Pore-scale investigation of phase change heat storage enhancement in gradient finned metal foams
•Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat storage enhancement.•Positive porosity gradient reduces PCM melting time by 14.2% over negative gradient.•Copper skeletons yield up to 43.8% s...
Saved in:
Published in | Applied thermal engineering Vol. 279; p. 127817 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat storage enhancement.•Positive porosity gradient reduces PCM melting time by 14.2% over negative gradient.•Copper skeletons yield up to 43.8% shorter phase change duration than aluminum.
This study presents a detailed pore-scale numerical investigation of the melting behaviour of phase change materials embedded in gradient finned metal foams using a structure-resolved computational fluid dynamics approach. An idealised geometric model was developed based on the Kelvin cell units, thereby enabling precise control over porosity gradients by varying skeleton dimensions along the heat flow direction. The findings demonstrate that the incorporation of longitudinal fins into the metal foam significantly enhances heat conduction and accelerates phase change materials melting. The configuration exhibiting a positive porosity gradient demonstrated optimal performance, exhibiting a 14.2% reduction in total melting time than that for a negative gradient configuration. Furthermore, the replacement of aluminium with copper as the skeleton material resulted in a 43.9% reduction in melting duration, thereby demonstrating the critical influence of thermal conductivity. The study presents novel insights into the design of composite finned metal foam structures and highlights effective strategies for improving the efficiency of latent heat energy storage systems. |
---|---|
AbstractList | •Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat storage enhancement.•Positive porosity gradient reduces PCM melting time by 14.2% over negative gradient.•Copper skeletons yield up to 43.8% shorter phase change duration than aluminum.
This study presents a detailed pore-scale numerical investigation of the melting behaviour of phase change materials embedded in gradient finned metal foams using a structure-resolved computational fluid dynamics approach. An idealised geometric model was developed based on the Kelvin cell units, thereby enabling precise control over porosity gradients by varying skeleton dimensions along the heat flow direction. The findings demonstrate that the incorporation of longitudinal fins into the metal foam significantly enhances heat conduction and accelerates phase change materials melting. The configuration exhibiting a positive porosity gradient demonstrated optimal performance, exhibiting a 14.2% reduction in total melting time than that for a negative gradient configuration. Furthermore, the replacement of aluminium with copper as the skeleton material resulted in a 43.9% reduction in melting duration, thereby demonstrating the critical influence of thermal conductivity. The study presents novel insights into the design of composite finned metal foam structures and highlights effective strategies for improving the efficiency of latent heat energy storage systems. |
ArticleNumber | 127817 |
Author | Zhao, Wei Rong, Wanting Guo, Xueyan Huo, Guanping Zhang, Jian |
Author_xml | – sequence: 1 givenname: Guanping orcidid: 0000-0002-2262-5357 surname: Huo fullname: Huo, Guanping email: huoguanping@163.com organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China – sequence: 2 givenname: Xueyan orcidid: 0000-0003-1766-2871 surname: Guo fullname: Guo, Xueyan organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China – sequence: 3 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China – sequence: 4 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China – sequence: 5 givenname: Wanting surname: Rong fullname: Rong, Wanting organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China |
