Credit Card Fraud Detection Using Selective Class Sampling and Random Forest Classifier

The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking forward to some robust and reliable ways of detecting credit card fraudulent transactions. The task is challenging due to non-availability o...

Full description

Saved in:
Bibliographic Details
Published inECS transactions Vol. 107; no. 1; pp. 4885 - 4894
Main Authors Verma, Pradeep, Tyagi, Poornima
Format Journal Article
LanguageEnglish
Published The Electrochemical Society, Inc 24.04.2022
Online AccessGet full text

Cover

Loading…
Abstract The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking forward to some robust and reliable ways of detecting credit card fraudulent transactions. The task is challenging due to non-availability of enough data, high class imbalance, and high stake on false negative rates (FNR). Most of the methods available in literature perform well on the accuracy-based performance metrics. However, they fail to yield satisfactory ROC-AUC performance due to the high false positive or false negative rates. Mitigating this issue is the real challenge for the task of fraudulent credit card transaction detection. This paper investigates the problem of credit card fraudulent transaction detection and proposes a technique for it. The proposed method uses a custom selective class sampling-based class balancing technique, and subsequently, it uses random forest for classification. The experimental results show that the proposed technique has better AUC score, accuracy, precision, and recall values as compared with other similar approaches.
AbstractList The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking forward to some robust and reliable ways of detecting credit card fraudulent transactions. The task is challenging due to non-availability of enough data, high class imbalance, and high stake on false negative rates (FNR). Most of the methods available in literature perform well on the accuracy-based performance metrics. However, they fail to yield satisfactory ROC-AUC performance due to the high false positive or false negative rates. Mitigating this issue is the real challenge for the task of fraudulent credit card transaction detection. This paper investigates the problem of credit card fraudulent transaction detection and proposes a technique for it. The proposed method uses a custom selective class sampling-based class balancing technique, and subsequently, it uses random forest for classification. The experimental results show that the proposed technique has better AUC score, accuracy, precision, and recall values as compared with other similar approaches.
Author Verma, Pradeep
Tyagi, Poornima
Author_xml – sequence: 1
  givenname: Pradeep
  orcidid: 0000-0002-9539-0990
  surname: Verma
  fullname: Verma, Pradeep
  organization: Himalayan Garhwal University, Uttarakhand, India
– sequence: 2
  givenname: Poornima
  surname: Tyagi
  fullname: Tyagi, Poornima
  organization: Himalayan Garhwal University, Uttarakhand, India
BookMark eNp1kM1LAzEQxYNUsK1ePecsbE22ySY5ympVKAjW4nFJk4mkbDclSQX_e3etXoRe5oN5v4H3JmjUhQ4QuqZkRilTt5QIQmdMSg4m5TM0pmoui0rMxeh35rIqL9AkpS0hVc-IMXqvI1ifca2jxYuoDxbfQwaTfejwOvnuA6-gHfZPwHWrU8Irvdu3w0F3Fr_2JezwIkRI-SjwzkO8ROdOtwmufvsUrRcPb_VTsXx5fK7vloWhUuWCEm2lU04QWbINEYZpp7jlRgsAp0AayWVphCytgopthBOCOSsNVJyDdvMpmh3_mhhSiuCaffQ7Hb8aSpohluYnluYvlh5g_wDjsx7s5qh9exq7OWI-7JttOMSud3VK_A0gIngC
CitedBy_id crossref_primary_10_59324_ejtas_2024_2_6__22
ContentType Journal Article
Copyright 2022 ECS - The Electrochemical Society
Copyright_xml – notice: 2022 ECS - The Electrochemical Society
DBID AAYXX
CITATION
DOI 10.1149/10701.4885ecst
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1938-6737
EndPage 4894
ExternalDocumentID 10_1149_10701_4885ecst
10.1149/10701.4885ecst
GroupedDBID 0R~
29G
AATNI
ABDNZ
ABJNI
ACHIP
ADNWM
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CJUJL
EBS
EJD
IOP
JGOPE
KOT
MV1
N5L
NFQFE
REC
RHI
RNS
ROL
RPA
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c189t-10ad8f9f70824b07c4af95d5ca7eef9e8c8582c782d9e64b7f774fd8ce655eaf3
IEDL.DBID IOP
ISSN 1938-5862
IngestDate Tue Jul 01 03:47:24 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Wed Aug 21 03:33:27 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c189t-10ad8f9f70824b07c4af95d5ca7eef9e8c8582c782d9e64b7f774fd8ce655eaf3
ORCID 0000-0002-9539-0990
PageCount 10
ParticipantIDs crossref_primary_10_1149_10701_4885ecst
iop_journals_10_1149_10701_4885ecst
crossref_citationtrail_10_1149_10701_4885ecst
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220424
PublicationDateYYYYMMDD 2022-04-24
PublicationDate_xml – month: 04
  year: 2022
  text: 20220424
  day: 24
PublicationDecade 2020
PublicationTitle ECS transactions
PublicationTitleAlternate ECS Trans
PublicationYear 2022
Publisher The Electrochemical Society, Inc
Publisher_xml – name: The Electrochemical Society, Inc
SSID ssj0061147
Score 2.3839552
Snippet The incidences of credit card fraud are increasing. It puts the hard-earned money of users at risk. The financial institutions and governing bodies are looking...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 4885
Title Credit Card Fraud Detection Using Selective Class Sampling and Random Forest Classifier
URI https://iopscience.iop.org/article/10.1149/10701.4885ecst
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5sPejFt1hfLCh4SkibbLJ7lGgpgg-sxeIlbPYBRU1Lu734653NJlKVgnhJAvlClslm5lt2Zj6EzgkTQgSUe4LzHBYoWnqUssBTOc-JDCHIlFX8t3dxbxDdDMlwQeprNJ5Urt-HS9co2JmwamzL4JwEbR8mHlFiZhpoNaQQNm3t3v1D7YRjQCZuQ9kWFsWdql_j7-e_xaMGvHMhvHQ30Us9MJdV8urPTe6Ljx89G_818i20UZFOfOmA22hFFTtoLa213nbRczqFIGZwCvMFA5edS3ylTJmlVeAyqwD3S8Ec8I241NHEfW5z0eEGLyR-hMP4HVudz5lxgJGGgLuHBt3rp7TnVZILnmhTZsApc0k10wkwgygPEhFxzYgkgidKaaaooIR2BNAKyVQc5YkG-qglFSomRHEd7qNmMS7UAcJADDmsXhjl2uobxzmF1U8o4kQqasUMW8irDZ-Jqh-5lcV4y1ytNMtKc2W1uVro4gs_cZ04liLP4Atk1c84W4I6_BPqCK13bMFDEHmd6Bg1zXSuToCGmPy0nHCfa6PXig
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5sBfXiW6zPBQVPqWmbTXaPklrqqxZrsbew2QeImpYmvfjrnd0k4oOCeEkC-UjCZDPzDZmZD6FTwoQQLuWO4DyGBEVLh1LmOirmMZEtCDK2i_-u53eH3vWIjIraHNsLM54Urr8Oh_mg4NyExWBbBvvAbdRh4REl0ux8InUFLZIWRE7Tv3ffLx2xD-gg_6lsmov8ZjGz8fc1vsWkCtz3S4jprOU6qqmdTGgqS17qsyyui_cfcxv__fTraLUgn_giB2-gBZVsouWw1HzbQk_hFIJZhkNYNxg47UzitspstVaCbXUBHljhHPCR2Opp4gE3NelwgicSP8Bm_IaN3mea5YBnDYF3Gw07l49h1ymkFxzRoCwD58wl1UwHwBC82A2ExzUjkggeKKWZooIS2hRALyRTvhcHGmikllQonxDFdWsHVZNxonYRBoLIIYthlGujc-zHFLKglvADqagRNawhpzR-JIq55EYe4zXKe6ZZZE0WlSarobNP_CSfyDEXeQJvISo-ynQOau9PqGO01G93otur3s0-WmmaHgjXc5reAapm05k6BGaSxUd2_X0Av1Hc7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Credit+Card+Fraud+Detection+Using+Selective+Class+Sampling+and+Random+Forest+Classifier&rft.jtitle=ECS+transactions&rft.au=Verma%2C+Pradeep&rft.au=Tyagi%2C+Poornima&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=4885&rft.epage=4894&rft_id=info:doi/10.1149%2F10701.4885ecst&rft.externalDocID=10.1149%2F10701.4885ecst
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon