Pore-scale investigation of phase change heat storage enhancement in gradient finned metal foams

•Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat storage enhancement.•Positive porosity gradient reduces PCM melting time by 14.2% over negative gradient.•Copper skeletons yield up to 43.8% s...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 279; p. 127817
Main Authors Huo, Guanping, Guo, Xueyan, Zhao, Wei, Zhang, Jian, Rong, Wanting
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat storage enhancement.•Positive porosity gradient reduces PCM melting time by 14.2% over negative gradient.•Copper skeletons yield up to 43.8% shorter phase change duration than aluminum. This study presents a detailed pore-scale numerical investigation of the melting behaviour of phase change materials embedded in gradient finned metal foams using a structure-resolved computational fluid dynamics approach. An idealised geometric model was developed based on the Kelvin cell units, thereby enabling precise control over porosity gradients by varying skeleton dimensions along the heat flow direction. The findings demonstrate that the incorporation of longitudinal fins into the metal foam significantly enhances heat conduction and accelerates phase change materials melting. The configuration exhibiting a positive porosity gradient demonstrated optimal performance, exhibiting a 14.2% reduction in total melting time than that for a negative gradient configuration. Furthermore, the replacement of aluminium with copper as the skeleton material resulted in a 43.9% reduction in melting duration, thereby demonstrating the critical influence of thermal conductivity. The study presents novel insights into the design of composite finned metal foam structures and highlights effective strategies for improving the efficiency of latent heat energy storage systems.
AbstractList •Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat storage enhancement.•Positive porosity gradient reduces PCM melting time by 14.2% over negative gradient.•Copper skeletons yield up to 43.8% shorter phase change duration than aluminum. This study presents a detailed pore-scale numerical investigation of the melting behaviour of phase change materials embedded in gradient finned metal foams using a structure-resolved computational fluid dynamics approach. An idealised geometric model was developed based on the Kelvin cell units, thereby enabling precise control over porosity gradients by varying skeleton dimensions along the heat flow direction. The findings demonstrate that the incorporation of longitudinal fins into the metal foam significantly enhances heat conduction and accelerates phase change materials melting. The configuration exhibiting a positive porosity gradient demonstrated optimal performance, exhibiting a 14.2% reduction in total melting time than that for a negative gradient configuration. Furthermore, the replacement of aluminium with copper as the skeleton material resulted in a 43.9% reduction in melting duration, thereby demonstrating the critical influence of thermal conductivity. The study presents novel insights into the design of composite finned metal foam structures and highlights effective strategies for improving the efficiency of latent heat energy storage systems.
ArticleNumber 127817
Author Zhao, Wei
Rong, Wanting
Guo, Xueyan
Huo, Guanping
Zhang, Jian
Author_xml – sequence: 1
  givenname: Guanping
  orcidid: 0000-0002-2262-5357
  surname: Huo
  fullname: Huo, Guanping
  email: huoguanping@163.com
  organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
– sequence: 2
  givenname: Xueyan
  orcidid: 0000-0003-1766-2871
  surname: Guo
  fullname: Guo, Xueyan
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
– sequence: 3
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
– sequence: 4
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
– sequence: 5
  givenname: Wanting
  surname: Rong
  fullname: Rong, Wanting
  organization: School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
BookMark eNqNkD1PwzAQhj0UibbwHzywJthJnDgSC6ooIFWCAWZztS-Jq8SubKsS_55UZWFjug_peXX3rMjCeYeE3HGWc8br-0MOx-OYBgwTjOj6vGCFyHnRSN4syJKXos2qkvNrsorxwBgvZFMtyde7D5hFPTPUuhPGZHtI1jvqO3ocICLVA7ge6YCQaEw-wDygm5caJ3RpxmgfwNhz31nn0NAJE4y08zDFG3LVwRjx9reuyef26WPzku3enl83j7tMcylTJvleMsOKsgFTaNG1UGMpkHUtCi5rA4yXRVnXrQBpGBOyairRsrba7w3KCso1ebjk6uBjDNipY7AThG_FmTobUgf115A6G1IXQzO-veA433iyGFTU80cajQ2okzLe_i_oB7SXfRg
Cites_doi 10.1016/j.energy.2024.131123
10.1016/j.ijheatmasstransfer.2020.120652
10.1016/j.ijheatmasstransfer.2016.11.073
10.1016/j.est.2024.110954
10.1021/ie0490886
10.1016/j.cep.2023.109581
10.1016/j.apenergy.2019.114472
10.1016/j.applthermaleng.2020.115731
10.1016/j.energy.2024.131813
10.1016/j.applthermaleng.2021.117778
10.1016/j.energy.2011.07.019
10.1007/s11630-024-1946-8
10.1016/j.est.2019.100874
10.1016/j.applthermaleng.2023.121082
10.1016/j.applthermaleng.2021.117168
10.1016/j.rser.2013.07.028
10.1016/j.applthermaleng.2018.10.106
10.1016/j.applthermaleng.2019.114163
10.1016/j.energy.2012.01.024
10.1016/j.ijheatmasstransfer.2017.05.119
10.1016/j.jclepro.2020.124238
10.1016/j.ijheatmasstransfer.2012.11.034
10.1016/j.rser.2018.05.028
10.1016/j.icheatmasstransfer.2023.106750
10.1016/j.ces.2022.117583
10.1016/j.apenergy.2020.115019
10.1016/j.ijheatmasstransfer.2014.03.060
10.1016/j.applthermaleng.2016.01.130
10.1016/j.ijheatmasstransfer.2014.01.014
10.1016/j.cej.2014.11.080
10.1016/j.ijheatmasstransfer.2023.124076
10.1016/j.icheatmasstransfer.2020.104775
10.1016/j.ijheatmasstransfer.2015.06.088
10.1016/j.ijthermalsci.2014.03.006
10.1016/j.ijheatfluidflow.2003.08.002
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2025.127817
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2025_127817
S1359431125024093
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
ID FETCH-LOGICAL-c188t-81b80d0237ad2c5f9a6e35e0f9e5186da013236695a8d005847459094bbde84a3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Wed Aug 20 23:58:00 EDT 2025
Sat Aug 30 17:13:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Phase change materials
Finned metal foam
Porosity gradient
Computational fluid dynamics
Latent heat storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c188t-81b80d0237ad2c5f9a6e35e0f9e5186da013236695a8d005847459094bbde84a3
ORCID 0000-0002-2262-5357
0000-0003-1766-2871
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2025_127817
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2025_127817
PublicationCentury 2000
PublicationDate 2025-11-15
PublicationDateYYYYMMDD 2025-11-15
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Yang, Lin, Chen, Mao, Ma (b0065) 2019; 25
Von Rickenbach, Lucci, Narayanan, Dimopoulos Eggenschwiler, Poulikakos (b0160) 2014; 75
Bondareva, Sheremet (b0085) 2024; 296
Kamkari, Shokouhmand, Bruno (b0045) 2014; 72
Yang, Niu, Guo, Bai, Li, He (b0130) 2020; 117
Du, Liu, Huang, Xiao, Yang, He (b0015) 2023; 208
Tao, He (b0020) 2018; 93
Wang, Wu, Lei, Liu, Li, Wu (b0025) 2020; 261
Giani, Groppi, Tronconi (b0140) 2005; 44
Yang, Wei, Wang, He (b0105) 2020; 268
Lucci, Della Torre, Montenegro, Dimopoulos Eggenschwiler (b0165) 2015; 264