BookMark | eNqNkD1PwzAQhj0UibbwHzywJthJnDgSC6ooIFWCAWZztS-Jq8SubKsS_55UZWFjug_peXX3rMjCeYeE3HGWc8br-0MOx-OYBgwTjOj6vGCFyHnRSN4syJKXos2qkvNrsorxwBgvZFMtyde7D5hFPTPUuhPGZHtI1jvqO3ocICLVA7ge6YCQaEw-wDygm5caJ3RpxmgfwNhz31nn0NAJE4y08zDFG3LVwRjx9reuyef26WPzku3enl83j7tMcylTJvleMsOKsgFTaNG1UGMpkHUtCi5rA4yXRVnXrQBpGBOyairRsrba7w3KCso1ebjk6uBjDNipY7AThG_FmTobUgf115A6G1IXQzO-veA433iyGFTU80cajQ2okzLe_i_oB7SXfRg |
Cites_doi | 10.1016/j.energy.2024.131123 10.1016/j.ijheatmasstransfer.2020.120652 10.1016/j.ijheatmasstransfer.2016.11.073 10.1016/j.est.2024.110954 10.1021/ie0490886 10.1016/j.cep.2023.109581 10.1016/j.apenergy.2019.114472 10.1016/j.applthermaleng.2020.115731 10.1016/j.energy.2024.131813 10.1016/j.applthermaleng.2021.117778 10.1016/j.energy.2011.07.019 10.1007/s11630-024-1946-8 10.1016/j.est.2019.100874 10.1016/j.applthermaleng.2023.121082 10.1016/j.applthermaleng.2021.117168 10.1016/j.rser.2013.07.028 10.1016/j.applthermaleng.2018.10.106 10.1016/j.applthermaleng.2019.114163 10.1016/j.energy.2012.01.024 10.1016/j.ijheatmasstransfer.2017.05.119 10.1016/j.jclepro.2020.124238 10.1016/j.ijheatmasstransfer.2012.11.034 10.1016/j.rser.2018.05.028 10.1016/j.icheatmasstransfer.2023.106750 10.1016/j.ces.2022.117583 10.1016/j.apenergy.2020.115019 10.1016/j.ijheatmasstransfer.2014.03.060 10.1016/j.applthermaleng.2016.01.130 10.1016/j.ijheatmasstransfer.2014.01.014 10.1016/j.cej.2014.11.080 10.1016/j.ijheatmasstransfer.2023.124076 10.1016/j.icheatmasstransfer.2020.104775 10.1016/j.ijheatmasstransfer.2015.06.088 10.1016/j.ijthermalsci.2014.03.006 10.1016/j.ijheatfluidflow.2003.08.002 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2025.127817 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_applthermaleng_2025_127817 S1359431125024093 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- |
ID | FETCH-LOGICAL-c188t-81b80d0237ad2c5f9a6e35e0f9e5186da013236695a8d005847459094bbde84a3 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Wed Aug 20 23:58:00 EDT 2025 Sat Aug 30 17:13:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change materials Finned metal foam Porosity gradient Computational fluid dynamics Latent heat storage |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c188t-81b80d0237ad2c5f9a6e35e0f9e5186da013236695a8d005847459094bbde84a3 |
ORCID | 0000-0002-2262-5357 0000-0003-1766-2871 |
ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2025_127817 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_127817 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-15 |
PublicationDateYYYYMMDD | 2025-11-15 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | He, Yang, Lin, Chen, Mao, Ma (b0065) 2019; 25 Von Rickenbach, Lucci, Narayanan, Dimopoulos Eggenschwiler, Poulikakos (b0160) 2014; 75 Bondareva, Sheremet (b0085) 2024; 296 Kamkari, Shokouhmand, Bruno (b0045) 2014; 72 Yang, Niu, Guo, Bai, Li, He (b0130) 2020; 117 Du, Liu, Huang, Xiao, Yang, He (b0015) 2023; 208 Tao, He (b0020) 2018; 93 Wang, Wu, Lei, Liu, Li, Wu (b0025) 2020; 261 Giani, Groppi, Tronconi (b0140) 2005; 44 Yang, Wei, Wang, He (b0105) 2020; 268 Lucci, Della Torre, Montenegro, Dimopoulos Eggenschwiler (b0165) 2015; 264 Wang, Sun, Zhu, Zhu, Zhang, Dou, Wu, Szymczak, Wu (b0090) 2023; 144 Xiao, Zhang, Li (b0095) 2014; 81 Huang, Du, Li, Li, Yang, Li (b0010) 2024; 302 Nie, Lin, Tong (b0150) 2017; 113 Lucci, Della Torre, Montenegro, Kaufmann, Dimopoulos Eggenschwiler (b0170) 2017; 108 Amagour, Bennajah, Rachek (b0055) 2021; 280 Feng, Shi, Li, Lu (b0125) 2015; 90 Sharma, Ganesan, Tyagi, Metselaar, Sandaran (b0060) 2016; 99 Wang, Wei, Xu, Ju, Yang, Du (b0110) 2019; 147 Nie, Liu, Deng (b0050) 2021; 165 Fernandes, Pitié, Cáceres, Baeyens (b0080) 2012; 39 Tian, Zhao (b0100) 2013; 58 Yang, Niu, Bai, Li, Cui, He (b0135) 2019; 161 Wang, Pan, Wang, Wu, Ma (b0180) 2024; 33 Sultan, Ali, Shafi, Fteiti, Baro, Alresheedi, Islam, Yusaf, Ghalambaz (b0030) 2024; 85 Cárdenas, León (b0035) 2013; 27 Ghahremannezhad, Xu, Salimpour, Wang, Vafai (b0075) 2020; 179 Yang, Liu, Wang (b0120) 2021; 195 Huo, Guo (b0175) 2023; 194 Boomsma, Poulikakos, Ventikos (b0155) 2003; 24 Wang, Zhu, Zhang, Yu, Li (b0005) 2024; 65 Wang, Zhang, Dou, Zhang, Wu, Zhou (b0040) 2022; 201 Tian, Zhao (b0070) 2011; 36 Agostini, Boccardo, Marchisio (b0145) 2022; 255 Xiao, Du, Lu, Li, Huang, Yang, He (b0115) 2023; 232 Wang (10.1016/j.applthermaleng.2025.127817_b0005) 2024; 65 Sultan (10.1016/j.applthermaleng.2025.127817_b0030) 2024; 85 Cárdenas (10.1016/j.applthermaleng.2025.127817_b0035) 2013; 27 Huang (10.1016/j.applthermaleng.2025.127817_b0010) 2024; 302 Wang (10.1016/j.applthermaleng.2025.127817_b0180) 2024; 33 Fernandes (10.1016/j.applthermaleng.2025.127817_b0080) 2012; 39 Giani (10.1016/j.applthermaleng.2025.127817_b0140) 2005; 44 Wang (10.1016/j.applthermaleng.2025.127817_b0110) 2019; 147 Nie (10.1016/j.applthermaleng.2025.127817_b0050) 2021; 165 Sharma (10.1016/j.applthermaleng.2025.127817_b0060) 2016; 99 Yang (10.1016/j.applthermaleng.2025.127817_b0120) 2021; 195 Ghahremannezhad (10.1016/j.applthermaleng.2025.127817_b0075) 2020; 179 Tian (10.1016/j.applthermaleng.2025.127817_b0070) 2011; 36 Boomsma (10.1016/j.applthermaleng.2025.127817_b0155) 2003; 24 Kamkari (10.1016/j.applthermaleng.2025.127817_b0045) 2014; 72 Xiao (10.1016/j.applthermaleng.2025.127817_b0115) 2023; 232 Yang (10.1016/j.applthermaleng.2025.127817_b0130) 2020; 117 Yang (10.1016/j.applthermaleng.2025.127817_b0135) 2019; 161 Tian (10.1016/j.applthermaleng.2025.127817_b0100) 2013; 58 Lucci (10.1016/j.applthermaleng.2025.127817_b0170) 2017; 108 Wang (10.1016/j.applthermaleng.2025.127817_b0090) 2023; 144 Wang (10.1016/j.applthermaleng.2025.127817_b0025) 2020; 261 Bondareva (10.1016/j.applthermaleng.2025.127817_b0085) 2024; 296 Tao (10.1016/j.applthermaleng.2025.127817_b0020) 2018; 93 Feng (10.1016/j.applthermaleng.2025.127817_b0125) 2015; 90 Huo (10.1016/j.applthermaleng.2025.127817_b0175) 2023; 194 Du (10.1016/j.applthermaleng.2025.127817_b0015) 2023; 208 Yang (10.1016/j.applthermaleng.2025.127817_b0105) 2020; 268 Xiao (10.1016/j.applthermaleng.2025.127817_b0095) 2014; 81 Agostini (10.1016/j.applthermaleng.2025.127817_b0145) 2022; 255 Amagour (10.1016/j.applthermaleng.2025.127817_b0055) 2021; 280 Von Rickenbach (10.1016/j.applthermaleng.2025.127817_b0160) 2014; 75 Nie (10.1016/j.applthermaleng.2025.127817_b0150) 2017; 113 Lucci (10.1016/j.applthermaleng.2025.127817_b0165) 2015; 264 He (10.1016/j.applthermaleng.2025.127817_b0065) 2019; 25 Wang (10.1016/j.applthermaleng.2025.127817_b0040) 2022; 201 |
References_xml | – volume: 195 year: 2021 ident: b0120 article-title: Pore-scale numerical simulation of convection heat transfer in high porosity open-cell metal foam under rotating conditions publication-title: Appl. Therm. Eng. – volume: 161 year: 2019 ident: b0135 article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage publication-title: Appl. Therm. Eng. – volume: 90 start-page: 838 year: 2015 end-page: 847 ident: b0125 article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam publication-title: Int. J. Heat Mass Transf. – volume: 39 start-page: 246 year: 2012 end-page: 257 ident: b0080 article-title: Thermal energy storage: how previous findings determine current research priorities publication-title: Energy – volume: 201 year: 2022 ident: b0040 article-title: Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials publication-title: Appl. Therm. Eng. – volume: 36 start-page: 5539 year: 2011 end-page: 