Improvement of osprey optimization algorithm and weighted RBM features for predicting the surface roughness and flank wear measurement using 1DCNN with ridge regression
Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining the surface finish at the time of the machining process. The flank wear (FW) is computed with the varying geometrical connections between a...
Saved in:
Published in | Machining science and technology Vol. 29; no. 1; pp. 43 - 92 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1091-0344 1532-2483 |
DOI | 10.1080/10910344.2025.2458050 |
Cover
Abstract | Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining the surface finish at the time of the machining process. The flank wear (FW) is computed with the varying geometrical connections between a worn and a new cutter, which assures a full FW mapping. In addition, it is essential to forecast the cutting forces for attaining the stability of the machining system and its dimensional accuracy. To meet this requirement, an adaptive technique is proposed for SR, cutting force and FW quantity. The deep features are extracted by using the deep belief network (DBN) from the data values; here attributes are optimized using the adaptive osprey optimization algorithm (AOOA). Finally, the resultant features are given as input to the multiscale atrous spatial pyramid pooling-based one-dimensional convolution neural network with ridge regression (MASPP-1DCNN-RR) for the prediction task. Diverse performance metrics are used to show the efficiency of the recommended scheme. From those experiments, the developed AOOA-MASPP-1DCNN-RR obtains 36.9%, 30.97%, 27.07%, 16.39% and 3.57% improved performance on FW prediction than the Adaboost, support vector machine (SVM), ASPP-1DCNN, ridge regression (RR) and ASPP-1DCNN-RR, respectively, based on analysis of RMSE. |
---|---|
AbstractList | Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining the surface finish at the time of the machining process. The flank wear (FW) is computed with the varying geometrical connections between a worn and a new cutter, which assures a full FW mapping. In addition, it is essential to forecast the cutting forces for attaining the stability of the machining system and its dimensional accuracy. To meet this requirement, an adaptive technique is proposed for SR, cutting force and FW quantity. The deep features are extracted by using the deep belief network (DBN) from the data values; here attributes are optimized using the adaptive osprey optimization algorithm (AOOA). Finally, the resultant features are given as input to the multiscale atrous spatial pyramid pooling-based one-dimensional convolution neural network with ridge regression (MASPP-1DCNN-RR) for the prediction task. Diverse performance metrics are used to show the efficiency of the recommended scheme. From those experiments, the developed AOOA-MASPP-1DCNN-RR obtains 36.9%, 30.97%, 27.07%, 16.39% and 3.57% improved performance on FW prediction than the Adaboost, support vector machine (SVM), ASPP-1DCNN, ridge regression (RR) and ASPP-1DCNN-RR, respectively, based on analysis of RMSE. |
Author | S, John Justin Thangaraj V, Dilli Ganesh |
Author_xml | – sequence: 1 givenname: Dilli Ganesh surname: V fullname: V, Dilli Ganesh organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University – sequence: 2 givenname: John Justin Thangaraj surname: S fullname: S, John Justin Thangaraj organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University |
BookMark | eNp9kMtOwzAQRS0EEuXxCUj-gZSxkzTJDiivSjwkBOvIccapIbEr26UqX8Rn4tKyZTUe6Z471jki-8YaJOSMwZhBCecMKgZplo058HzMs7yEHPbIiOUpT3hWpvvxHTPJJnRIjrx_B2BVwbIR-Z4NC2c_cUATqFXU-oXDNbWLoAf9JYK2hoq-s06H-UCFaekKdTcP2NKXq0eqUISlQ0-VdTSSrZZBm46GOVK_dEpIpM4uu7lB739x1QvzEUuEowOKmNmeXvoNxq6nT090FW9Rp9sustjFdh9_cUIOlOg9nu7mMXm7vXmd3icPz3ez6eVDIllZhkSmDYJUTds21YTxogHFsWAyU4LFHQGyijcqmhGTKm-UgJyVhQRe5E0rm0l6TPJtr3TWe4eqXjg9CLeuGdQb3fWf7nqju97pjtzFltMmuhjEyrq-rYNY99YpJ4zUvk7_r_gB2NiNfQ |
Cites_doi | 10.3389/fmech.2022.1126450 10.1109/ACCESS.2019.2953490 10.1109/JIOT.2022.3175724 10.1109/ACCESS.2019.2944769 10.1109/JSEN.2019.2927174 10.1016/j.knosys.2022.110011 10.1016/j.sna.2021.113161 10.1109/TIA.2012.2199449 10.1016/j.ifacol.2022.04.249 10.1016/j.mlwa.2021.100099 10.17485/ijst/2016/v9i18/88731 10.1007/s11665-024-09726-7 10.1109/TIM.2019.2961572 10.1109/TIM.2022.3214630 10.1109/TIM.2023.3272052 10.1134/S1061830922020073 10.1155/2022/5191758 10.1109/ACCESS.2022.3179818 10.1155/2022/9378487 10.1016/j.procir.2022.03.110 10.1109/8.768797 10.1016/j.eswa.2024.123168 10.1109/TIM.2022.3144232 10.1109/TASE.2014.2369478 10.1016/j.jmapro.2022.10.072 10.1155/2022/6038804 10.1109/TASE.2008.2005640 10.1016/j.procir.2018.08.253 10.1016/j.measurement.2022.112255 10.1016/j.compind.2022.103638 10.1016/j.procir.2021.09.045 10.1109/ACCESS.2020.2984020 10.1109/ACCESS.2021.3084617 10.1109/JSEN.2021.3103059 10.1007/s12065-022-00762-7 10.1109/ACCESS.2022.3230588 10.3390/app14093811 10.1109/TCAD.2009.2030408 |
ContentType | Journal Article |
Copyright | 2025 Taylor & Francis Group, LLC 2025 |
Copyright_xml | – notice: 2025 Taylor & Francis Group, LLC 2025 |
DBID | AAYXX CITATION |
DOI | 10.1080/10910344.2025.2458050 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1532-2483 |
EndPage | 92 |
ExternalDocumentID | 10_1080_10910344_2025_2458050 2458050 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29M 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EAP EBS EDH ESX E~A E~B GEVLZ GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 WH7 ZGOLN ~S~ AAGDL AAHIA AAYXX AMPGV CITATION DGEBU |
ID | FETCH-LOGICAL-c188t-c3be0cfbddb96127b0f2e71c4fa1612e00492bf532a695bfa05187c0275bdcb63 |
ISSN | 1091-0344 |
IngestDate | Tue Jul 01 05:11:47 EDT 2025 Fri Mar 28 04:20:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c188t-c3be0cfbddb96127b0f2e71c4fa1612e00492bf532a695bfa05187c0275bdcb63 |
PageCount | 50 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10910344_2025_2458050 crossref_primary_10_1080_10910344_2025_2458050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1/2/2025 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 1/2/2025 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Machining science and technology |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 Choudhury A. (e_1_3_2_6_1) 2023; 21 e_1_3_2_26_1 Vasanth K. (e_1_3_2_39_1) 2023 Jachak S. (e_1_3_2_17_1) 2024; 7 e_1_3_2_40_1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
References_xml | – ident: e_1_3_2_9_1 doi: 10.3389/fmech.2022.1126450 – ident: e_1_3_2_22_1 doi: 10.1109/ACCESS.2019.2953490 – ident: e_1_3_2_35_1 doi: 10.1109/JIOT.2022.3175724 – ident: e_1_3_2_18_1 doi: 10.1109/ACCESS.2019.2944769 – ident: e_1_3_2_27_1 doi: 10.1109/JSEN.2019.2927174 – ident: e_1_3_2_8_1 doi: 10.1016/j.knosys.2022.110011 – ident: e_1_3_2_33_1 doi: 10.1016/j.sna.2021.113161 – ident: e_1_3_2_25_1 doi: 10.1109/TIA.2012.2199449 – ident: e_1_3_2_15_1 doi: 10.1016/j.ifacol.2022.04.249 – ident: e_1_3_2_30_1 doi: 10.1016/j.mlwa.2021.100099 – ident: e_1_3_2_10_1 doi: 10.17485/ijst/2016/v9i18/88731 – ident: e_1_3_2_2_1 doi: 10.1007/s11665-024-09726-7 – ident: e_1_3_2_24_1 doi: 10.1109/TIM.2019.2961572 – ident: e_1_3_2_7_1 doi: 10.1109/TIM.2022.3214630 – ident: e_1_3_2_12_1 doi: 10.1109/TIM.2023.3272052 – ident: e_1_3_2_3_1 doi: 10.1134/S1061830922020073 – ident: e_1_3_2_40_1 doi: 10.1155/2022/5191758 – ident: e_1_3_2_42_1 doi: 10.1109/ACCESS.2022.3179818 – ident: e_1_3_2_19_1 doi: 10.1155/2022/9378487 – ident: e_1_3_2_29_1 doi: 10.1016/j.procir.2022.03.110 – ident: e_1_3_2_26_1 doi: 10.1109/8.768797 – ident: e_1_3_2_31_1 doi: 10.1016/j.eswa.2024.123168 – ident: e_1_3_2_37_1 doi: 10.1109/TIM.2022.3144232 – ident: e_1_3_2_14_1 doi: 10.1109/TASE.2014.2369478 – volume-title: Machine Learning Based Metal SR Estimation in Infrared Images year: 2023 ident: e_1_3_2_39_1 – ident: e_1_3_2_5_1 doi: 10.1016/j.jmapro.2022.10.072 – volume: 7 start-page: 5 year: 2024 ident: e_1_3_2_17_1 article-title: Measurement of flank wears using edge detection method publication-title: Recent Advances in Material, Manufacturing, and Machine Learning, – ident: e_1_3_2_32_1 doi: 10.1155/2022/6038804 – ident: e_1_3_2_36_1 doi: 10.1109/TASE.2008.2005640 – ident: e_1_3_2_11_1 doi: 10.1016/j.procir.2018.08.253 – ident: e_1_3_2_16_1 doi: 10.1016/j.measurement.2022.112255 – ident: e_1_3_2_13_1 doi: 10.1016/j.compind.2022.103638 – ident: e_1_3_2_28_1 doi: 10.1016/j.procir.2021.09.045 – ident: e_1_3_2_41_1 doi: 10.1109/ACCESS.2020.2984020 – volume: 21 year: 2023 ident: e_1_3_2_6_1 article-title: Neural network modelling for predicting surface finish and flank wear on Aisi D2 steel machining publication-title: Academic Journal of Manufacturing Engineering, – ident: e_1_3_2_21_1 doi: 10.1109/ACCESS.2021.3084617 – ident: e_1_3_2_38_1 doi: 10.1109/JSEN.2021.3103059 – ident: e_1_3_2_34_1 doi: 10.1007/s12065-022-00762-7 – ident: e_1_3_2_20_1 doi: 10.1109/ACCESS.2022.3230588 – ident: e_1_3_2_23_1 doi: 10.3390/app14093811 – ident: e_1_3_2_4_1 doi: 10.1109/TCAD.2009.2030408 |
SSID | ssj0019714 |
Score | 2.3562224 |
Snippet | Surface finish is considered the significant factor in the evaluation of product quality. Surface roughness (SR) is highly utilized as an index for determining... |
SourceID | crossref informaworld |
SourceType | Index Database Publisher |
StartPage | 43 |
SubjectTerms | Adaptive osprey optimization algorithm deep belief network flank wear measurement multiscale atrous spatial pyramid pooling based one dimensional convolution neural network with ridge regression surface roughness and cutting force prediction |
Title | Improvement of osprey optimization algorithm and weighted RBM features for predicting the surface roughness and flank wear measurement using 1DCNN with ridge regression |
URI | https://www.tandfonline.com/doi/abs/10.1080/10910344.2025.2458050 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaGcoEDYhVl0ztwizJkX45Qlgpp5gBT1FtkO_ZU0CZVmgiJX8SZX8jzksRlKsRyiUYZObHm--b5-fNbCHmeyyRXp0s-5TT1k6TMfYperR9mEcflHlcN3b5ttc4Oj5L3x-nxYvHDiVoaerbk367MK_kXVPEe4qqyZP8C2emheAM_I754RYTx-kcYG0VAjOf57cU5AuO1aAXObHqlR0-3Le7_T0wnjK9aCEUf88OrlSeFLuqpCzKoWgG1yg6xyVMXQycpV8GHw_ZEW0M1XJ7S5gs-hHbe2awteoPWG8LXB-u10XVNElgntibItnE94JWO3tQqhjUrOoZzR-H_pK2hUoO8dxRnMMnWH8cIYtOJrPE2SvOmHf3sKhhRqhWMeb-72Wkm4tjjQAVmxaZE5FKMNjryo8T0vxmNuJVNXLIai2yKQNm13bTd21k1TJilepd61VLNcRklaRGYmri_FOS231wj16M816EBcbCeTq7KXNeTnyY-Zo0VwYsrX3DJH7pULdfxcza3yS27QYGXhm13yEI0d8lNp2zlPfLd4R20EgzvwOUdTLwDhBdG3gHyDkbeAU4CZt4B8g4s72DinR6ueQeKd-DwDjTvQPMOFO9A8w5m3t0nR2_fbA4Ofdvxw-dhUfQ-j5kIuGR1zUp0vXMWyEjkIU8kxZ1JJNR-NmISCUCzMmWS4pJS5FwdvbOasyx-QPaathEPCdSspnFS0iJFByxlGQ1ZXEghyjjNypyX-2Q5_u7VuSnsUoW2Xu4IVKWAqixQ-6R00al6TVtpGFvFvx376D_GPiY35j_NE7LXd4N4io5wz55p5v0EHxe1kg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHFoOvFpUXmUOvWa7eTiJj0CLFsrmgEDiFtmOvVSwCcpmhcQv4mcy4yRlqdReOEdj2fJkHp9nvmHsW2KjhF6XPKkl96JIJJ7EqNbz40Cju0ev4ca3jbN4dB2d3_CbhV4YKqukHNq2RBHOVtPPTWB0XxL3ncgsiaoO07uAD4KIp0NK21c4xu6k5eEw-_OSIBLH700iHsn0XTz_WuaNf3rDXrrgd07Xme533Jab3A3mjRrop7_IHN93pA221oWlcNTq0SZbMuUWW10gK_zEnlv8wcGJUFmoZg-oBlChzZl2zZwg7ydV_bu5nQLuBB4d7GoKuDwegzWOQnQGeFRAyYJ6UcoJYAAKs3ltpTbgRgaR7XXi9l6Wd7iIrGH6imQCVepPwP9xkmVAKDK4ljOozaQt6S0_s-vTn1cnI6-b8-BpP00bT4fKDLVVRaEEBlyJGtrAJL6OrMR4NDCUxQTK8jCQseDKSjQkaaLpwVUVWsXhNlsuq9J8YVCoQoaRkClHt8tVLH0VptYYEfJYJFrssEF_u_lDS-eR-x1Lan8FOV1B3l3BDhOLOpA3Dkex7dCTPPyv7O47ZA_Zh9HV-CK_OMt-7bGP9MkBP8E-W27quTnAUKhRX52uvwDcnP5k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQlRAc2vJS6QPmwDXL5uEkPlLoimeEEEjcItuxtxVssspmVYlf1J_ZGSehSyW4cI7GsjWTec83jO0nNkqouuRJLbkXRSLxJHq1nh8HGs09Wg23vu0yi09uo7M73ncTzrq2SoqhbQsU4XQ1_dzTwvYdcQeEZUlIdRjdBXwQRDwdUtT-Lkb3hLr6wmH2VEgQiYP3JhKPaPohnpeOeWaenoGXLpid0Qem-gu33Sb3g3mjBvrxPyzHN73oI3vfOaVw2ErROlsy5QZbW4Aq3GR_2uyDSyZCZaGaTVEIoEKNM-lGOUE-jKv6V_NzAngR-O2SrqaA6--XYI0DEJ0BvhSQsqBJlHIM6H7CbF5bqQ24hUGkeR25fZDlPR4ia5j8y2MC9emPwT8-yjKgHDK4gTOozbht6C232O3ox83RiddtefC0n6aNp0NlhtqqolAC3a1EDW1gEl9HVqI3GhiKYQJleRjIWHBlJaqRNNFUblWFVnG4zZbLqjSfGBSqkGEkZMrR6HIVS1-FqTVGhDwWiRY7bNAzN5-2YB6532Gk9izIiQV5x4IdJhZFIG9cFsW2K0_y8FXaz2-g3WMrV8ej_OI0O__CVumLy_oEX9lyU8_NN_SDGrXrJP0vvxj9CA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+osprey+optimization+algorithm+and+weighted+RBM+features+for+predicting+the+surface+roughness+and+flank+wear+measurement+using+1DCNN+with+ridge+regression&rft.jtitle=Machining+science+and+technology&rft.au=V%2C+Dilli+Ganesh&rft.au=S%2C+John+Justin+Thangaraj&rft.date=2025-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1091-0344&rft.eissn=1532-2483&rft.volume=29&rft.issue=1&rft.spage=43&rft.epage=92&rft_id=info:doi/10.1080%2F10910344.2025.2458050&rft.externalDocID=2458050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-0344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-0344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-0344&client=summon |