Wang, Sun, Zhu, Zhu, Zhang, Dou, Wu, Szymczak, Wu (b0090) 2023; 144
Xiao, Zhang, Li (b0095) 2014; 81
Huang, Du, Li, Li, Yang, Li (b0010) 2024; 302
Nie, Lin, Tong (b0150) 2017; 113
Lucci, Della Torre, Montenegro, Kaufmann, Dimopoulos Eggenschwiler (b0170) 2017; 108
Amagour, Bennajah, Rachek (b0055) 2021; 280
Feng, Shi, Li, Lu (b0125) 2015; 90
Sharma, Ganesan, Tyagi, Metselaar, Sandaran (b0060) 2016; 99
Wang, Wei, Xu, Ju, Yang, Du (b0110) 2019; 147
Nie, Liu, Deng (b0050) 2021; 165
Fernandes, Pitié, Cáceres, Baeyens (b0080) 2012; 39
Tian, Zhao (b0100) 2013; 58
Yang, Niu, Bai, Li, Cui, He (b0135) 2019; 161
Wang, Pan, Wang, Wu, Ma (b0180) 2024; 33
Sultan, Ali, Shafi, Fteiti, Baro, Alresheedi, Islam, Yusaf, Ghalambaz (b0030) 2024; 85
Cárdenas, León (b0035) 2013; 27
Ghahremannezhad, Xu, Salimpour, Wang, Vafai (b0075) 2020; 179
Yang, Liu, Wang (b0120) 2021; 195
Huo, Guo (b0175) 2023; 194
Boomsma, Poulikakos, Ventikos (b0155) 2003; 24
Wang, Zhu, Zhang, Yu, Li (b0005) 2024; 65
Wang, Zhang, Dou, Zhang, Wu, Zhou (b0040) 2022; 201
Tian, Zhao (b0070) 2011; 36
Agostini, Boccardo, Marchisio (b0145) 2022; 255
Xiao, Du, Lu, Li, Huang, Yang, He (b0115) 2023; 232
Wang (10.1016/j.applthermaleng.2025.127817_b0005) 2024; 65
Sultan (10.1016/j.applthermaleng.2025.127817_b0030) 2024; 85
Cárdenas (10.1016/j.applthermaleng.2025.127817_b0035) 2013; 27
Huang (10.1016/j.applthermaleng.2025.127817_b0010) 2024; 302
Wang (10.1016/j.applthermaleng.2025.127817_b0180) 2024; 33
Fernandes (10.1016/j.applthermaleng.2025.127817_b0080) 2012; 39
Giani (10.1016/j.applthermaleng.2025.127817_b0140) 2005; 44
Wang (10.1016/j.applthermaleng.2025.127817_b0110) 2019; 147
Nie (10.1016/j.applthermaleng.2025.127817_b0050) 2021; 165
Sharma (10.1016/j.applthermaleng.2025.127817_b0060) 2016; 99
Yang (10.1016/j.applthermaleng.2025.127817_b0120) 2021; 195
Ghahremannezhad (10.1016/j.applthermaleng.2025.127817_b0075) 2020; 179
Tian (10.1016/j.applthermaleng.2025.127817_b0070) 2011; 36
Boomsma (10.1016/j.applthermaleng.2025.127817_b0155) 2003; 24
Kamkari (10.1016/j.applthermaleng.2025.127817_b0045) 2014; 72
Xiao (10.1016/j.applthermaleng.2025.127817_b0115) 2023; 232
Yang (10.1016/j.applthermaleng.2025.127817_b0130) 2020; 117
Yang (10.1016/j.applthermaleng.2025.127817_b0135) 2019; 161
Tian (10.1016/j.applthermaleng.2025.127817_b0100) 2013; 58
Lucci (10.1016/j.applthermaleng.2025.127817_b0170) 2017; 108
Wang (10.1016/j.applthermaleng.2025.127817_b0090) 2023; 144
Wang (10.1016/j.applthermaleng.2025.127817_b0025) 2020; 261
Bondareva (10.1016/j.applthermaleng.2025.127817_b0085) 2024; 296
Tao (10.1016/j.applthermaleng.2025.127817_b0020) 2018; 93
Feng (10.1016/j.applthermaleng.2025.127817_b0125) 2015; 90
Huo (10.1016/j.applthermaleng.2025.127817_b0175) 2023; 194
Du (10.1016/j.applthermaleng.2025.127817_b0015) 2023; 208
Yang (10.1016/j.applthermaleng.2025.127817_b0105) 2020; 268
Xiao (10.1016/j.applthermaleng.2025.127817_b0095) 2014; 81
Agostini (10.1016/j.applthermaleng.2025.127817_b0145) 2022; 255
Amagour (10.1016/j.applthermaleng.2025.127817_b0055) 2021; 280
Von Rickenbach (10.1016/j.applthermaleng.2025.127817_b0160) 2014; 75
Nie (10.1016/j.applthermaleng.2025.127817_b0150) 2017; 113
Lucci (10.1016/j.applthermaleng.2025.127817_b0165) 2015; 264
He (10.1016/j.applthermaleng.2025.127817_b0065) 2019; 25
Wang (10.1016/j.applthermaleng.2025.127817_b0040) 2022; 201
References_xml – volume: 195
  year: 2021
  ident: b0120
  article-title: Pore-scale numerical simulation of convection heat transfer in high porosity open-cell metal foam under rotating conditions
  publication-title: Appl. Therm. Eng.
– volume: 161
  year: 2019
  ident: b0135
  article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage
  publication-title: Appl. Therm. Eng.
– volume: 90
  start-page: 838
  year: 2015
  end-page: 847
  ident: b0125
  article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam
  publication-title: Int. J. Heat Mass Transf.
– volume: 39
  start-page: 246
  year: 2012
  end-page: 257
  ident: b0080
  article-title: Thermal energy storage: how previous findings determine current research priorities
  publication-title: Energy
– volume: 201
  year: 2022
  ident: b0040
  article-title: Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 5539
  year: 2011
  end-page: 5546
  ident: b0070
  article-title: A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals
  publication-title: Energy
– volume: 264
  start-page: 514
  year: 2015
  end-page: 521
  ident: b0165
  article-title: On the catalytic performance of open cell structures versus honeycombs
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 4993
  year: 2005
  end-page: 5002
  ident: b0140
  article-title: Mass-transfer characterization of metallic foams as supports for structured catalysts
  publication-title: Ind. Eng. Chem. Res.
– volume: 93
  start-page: 245
  year: 2018
  end-page: 259
  ident: b0020
  article-title: A review of phase change material and performance enhancement method for latent heat storage system
  publication-title: Renew. Sust. Energ. Rev.
– volume: 27
  start-page: 724
  year: 2013
  end-page: 737
  ident: b0035
  article-title: High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques
  publication-title: Renew. Sust. Energ. Rev.
– volume: 147
  start-page: 464
  year: 2019
  end-page: 472
  ident: b0110
  article-title: Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals
  publication-title: Appl. Therm. Eng.
– volume: 65
  year: 2024
  ident: b0005
  article-title: Numerical study of heat transfer characteristics of phase change materials reinforced with porous media based on hybrid mesh
  publication-title: Sustain. Energy Techn.
– volume: 255
  year: 2022
  ident: b0145
  article-title: An open-source workflow for open-cell foams modelling: geometry generation and CFD simulations for momentum and mass transport
  publication-title: Chem. Eng. Sci.
– volume: 72
  start-page: 186
  year: 2014
  end-page: 200
  ident: b0045
  article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure
  publication-title: Int. J. Heat Mass Transf.
– volume: 302
  year: 2024
  ident: b0010
  article-title: Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: an experimental and numerical study
  publication-title: Energy
– volume: 24
  start-page: 825
  year: 2003
  end-page: 834
  ident: b0155
  article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure
  publication-title: Int. J. Heat Fluid Fl.
– volume: 75
  start-page: 337
  year: 2014
  end-page: 346
  ident: b0160
  article-title: Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams
  publication-title: Int. J. Heat Mass Transf.
– volume: 232
  year: 2023
  ident: b0115
  article-title: Melting of phase change materials inside metal foams with uniform/graded porosity: Pore-scale simulation
  publication-title: Appl. Therm. Eng.
– volume: 280
  year: 2021
  ident: b0055
  article-title: Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage
  publication-title: J. Clean. Prod.
– volume: 179
  year: 2020
  ident: b0075
  article-title: Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams
  publication-title: Appl. Therm. Eng.
– volume: 144
  year: 2023
  ident: b0090
  article-title: Effect of enhancement in metal foam pore density on heat transfer of phase-change materials
  publication-title: Int. Commun. Heat Mass
– volume: 99
  start-page: 1254
  year: 2016
  end-page: 1262
  ident: b0060
  article-title: Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM)
  publication-title: Appl. Therm. Eng.
– volume: 208
  year: 2023
  ident: b0015
  article-title: Numerical studies on a fin-foam composite structure towards improving melting phase change
  publication-title: Int. J. Heat Mass Transf.
– volume: 33
  start-page: 1026
  year: 2024
  end-page: 1036
  ident: b0180
  article-title: Numerical analysis on charging performance of the macro-encapsulating combined sensible-latent heat storage system with structural parameters
  publication-title: J. Therm. Sci.
– volume: 113
  start-page: 819
  year: 2017
  end-page: 839
  ident: b0150
  article-title: Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model
  publication-title: Int. J. Heat Mass Transf.
– volume: 58
  start-page: 86
  year: 2013
  end-page: 96
  ident: b0100
  article-title: Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES)
  publication-title: Int. J. Heat Mass Transf.
– volume: 261
  year: 2020
  ident: b0025
  article-title: Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application
  publication-title: Appl. Energy
– volume: 268
  year: 2020
  ident: b0105
  article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam
  publication-title: Appl. Energy
– volume: 108
  start-page: 341
  year: 2017
  end-page: 350
  ident: b0170
  article-title: Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications
  publication-title: Int. J. Heat Mass Transf.
– volume: 81
  start-page: 94
  year: 2014
  end-page: 105
  ident: b0095
  article-title: Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage
  publication-title: Int. J. Therm. Sci.
– volume: 194
  year: 2023
  ident: b0175
  article-title: Is monolithic configuration superior to random packing in a fixed bed reactor for CLC like processes?
  publication-title: Chem. Eng. Process.
– volume: 85
  year: 2024
  ident: b0030
  article-title: Improving phase change heat transfer in an enclosure filled by uniform and heterogenous metal foam layers: a neural network design approach
  publication-title: J. Energy Storage
– volume: 117
  year: 2020
  ident: b0130
  article-title: Role of pin fin-metal foam composite structure in improving solidification: performance evaluation
  publication-title: Int. Commun. Heat Mass
– volume: 165
  year: 2021
  ident: b0050
  article-title: Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage
  publication-title: Int. J. Heat Mass Transf.
– volume: 25
  year: 2019
  ident: b0065
  article-title: Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage
  publication-title: J. Energy Storage
– volume: 296
  year: 2024
  ident: b0085
  article-title: Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material
  publication-title: Energy
– volume: 296
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127817_b0085
  article-title: Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131123
– volume: 165
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127817_b0050
  article-title: Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120652
– volume: 108
  start-page: 341
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.127817_b0170
  article-title: Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.073
– volume: 65
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127817_b0005
  article-title: Numerical study of heat transfer characteristics of phase change materials reinforced with porous media based on hybrid mesh
  publication-title: Sustain. Energy Techn.
– volume: 85
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127817_b0030
  article-title: Improving phase change heat transfer in an enclosure filled by uniform and heterogenous metal foam layers: a neural network design approach
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.110954
– volume: 44
  start-page: 4993
  year: 2005
  ident: 10.1016/j.applthermaleng.2025.127817_b0140
  article-title: Mass-transfer characterization of metallic foams as supports for structured catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0490886
– volume: 194
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127817_b0175
  article-title: Is monolithic configuration superior to random packing in a fixed bed reactor for CLC like processes?