5546 ident: b0070 article-title: A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals publication-title: Energy – volume: 264 start-page: 514 year: 2015 end-page: 521 ident: b0165 article-title: On the catalytic performance of open cell structures versus honeycombs publication-title: Chem. Eng. J. – volume: 44 start-page: 4993 year: 2005 end-page: 5002 ident: b0140 article-title: Mass-transfer characterization of metallic foams as supports for structured catalysts publication-title: Ind. Eng. Chem. Res. – volume: 93 start-page: 245 year: 2018 end-page: 259 ident: b0020 article-title: A review of phase change material and performance enhancement method for latent heat storage system publication-title: Renew. Sust. Energ. Rev. – volume: 27 start-page: 724 year: 2013 end-page: 737 ident: b0035 article-title: High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques publication-title: Renew. Sust. Energ. Rev. – volume: 147 start-page: 464 year: 2019 end-page: 472 ident: b0110 article-title: Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals publication-title: Appl. Therm. Eng. – volume: 65 year: 2024 ident: b0005 article-title: Numerical study of heat transfer characteristics of phase change materials reinforced with porous media based on hybrid mesh publication-title: Sustain. Energy Techn. – volume: 255 year: 2022 ident: b0145 article-title: An open-source workflow for open-cell foams modelling: geometry generation and CFD simulations for momentum and mass transport publication-title: Chem. Eng. Sci. – volume: 72 start-page: 186 year: 2014 end-page: 200 ident: b0045 article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure publication-title: Int. J. Heat Mass Transf. – volume: 302 year: 2024 ident: b0010 article-title: Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: an experimental and numerical study publication-title: Energy – volume: 24 start-page: 825 year: 2003 end-page: 834 ident: b0155 article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure publication-title: Int. J. Heat Fluid Fl. – volume: 75 start-page: 337 year: 2014 end-page: 346 ident: b0160 article-title: Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams publication-title: Int. J. Heat Mass Transf. – volume: 232 year: 2023 ident: b0115 article-title: Melting of phase change materials inside metal foams with uniform/graded porosity: Pore-scale simulation publication-title: Appl. Therm. Eng. – volume: 280 year: 2021 ident: b0055 article-title: Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage publication-title: J. Clean. Prod. – volume: 179 year: 2020 ident: b0075 article-title: Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams publication-title: Appl. Therm. Eng. – volume: 144 year: 2023 ident: b0090 article-title: Effect of enhancement in metal foam pore density on heat transfer of phase-change materials publication-title: Int. Commun. Heat Mass – volume: 99 start-page: 1254 year: 2016 end-page: 1262 ident: b0060 article-title: Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM) publication-title: Appl. Therm. Eng. – volume: 208 year: 2023 ident: b0015 article-title: Numerical studies on a fin-foam composite structure towards improving melting phase change publication-title: Int. J. Heat Mass Transf. – volume: 33 start-page: 1026 year: 2024 end-page: 1036 ident: b0180 article-title: Numerical analysis on charging performance of the macro-encapsulating combined sensible-latent heat storage system with structural parameters publication-title: J. Therm. Sci. – volume: 113 start-page: 819 year: 2017 end-page: 839 ident: b0150 article-title: Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model publication-title: Int. J. Heat Mass Transf. – volume: 58 start-page: 86 year: 2013 end-page: 96 ident: b0100 article-title: Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES) publication-title: Int. J. Heat Mass Transf. – volume: 261 year: 2020 ident: b0025 article-title: Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application publication-title: Appl. Energy – volume: 268 year: 2020 ident: b0105 article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam publication-title: Appl. Energy – volume: 108 start-page: 341 year: 2017 end-page: 350 ident: b0170 article-title: Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications publication-title: Int. J. Heat Mass Transf. – volume: 81 start-page: 94 year: 2014 end-page: 105 ident: b0095 article-title: Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage publication-title: Int. J. Therm. Sci. – volume: 194 year: 2023 ident: b0175 article-title: Is monolithic configuration superior to random packing in a fixed bed reactor for CLC like processes? publication-title: Chem. Eng. Process. – volume: 85 year: 2024 ident: b0030 article-title: Improving phase change heat transfer in an enclosure filled by uniform and heterogenous metal foam layers: a neural network design approach publication-title: J. Energy Storage – volume: 117 year: 2020 ident: b0130 article-title: Role of pin fin-metal foam composite structure in improving solidification: performance evaluation publication-title: Int. Commun. Heat Mass – volume: 165 year: 2021 ident: b0050 article-title: Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage publication-title: Int. J. Heat Mass Transf. – volume: 25 year: 2019 ident: b0065 article-title: Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage publication-title: J. Energy Storage – volume: 296 year: 2024 ident: b0085 article-title: Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material publication-title: Energy – volume: 296 year: 2024 ident: 10.1016/j.applthermaleng.2025.127817_b0085 article-title: Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material publication-title: Energy doi: 10.1016/j.energy.2024.131123 – volume: 165 year: 2021 ident: 10.1016/j.applthermaleng.2025.127817_b0050 article-title: Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120652 – volume: 108 start-page: 341 year: 2017 ident: 10.1016/j.applthermaleng.2025.127817_b0170 article-title: Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.073 – volume: 65 year: 2024 ident: 10.1016/j.applthermaleng.2025.127817_b0005 article-title: Numerical study of heat transfer characteristics of phase change materials reinforced with porous media based on hybrid mesh publication-title: Sustain. Energy Techn. – volume: 85 year: 2024 ident: 10.1016/j.applthermaleng.2025.127817_b0030 article-title: Improving phase change heat transfer in an enclosure filled by uniform and heterogenous metal foam layers: a neural network design approach publication-title: J. Energy Storage doi: 10.1016/j.est.2024.110954 – volume: 44 start-page: 4993 year: 2005 ident: 10.1016/j.applthermaleng.2025.127817_b0140 article-title: Mass-transfer characterization of metallic foams as supports for structured catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0490886 – volume: 194 year: 2023 ident: 10.1016/j.applthermaleng.2025.127817_b0175 article-title: Is monolithic configuration superior to random packing in a fixed bed reactor for CLC like processes? publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2023.109581 – volume: 261 year: 2020 ident: 10.1016/j.applthermaleng.2025.127817_b0025 article-title: Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114472 – volume: 179 year: 2020 ident: 10.1016/j.applthermaleng.2025.127817_b0075 article-title: Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115731 – volume: 302 year: 2024 ident: 10.1016/j.applthermaleng.2025.127817_b0010 article-title: Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: an experimental and numerical study publication-title: Energy doi: 10.1016/j.energy.2024.131813 – volume: 201 year: 2022 ident: 10.1016/j.applthermaleng.2025.127817_b0040 article-title: Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117778 – volume: 36 start-page: 5539 year: 2011 ident: 10.1016/j.applthermaleng.2025.127817_b0070 article-title: A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals publication-title: Energy doi: 10.1016/j.energy.2011.07.019 – volume: 33 start-page: 1026 year: 2024 ident: 10.1016/j.applthermaleng.2025.127817_b0180 article-title: Numerical analysis on charging performance of the macro-encapsulating combined sensible-latent heat storage system with structural parameters publication-title: J. Therm. Sci. doi: 10.1007/s11630-024-1946-8 – volume: 25 year: 2019 ident: 10.1016/j.applthermaleng.2025.127817_b0065 article-title: Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100874 – volume: 232 year: 2023 ident: 10.1016/j.applthermaleng.2025.127817_b0115 article-title: Melting of phase change materials inside metal foams with uniform/graded porosity: Pore-scale simulation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121082 – volume: 195 year: 2021 ident: 10.1016/j.applthermaleng.2025.127817_b0120 article-title: Pore-scale numerical simulation of convection heat transfer in high porosity open-cell metal foam under rotating conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117168 – volume: 27 start-page: 724 year: 2013 ident: 10.1016/j.applthermaleng.2025.127817_b0035 article-title: High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2013.07.028 – volume: 147 start-page: 464 year: 2019 ident: 10.1016/j.applthermaleng.2025.127817_b0110 article-title: Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.106 – volume: 161 year: 2019 ident: 10.1016/j.applthermaleng.2025.127817_b0135 article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114163 – volume: 39 start-page: 246 year: 2012 ident: 10.1016/j.applthermaleng.2025.127817_b0080 article-title: Thermal energy storage: how previous findings determine current research priorities publication-title: Energy doi: 10.1016/j.energy.2012.01.024 – volume: 113 start-page: 819 year: 2017 ident: 10.1016/j.applthermaleng.2025.127817_b0150 article-title: Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.119 – volume: 280 year: 2021 ident: 10.1016/j.applthermaleng.2025.127817_b0055 article-title: Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124238 – volume: 58 start-page: 86 year: 2013 ident: 10.1016/j.applthermaleng.2025.127817_b0100 article-title: Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES) publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.11.034 – volume: 93 start-page: 245 year: 2018 ident: 10.1016/j.applthermaleng.2025.127817_b0020 article-title: A review of phase change material and performance enhancement method for latent heat storage system publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2018.05.028 – volume: 144 year: 2023 ident: 10.1016/j.applthermaleng.2025.127817_b0090 article-title: Effect of enhancement in metal foam pore density on heat transfer of phase-change materials publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2023.106750 – volume: 255 year: 2022 ident: 10.1016/j.applthermaleng.2025.127817_b0145 article-title: An open-source workflow for open-cell foams modelling: geometry generation and CFD simulations for momentum and mass transport publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117583 – volume: 268 year: 2020 ident: 10.1016/j.applthermaleng.2025.127817_b0105 article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115019 – volume: 75 start-page: 337 year: 2014 ident: 10.1016/j.applthermaleng.2025.127817_b0160 article-title: Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.03.060 – volume: 99 start-page: 1254 year: 2016 ident: 10.1016/j.applthermaleng.2025.127817_b0060 article-title: Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.130 – volume: 72 start-page: 186 year: 2014 ident: 10.1016/j.applthermaleng.2025.127817_b0045 article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.01.014 – volume: 264 start-page: 514 year: 2015 ident: 10.1016/j.applthermaleng.2025.127817_b0165 article-title: On the catalytic performance of open cell structures versus honeycombs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.080 – volume: 208 year: 2023 ident: 10.1016/j.applthermaleng.2025.127817_b0015 article-title: Numerical studies on a fin-foam composite structure towards improving melting phase change publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124076 – volume: 117 year: 2020 ident: 10.1016/j.applthermaleng.2025.127817_b0130 article-title: Role of pin fin-metal foam composite structure in improving solidification: performance evaluation publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2020.104775 – volume: 90 start-page: 838 year: 2015 ident: 10.1016/j.applthermaleng.2025.127817_b0125 article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.06.088 – volume: 81 start-page: 94 year: 2014 ident: 10.1016/j.applthermaleng.2025.127817_b0095 article-title: Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.03.006 – volume: 24 start-page: 825 year: 2003 ident: 10.1016/j.applthermaleng.2025.127817_b0155 article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure publication-title: Int. J. Heat Fluid Fl. doi: 10.1016/j.ijheatfluidflow.2003.08.002 |
SSID | ssj0012874 |
Score | 2.466509 |
Snippet | •Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 127817 |
SubjectTerms | Computational fluid dynamics Finned metal foam Latent heat storage Phase change materials Porosity gradient |
Title | Pore-scale investigation of phase change heat storage enhancement in gradient finned metal foams |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2025.127817 |
Volume | 279 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA1jguiD-InzY-Rhr9nWNmnaJxnDMRWGoIO91XRJ3IS1Y6uv_nbv7YfbwAfBx5Y2lHPDvSfNybmEtLCtkZWKs1D5XcY150zJwGfaFa6yoYy7Klf5jvzhmD9OxKRG-tVZGJRVlrm_yOl5ti7vdEo0O8v5vPPieCKE8gcVGn26QnT85FziLG9__cg8HPRzzxddImT49D5pbTReuEmMPGuhsG0JrBZd0XZcGeTty34pU1ulZ3BMjkrOSHvFZ52QmklOyeGWk-AZeXtOV4atAXBD5xvrjDShqaXLGZQqWhzxpZh8KUoiIZFQk8ww6viHEF6j76tcAJZRix25NF0YoObUpmqxPifjwf1rf8jK5gls6gRBxoCOBl0NFVkq7U6FhVgYT5iuDY1wAl8r3GTxfD8UKtDYXJBLLkJY7MWxNgFX3gWpJ2liLgkFihSjE5oCLsVjqZSNgfdI4Hra8SDQDSIqrKJl4ZERVeKxj2gX4wgxjgqMG-SuAjbaiXkE6fxPI1z9e4RrcoBXeLrQETeknq0-zS3QjCxu5vOoSfZ6D0_D0TfrWNQw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gJj4OxmfE5x64LtB2t4-TMUaCisRESLjVLbsVTGgJ4NXf7kxbBBIPJl772DTftDPfdr-dD6BKtkaxpwQPlNvgQgvBlee7XNvSVnHgRQ2VqXw7bqsnHvuyX4K7xV4YklUWuT_P6Vm2Lo7UCzTrk9Go_mo5MsDyhxWa-nQFzgZsCvx8ycag9vWj87CooXs265IBp8u3oLoUedEqMRGtsSLfEpwu2rJm2Z6f-Zf9UqdWak9zH_YK0shu8-c6gJJJDmF3pZXgEby9pFPDZ4i4YaNl74w0YWnMJkOsVSzf48so-zLSRGImYSYZUtjpFyHext6nmQJszmKy5NJsbJCbszhV49kx9Jr33bsWL9wT-MDy_TlHPuo3NJZkT2l7IGMMhnGkacSBkZbvakWrLI7rBlL5mtwFhSdkgLO9KNLGF8o5gXKSJuYUGHKkiFqhKSRTIvKUiiMkPh6SPW05GOkKyAVW4SRvkhEu1GMf4TrGIWEc5hhX4GYBbLgW9BDz-Z9GOPv3CNew3eo-t8P2Q-fpHHboDG01tOQFlOfTT3OJnGMeXWXv1DfrBdW- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore-scale+investigation+of+phase+change+heat+storage+enhancement+in+gradient+finned+metal+foams&rft.jtitle=Applied+thermal+engineering&rft.au=Huo%2C+Guanping&rft.au=Guo%2C+Xueyan&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Jian&rft.date=2025-11-15&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=279&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.127817&rft.externalDocID=S1359431125024093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |