&rft.jtitle=ECS+transactions&rft.au=Verma%2C+Pradeep&rft.au=Tyagi%2C+Poornima&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=4885&rft.epage=4894&rft_id=info:doi/10.1149%2F10701.4885ecst&rft.externalDocID=10.1149%2F10701.4885ecst |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon |