Improvement of osprey optimization algorithm and weighted RBM features for predicting the surface roughness and flank wear measurement using 1DCNN with ridge regression

Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining the surface finish at the time of the machining process. The flank wear (FW) is computed with the varying geometrical connections between a...

Full description

Saved in:
Bibliographic Details
Published inMachining science and technology Vol. 29; no. 1; pp. 43 - 92
Main Authors V, Dilli Ganesh, S, John Justin Thangaraj
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.01.2025
Subjects
Online AccessGet full text
ISSN1091-0344
1532-2483
DOI10.1080/10910344.2025.2458050

Cover

Abstract Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining the surface finish at the time of the machining process. The flank wear (FW) is computed with the varying geometrical connections between a worn and a new cutter, which assures a full FW mapping. In addition, it is essential to forecast the cutting forces for attaining the stability of the machining system and its dimensional accuracy. To meet this requirement, an adaptive technique is proposed for SR, cutting force and FW quantity. The deep features are extracted by using the deep belief network (DBN) from the data values; here attributes are optimized using the adaptive osprey optimization algorithm (AOOA). Finally, the resultant features are given as input to the multiscale atrous spatial pyramid pooling-based one-dimensional convolution neural network with ridge regression (MASPP-1DCNN-RR) for the prediction task. Diverse performance metrics are used to show the efficiency of the recommended scheme. From those experiments, the developed AOOA-MASPP-1DCNN-RR obtains 36.9%, 30.97%, 27.07%, 16.39% and 3.57% improved performance on FW prediction than the Adaboost, support vector machine (SVM), ASPP-1DCNN, ridge regression (RR) and ASPP-1DCNN-RR, respectively, based on analysis of RMSE.
AbstractList Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining the surface finish at the time of the machining process. The flank wear (FW) is computed with the varying geometrical connections between a worn and a new cutter, which assures a full FW mapping. In addition, it is essential to forecast the cutting forces for attaining the stability of the machining system and its dimensional accuracy. To meet this requirement, an adaptive technique is proposed for SR, cutting force and FW quantity. The deep features are extracted by using the deep belief network (DBN) from the data values; here attributes are optimized using the adaptive osprey optimization algorithm (AOOA). Finally, the resultant features are given as input to the multiscale atrous spatial pyramid pooling-based one-dimensional convolution neural network with ridge regression (MASPP-1DCNN-RR) for the prediction task. Diverse performance metrics are used to show the efficiency of the recommended scheme. From those experiments, the developed AOOA-MASPP-1DCNN-RR obtains 36.9%, 30.97%, 27.07%, 16.39% and 3.57% improved performance on FW prediction than the Adaboost, support vector machine (SVM), ASPP-1DCNN, ridge regression (RR) and ASPP-1DCNN-RR, respectively, based on analysis of RMSE.
Author S, John Justin Thangaraj
V, Dilli Ganesh
Author_xml – sequence: 1
  givenname: Dilli Ganesh
  surname: V
  fullname: V, Dilli Ganesh
  organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University
– sequence: 2
  givenname: John Justin Thangaraj
  surname: S
  fullname: S, John Justin Thangaraj
  organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University
BookMark eNp9kMtOwzAQRS0EEuXxCUj-gZSxkzTJDiivSjwkBOvIccapIbEr26UqX8Rn4tKyZTUe6Z471jki-8YaJOSMwZhBCecMKgZplo058HzMs7yEHPbIiOUpT3hWpvvxHTPJJnRIjrx_B2BVwbIR-Z4NC2c_cUATqFXU-oXDNbWLoAf9JYK2hoq-s06H-UCFaekKdTcP2NKXq0eqUISlQ0-VdTSSrZZBm46GOVK_dEpIpM4uu7lB739x1QvzEUuEowOKmNmeXvoNxq6nT090FW9Rp9sustjFdh9_cUIOlOg9nu7mMXm7vXmd3icPz3ez6eVDIllZhkSmDYJUTds21YTxogHFsWAyU4LFHQGyijcqmhGTKm-UgJyVhQRe5E0rm0l6TPJtr3TWe4eqXjg9CLeuGdQb3fWf7nqju97pjtzFltMmuhjEyrq-rYNY99YpJ4zUvk7_r_gB2NiNfQ
Cites_doi 10.3389/fmech.2022.1126450
10.1109/ACCESS.2019.2953490
10.1109/JIOT.2022.3175724
10.1109/ACCESS.2019.2944769
10.1109/JSEN.2019.2927174
10.1016/j.knosys.2022.110011
10.1016/j.sna.2021.113161
10.1109/TIA.2012.2199449
10.1016/j.ifacol.2022.04.249
10.1016/j.mlwa.2021.100099
10.17485/ijst/2016/v9i18/88731
10.1007/s11665-024-09726-7
10.1109/TIM.2019.2961572
10.1109/TIM.2022.3214630
10.1109/TIM.2023.3272052
10.1134/S1061830922020073
10.1155/2022/5191758
10.1109/ACCESS.2022.3179818
10.1155/2022/9378487
10.1016/j.procir.2022.03.110
10.1109/8.768797
10.1016/j.eswa.2024.123168
10.1109/TIM.2022.3144232
10.1109/TASE.2014.2369478
10.1016/j.jmapro.2022.10.072
10.1155/2022/6038804
10.1109/TASE.2008.2005640
10.1016/j.procir.2018.08.253
10.1016/j.measurement.2022.112255
10.1016/j.compind.2022.103638
10.1016/j.procir.2021.09.045
10.1109/ACCESS.2020.2984020
10.1109/ACCESS.2021.3084617
10.1109/JSEN.2021.3103059
10.1007/s12065-022-00762-7
10.1109/ACCESS.2022.3230588
10.3390/app14093811
10.1109/TCAD.2009.2030408
ContentType Journal Article
Copyright 2025 Taylor & Francis Group, LLC 2025
Copyright_xml – notice: 2025 Taylor & Francis Group, LLC 2025
DBID AAYXX
CITATION
DOI 10.1080/10910344.2025.2458050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-2483
EndPage 92
ExternalDocumentID 10_1080_10910344_2025_2458050
2458050
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29M
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EAP
EBS
EDH
ESX
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
WH7
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
AMPGV
CITATION
DGEBU
ID FETCH-LOGICAL-c188t-c3be0cfbddb96127b0f2e71c4fa1612e00492bf532a695bfa05187c0275bdcb63
ISSN 1091-0344
IngestDate Tue Jul 01 05:11:47 EDT 2025
Fri Mar 28 04:20:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c188t-c3be0cfbddb96127b0f2e71c4fa1612e00492bf532a695bfa05187c0275bdcb63
PageCount 50
ParticipantIDs informaworld_taylorfrancis_310_1080_10910344_2025_2458050
crossref_primary_10_1080_10910344_2025_2458050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/2/2025
2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 1/2/2025
  day: 02
PublicationDecade 2020
PublicationTitle Machining science and technology
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Choudhury A. (e_1_3_2_6_1) 2023; 21
e_1_3_2_26_1
Vasanth K. (e_1_3_2_39_1) 2023
Jachak S. (e_1_3_2_17_1) 2024; 7
e_1_3_2_40_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_9_1
  doi: 10.3389/fmech.2022.1126450
– ident: e_1_3_2_22_1
  doi: 10.1109/ACCESS.2019.2953490
– ident: e_1_3_2_35_1
  doi: 10.1109/JIOT.2022.3175724
– ident: e_1_3_2_18_1
  doi: 10.1109/ACCESS.2019.2944769
– ident: e_1_3_2_27_1
  doi: 10.1109/JSEN.2019.2927174
– ident: e_1_3_2_8_1
  doi: 10.1016/j.knosys.2022.110011
– ident: e_1_3_2_33_1
  doi: 10.1016/j.sna.2021.113161
– ident: e_1_3_2_25_1
  doi: 10.1109/TIA.2012.2199449
– ident: e_1_3_2_15_1
  doi: 10.1016/j.ifacol.2022.04.249
– ident: e_1_3_2_30_1
  doi: 10.1016/j.mlwa.2021.100099
– ident: e_1_3_2_10_1
  doi: 10.17485/ijst/2016/v9i18/88731
– ident: e_1_3_2_2_1
  doi: 10.1007/s11665-024-09726-7
– ident: e_1_3_2_24_1
  doi: 10.1109/TIM.2019.2961572
– ident: e_1_3_2_7_1
  doi: 10.1109/TIM.2022.3214630
– ident: e_1_3_2_12_1
  doi: 10.1109/TIM.2023.3272052
– ident: e_1_3_2_3_1
  doi: 10.1134/S1061830922020073
– ident: e_1_3_2_40_1
  doi: 10.1155/2022/5191758
– ident: e_1_3_2_42_1
  doi: 10.1109/ACCESS.2022.3179818
– ident: e_1_3_2_19_1
  doi: 10.1155/2022/9378487
– ident: e_1_3_2_29_1
  doi: 10.1016/j.procir.2022.03.110
– ident: e_1_3_2_26_1
  doi: 10.1109/8.768797
– ident: e_1_3_2_31_1
  doi: 10.1016/j.eswa.2024.123168
– ident: e_1_3_2_37_1
  doi: 10.1109/TIM.2022.3144232
– ident: e_1_3_2_14_1
  doi: 10.1109/TASE.2014.2369478
– volume-title: Machine Learning Based Metal SR Estimation in Infrared Images
  year: 2023
  ident: e_1_3_2_39_1
– ident: e_1_3_2_5_1
  doi: 10.1016/j.jmapro.2022.10.072
– volume: 7
  start-page: 5
  year: 2024
  ident: e_1_3_2_17_1
  article-title: Measurement of flank wears using edge detection method
  publication-title: Recent Advances in Material, Manufacturing, and Machine Learning,
– ident: e_1_3_2_32_1
  doi: 10.1155/2022/6038804
– ident: e_1_3_2_36_1
  doi: 10.1109/TASE.2008.2005640
– ident: e_1_3_2_11_1
  doi: 10.1016/j.procir.2018.08.253
– ident: e_1_3_2_16_1
  doi: 10.1016/j.measurement.2022.112255
– ident: e_1_3_2_13_1
  doi: 10.1016/j.compind.2022.103638
– ident: e_1_3_2_28_1
  doi: 10.1016/j.procir.2021.09.045
– ident: e_1_3_2_41_1
  doi: 10.1109/ACCESS.2020.2984020
– volume: 21
  year: 2023
  ident: e_1_3_2_6_1
  article-title: Neural network modelling for predicting surface finish and flank wear on Aisi D2 steel machining
  publication-title: Academic Journal of Manufacturing Engineering,
– ident: e_1_3_2_21_1
  doi: 10.1109/ACCESS.2021.3084617
– ident: e_1_3_2_38_1
  doi: 10.1109/JSEN.2021.3103059
– ident: e_1_3_2_34_1
  doi: 10.1007/s12065-022-00762-7
– ident: e_1_3_2_20_1
  doi: 10.1109/ACCESS.2022.3230588
– ident: e_1_3_2_23_1
  doi: 10.3390/app14093811
– ident: e_1_3_2_4_1
  doi: 10.1109/TCAD.2009.2030408
SSID ssj0019714
Score 2.3562224
Snippet Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 43
SubjectTerms Adaptive osprey optimization algorithm
deep belief network
flank wear measurement
multiscale atrous spatial pyramid pooling based one dimensional convolution neural network with ridge regression
surface roughness and cutting force prediction
Title Improvement of osprey optimization algorithm and weighted RBM features for predicting the surface roughness and flank wear measurement using 1DCNN with ridge regression
URI https://www.tandfonline.com/doi/abs/10.1080/10910344.2025.2458050
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaGcoEDYhVl0ztwizJkX45Qlgpp5gBT1FtkO_ZU0CZVmgiJX8SZX8jzksRlKsRyiUYZObHm--b5-fNbCHmeyyRXp0s-5TT1k6TMfYperR9mEcflHlcN3b5ttc4Oj5L3x-nxYvHDiVoaerbk367MK_kXVPEe4qqyZP8C2emheAM_I754RYTx-kcYG0VAjOf57cU5AuO1aAXObHqlR0-3Le7_T0wnjK9aCEUf88OrlSeFLuqpCzKoWgG1yg6xyVMXQycpV8GHw_ZEW0M1XJ7S5gs-hHbe2awteoPWG8LXB-u10XVNElgntibItnE94JWO3tQqhjUrOoZzR-H_pK2hUoO8dxRnMMnWH8cIYtOJrPE2SvOmHf3sKhhRqhWMeb-72Wkm4tjjQAVmxaZE5FKMNjryo8T0vxmNuJVNXLIai2yKQNm13bTd21k1TJilepd61VLNcRklaRGYmri_FOS231wj16M816EBcbCeTq7KXNeTnyY-Zo0VwYsrX3DJH7pULdfxcza3yS27QYGXhm13yEI0d8lNp2zlPfLd4R20EgzvwOUdTLwDhBdG3gHyDkbeAU4CZt4B8g4s72DinR6ueQeKd-DwDjTvQPMOFO9A8w5m3t0nR2_fbA4Ofdvxw-dhUfQ-j5kIuGR1zUp0vXMWyEjkIU8kxZ1JJNR-NmISCUCzMmWS4pJS5FwdvbOasyx-QPaathEPCdSspnFS0iJFByxlGQ1ZXEghyjjNypyX-2Q5_u7VuSnsUoW2Xu4IVKWAqixQ-6R00al6TVtpGFvFvx376D_GPiY35j_NE7LXd4N4io5wz55p5v0EHxe1kg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHFoOvFpUXmUOvWa7eTiJj0CLFsrmgEDiFtmOvVSwCcpmhcQv4mcy4yRlqdReOEdj2fJkHp9nvmHsW2KjhF6XPKkl96JIJJ7EqNbz40Cju0ev4ca3jbN4dB2d3_CbhV4YKqukHNq2RBHOVtPPTWB0XxL3ncgsiaoO07uAD4KIp0NK21c4xu6k5eEw-_OSIBLH700iHsn0XTz_WuaNf3rDXrrgd07Xme533Jab3A3mjRrop7_IHN93pA221oWlcNTq0SZbMuUWW10gK_zEnlv8wcGJUFmoZg-oBlChzZl2zZwg7ydV_bu5nQLuBB4d7GoKuDwegzWOQnQGeFRAyYJ6UcoJYAAKs3ltpTbgRgaR7XXi9l6Wd7iIrGH6imQCVepPwP9xkmVAKDK4ljOozaQt6S0_s-vTn1cnI6-b8-BpP00bT4fKDLVVRaEEBlyJGtrAJL6OrMR4NDCUxQTK8jCQseDKSjQkaaLpwVUVWsXhNlsuq9J8YVCoQoaRkClHt8tVLH0VptYYEfJYJFrssEF_u_lDS-eR-x1Lan8FOV1B3l3BDhOLOpA3Dkex7dCTPPyv7O47ZA_Zh9HV-CK_OMt-7bGP9MkBP8E-W27quTnAUKhRX52uvwDcnP5k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQlRAc2vJS6QPmwDXL5uEkPlLoimeEEEjcItuxtxVssspmVYlf1J_ZGSehSyW4cI7GsjWTec83jO0nNkqouuRJLbkXRSLxJHq1nh8HGs09Wg23vu0yi09uo7M73ncTzrq2SoqhbQsU4XQ1_dzTwvYdcQeEZUlIdRjdBXwQRDwdUtT-Lkb3hLr6wmH2VEgQiYP3JhKPaPohnpeOeWaenoGXLpid0Qem-gu33Sb3g3mjBvrxPyzHN73oI3vfOaVw2ErROlsy5QZbW4Aq3GR_2uyDSyZCZaGaTVEIoEKNM-lGOUE-jKv6V_NzAngR-O2SrqaA6--XYI0DEJ0BvhSQsqBJlHIM6H7CbF5bqQ24hUGkeR25fZDlPR4ia5j8y2MC9emPwT8-yjKgHDK4gTOozbht6C232O3ox83RiddtefC0n6aNp0NlhtqqolAC3a1EDW1gEl9HVqI3GhiKYQJleRjIWHBlJaqRNNFUblWFVnG4zZbLqjSfGBSqkGEkZMrR6HIVS1-FqTVGhDwWiRY7bNAzN5-2YB6532Gk9izIiQV5x4IdJhZFIG9cFsW2K0_y8FXaz2-g3WMrV8ej_OI0O__CVumLy_oEX9lyU8_NN_SDGrXrJP0vvxj9CA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+osprey+optimization+algorithm+and+weighted+RBM+features+for+predicting+the+surface+roughness+and+flank+wear+measurement+using+1DCNN+with+ridge+regression&rft.jtitle=Machining+science+and+technology&rft.au=V%2C+Dilli+Ganesh&rft.au=S%2C+John+Justin+Thangaraj&rft.date=2025-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1091-0344&rft.eissn=1532-2483&rft.volume=29&rft.issue=1&rft.spage=43&rft.epage=92&rft_id=info:doi/10.1080%2F10910344.2025.2458050&rft.externalDocID=2458050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-0344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-0344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-0344&client=summon