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2023.109581
– volume: 261
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127817_b0025
  article-title: Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114472
– volume: 179
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127817_b0075
  article-title: Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115731
– volume: 302
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127817_b0010
  article-title: Optimal design on fin-metal foam hybrid structure for melting and solidification phase change storage: an experimental and numerical study
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131813
– volume: 201
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.127817_b0040
  article-title: Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117778
– volume: 36
  start-page: 5539
  year: 2011
  ident: 10.1016/j.applthermaleng.2025.127817_b0070
  article-title: A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.019
– volume: 33
  start-page: 1026
  year: 2024
  ident: 10.1016/j.applthermaleng.2025.127817_b0180
  article-title: Numerical analysis on charging performance of the macro-encapsulating combined sensible-latent heat storage system with structural parameters
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-024-1946-8
– volume: 25
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.127817_b0065
  article-title: Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100874
– volume: 232
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127817_b0115
  article-title: Melting of phase change materials inside metal foams with uniform/graded porosity: Pore-scale simulation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121082
– volume: 195
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127817_b0120
  article-title: Pore-scale numerical simulation of convection heat transfer in high porosity open-cell metal foam under rotating conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117168
– volume: 27
  start-page: 724
  year: 2013
  ident: 10.1016/j.applthermaleng.2025.127817_b0035
  article-title: High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2013.07.028
– volume: 147
  start-page: 464
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.127817_b0110
  article-title: Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.106
– volume: 161
  year: 2019
  ident: 10.1016/j.applthermaleng.2025.127817_b0135
  article-title: Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114163
– volume: 39
  start-page: 246
  year: 2012
  ident: 10.1016/j.applthermaleng.2025.127817_b0080
  article-title: Thermal energy storage: how previous findings determine current research priorities
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.024
– volume: 113
  start-page: 819
  year: 2017
  ident: 10.1016/j.applthermaleng.2025.127817_b0150
  article-title: Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.119
– volume: 280
  year: 2021
  ident: 10.1016/j.applthermaleng.2025.127817_b0055
  article-title: Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124238
– volume: 58
  start-page: 86
  year: 2013
  ident: 10.1016/j.applthermaleng.2025.127817_b0100
  article-title: Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.11.034
– volume: 93
  start-page: 245
  year: 2018
  ident: 10.1016/j.applthermaleng.2025.127817_b0020
  article-title: A review of phase change material and performance enhancement method for latent heat storage system
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2018.05.028
– volume: 144
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127817_b0090
  article-title: Effect of enhancement in metal foam pore density on heat transfer of phase-change materials
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2023.106750
– volume: 255
  year: 2022
  ident: 10.1016/j.applthermaleng.2025.127817_b0145
  article-title: An open-source workflow for open-cell foams modelling: geometry generation and CFD simulations for momentum and mass transport
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117583
– volume: 268
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127817_b0105
  article-title: Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115019
– volume: 75
  start-page: 337
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.127817_b0160
  article-title: Multi-scale modelling of mass transfer limited heterogeneous reactions in open cell foams
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.03.060
– volume: 99
  start-page: 1254
  year: 2016
  ident: 10.1016/j.applthermaleng.2025.127817_b0060
  article-title: Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.130
– volume: 72
  start-page: 186
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.127817_b0045
  article-title: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.01.014
– volume: 264
  start-page: 514
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.127817_b0165
  article-title: On the catalytic performance of open cell structures versus honeycombs
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.11.080
– volume: 208
  year: 2023
  ident: 10.1016/j.applthermaleng.2025.127817_b0015
  article-title: Numerical studies on a fin-foam composite structure towards improving melting phase change
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124076
– volume: 117
  year: 2020
  ident: 10.1016/j.applthermaleng.2025.127817_b0130
  article-title: Role of pin fin-metal foam composite structure in improving solidification: performance evaluation
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2020.104775
– volume: 90
  start-page: 838
  year: 2015
  ident: 10.1016/j.applthermaleng.2025.127817_b0125
  article-title: Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.06.088
– volume: 81
  start-page: 94
  year: 2014
  ident: 10.1016/j.applthermaleng.2025.127817_b0095
  article-title: Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.03.006
– volume: 24
  start-page: 825
  year: 2003
  ident: 10.1016/j.applthermaleng.2025.127817_b0155
  article-title: Simulations of flow through open cell metal foams using an idealized periodic cell structure
  publication-title: Int. J. Heat Fluid Fl.
  doi: 10.1016/j.ijheatfluidflow.2003.08.002
SSID ssj0012874
Score 2.466509
Snippet •Pore-scale simulation reveals thermal behaviour of paraffin in finned metal foam structures.•Finned metal foams outperform single-fin or foam in latent heat...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127817
SubjectTerms Computational fluid dynamics
Finned metal foam
Latent heat storage
Phase change materials
Porosity gradient
Title Pore-scale investigation of phase change heat storage enhancement in gradient finned metal foams
URI https://dx.doi.org/10.1016/j.applthermaleng.2025.127817
Volume 279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA1jguiD-InzY-Rhr9nWNmnaJxnDMRWGoIO91XRJ3IS1Y6uv_nbv7YfbwAfBx5Y2lHPDvSfNybmEtLCtkZWKs1D5XcY150zJwGfaFa6yoYy7Klf5jvzhmD9OxKRG-tVZGJRVlrm_yOl5ti7vdEo0O8v5vPPieCKE8gcVGn26QnT85FziLG9__cg8HPRzzxddImT49D5pbTReuEmMPGuhsG0JrBZd0XZcGeTty34pU1ulZ3BMjkrOSHvFZ52QmklOyeGWk-AZeXtOV4atAXBD5xvrjDShqaXLGZQqWhzxpZh8KUoiIZFQk8ww6viHEF6j76tcAJZRix25NF0YoObUpmqxPifjwf1rf8jK5gls6gRBxoCOBl0NFVkq7U6FhVgYT5iuDY1wAl8r3GTxfD8UKtDYXJBLLkJY7MWxNgFX3gWpJ2liLgkFihSjE5oCLsVjqZSNgfdI4Hra8SDQDSIqrKJl4ZERVeKxj2gX4wgxjgqMG-SuAjbaiXkE6fxPI1z9e4RrcoBXeLrQETeknq0-zS3QjCxu5vOoSfZ6D0_D0TfrWNQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gJj4OxmfE5x64LtB2t4-TMUaCisRESLjVLbsVTGgJ4NXf7kxbBBIPJl772DTftDPfdr-dD6BKtkaxpwQPlNvgQgvBlee7XNvSVnHgRQ2VqXw7bqsnHvuyX4K7xV4YklUWuT_P6Vm2Lo7UCzTrk9Go_mo5MsDyhxWa-nQFzgZsCvx8ycag9vWj87CooXs265IBp8u3oLoUedEqMRGtsSLfEpwu2rJm2Z6f-Zf9UqdWak9zH_YK0shu8-c6gJJJDmF3pZXgEby9pFPDZ4i4YaNl74w0YWnMJkOsVSzf48so-zLSRGImYSYZUtjpFyHext6nmQJszmKy5NJsbJCbszhV49kx9Jr33bsWL9wT-MDy_TlHPuo3NJZkT2l7IGMMhnGkacSBkZbvakWrLI7rBlL5mtwFhSdkgLO9KNLGF8o5gXKSJuYUGHKkiFqhKSRTIvKUiiMkPh6SPW05GOkKyAVW4SRvkhEu1GMf4TrGIWEc5hhX4GYBbLgW9BDz-Z9GOPv3CNew3eo-t8P2Q-fpHHboDG01tOQFlOfTT3OJnGMeXWXv1DfrBdW-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore-scale+investigation+of+phase+change+heat+storage+enhancement+in+gradient+finned+metal+foams&rft.jtitle=Applied+thermal+engineering&rft.au=Huo%2C+Guanping&rft.au=Guo%2C+Xueyan&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Jian&rft.date=2025-11-15&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=279&rft_id=info:doi/10.1016%2Fj.applthermaleng.2025.127817&rft.externalDocID=S1359431125024093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon