Machine Learning-Based Heading Date QTL Detection in Rice

Quantitative trait locus (QTL) analysis is a powerful approach for identifying variants associated with the phenotypic variation of complex traits. However, selecting optimal methods and pre-processing steps require considerable time and effort. In this study, we demonstrated applicability and repli...

Full description

Saved in:
Bibliographic Details
Published inPlant breeding and biotechnology Vol. 13; pp. 108 - 118
Main Authors Lee, Seung Young, Han, Jae-Hyuk, Bak, Hyeok-Jin, Ha, Su-Kyung, Lee, Hyun-Sook, Lee, Gileung, Park, Jae-Ryoung, Kang, Kyeongmin, Suh, Jung-Pil, Jin, Mina, Jeung, Ji-Ung, Mo, Youngjun
Format Journal Article
LanguageEnglish
Published 한국육종학회 21.05.2025
Subjects
Online AccessGet full text
ISSN2287-9358
2287-9366
DOI10.9787/PBB.2025.13.108

Cover

Abstract Quantitative trait locus (QTL) analysis is a powerful approach for identifying variants associated with the phenotypic variation of complex traits. However, selecting optimal methods and pre-processing steps require considerable time and effort. In this study, we demonstrated applicability and replicability of machine learning (ML) models in QTL analysis by evaluating their performance in comparison with conventional QTL analysis methods using 142 recombinant inbred lines derived from two japonica rice cultivars, Koshihikari and Baegilmi. Random forest and gradient boosting models showed the highest predictive accuracy, and consistently identified three QTLs associated with heading date: qDTH3, qDTH6, and qDTH7. Moreover, ML-based QTL analysis detected minor-effect qDTH10, where Koshihikari allele promoted heading date when combined with Koshihikari alleles of qDTH6 and qDTH7. These results demonstrate the applicability of ML models in QTL analysis on bi-parental mapping population in rice. KCI Citation Count: 0
AbstractList Quantitative trait locus (QTL) analysis is a powerful approach for identifying variants associated with the phenotypic variation of complex traits. However, selecting optimal methods and pre-processing steps require considerable time and effort. In this study, we demonstrated applicability and replicability of machine learning (ML) models in QTL analysis by evaluating their performance in comparison with conventional QTL analysis methods using 142 recombinant inbred lines derived from two japonica rice cultivars, Koshihikari and Baegilmi. Random forest and gradient boosting models showed the highest predictive accuracy, and consistently identified three QTLs associated with heading date: qDTH3, qDTH6, and qDTH7. Moreover, ML-based QTL analysis detected minor-effect qDTH10, where Koshihikari allele promoted heading date when combined with Koshihikari alleles of qDTH6 and qDTH7. These results demonstrate the applicability of ML models in QTL analysis on bi-parental mapping population in rice. KCI Citation Count: 0
ArticleNumber 9
Author Lee, Gileung
Lee, Hyun-Sook
Park, Jae-Ryoung
Kang, Kyeongmin
Suh, Jung-Pil
Bak, Hyeok-Jin
Jeung, Ji-Ung
Mo, Youngjun
Han, Jae-Hyuk
Ha, Su-Kyung
Lee, Seung Young
Jin, Mina
Author_xml – sequence: 1
  givenname: Seung Young
  surname: Lee
  fullname: Lee, Seung Young
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea, Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
– sequence: 2
  givenname: Jae-Hyuk
  surname: Han
  fullname: Han, Jae-Hyuk
  organization: IRRI-KOREA Office, Wanju 55365, Republic of Korea
– sequence: 3
  givenname: Hyeok-Jin
  surname: Bak
  fullname: Bak, Hyeok-Jin
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 4
  givenname: Su-Kyung
  surname: Ha
  fullname: Ha, Su-Kyung
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 5
  givenname: Hyun-Sook
  surname: Lee
  fullname: Lee, Hyun-Sook
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 6
  givenname: Gileung
  surname: Lee
  fullname: Lee, Gileung
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 7
  givenname: Jae-Ryoung
  surname: Park
  fullname: Park, Jae-Ryoung
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 8
  givenname: Kyeongmin
  surname: Kang
  fullname: Kang, Kyeongmin
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 9
  givenname: Jung-Pil
  surname: Suh
  fullname: Suh, Jung-Pil
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 10
  givenname: Mina
  surname: Jin
  fullname: Jin, Mina
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 11
  givenname: Ji-Ung
  surname: Jeung
  fullname: Jeung, Ji-Ung
  organization: National Institute of Crop and Food Science, Rural Development Administration, Wanju 55365, Republic of Korea
– sequence: 12
  givenname: Youngjun
  surname: Mo
  fullname: Mo, Youngjun
  organization: Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea, Institute of Agricultural Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003203529$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kL9PwzAQhS1UJErpzJoZKanPdhxn7A9KKwUBVZmtq30ppuCgpAv_PSlFTO_e6dMbvms2iE0kxm6BZ2VhisnzbJYJLvIMZAbcXLChEKZIS6n14P_OzRUbd9075xyA57xUQ1Y-onsLkZKKsI0h7tMZduSTFaHvW7LAIyUv2ypZ0JHcMTQxCTHZBEc37LLGj47Gfzlir8v77XyVVk8P6_m0Sh0YY1LQiKCw3BEIdFySAuk5qgIEdzmSqMEVNRkkrh3tpC9Urp33uVEOvdZyxO7Ou7Gt7cEF22D4zX1jD62dbrZrC7wAqZTs4ckZdm3TdS3V9qsNn9h-94g9mbK9KXsyZUH2PyN_AH2gWwk
Cites_doi 10.18637/jss.v067.i01
10.1038/ng.143
10.1101/gad.1189604
10.1186/1471-2156-9-35
10.1038/s41598-020-60203-2
10.1093/plphys/kiab346
10.1007/s00122-014-2418-4
10.1104/pp.108.125542
10.1016/j.cj.2015.01.001
10.1016/j.cj.2018.01.002
10.1111/j.1365-3040.2009.02008.x
10.1007/978-3-658-43102-0
10.3390/genes11090957
10.1007/978-3-319-10247-4
10.1534/genetics.106.066811
10.1145/2939672.2939785
10.4249/scholarpedia.1883
10.1038/hdy.2016.87
10.1111/tpj.12268
10.1093/jxb/erm159
10.2135/cropsci2011.06.0297
10.1105/tpc.12.12.2473
10.1016/j.jhazmat.2022.129929
10.1016/S0168-9525(00)89157-X
10.1007/s00122-017-3011-4
10.1126/science.aaa8415
10.1023/A:1010933404324
10.1534/g3.115.021121
10.1111/nyas.12540
10.1016/j.cj.2018.03.001
10.3389/fpls.2021.777028
10.1093/g3journal/jkad300
10.1007/978-0-387-92125-9
10.1137/1.9781611972788.22
10.1371/journal.pgen.1004982
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.9787/PBB.2025.13.108
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2287-9366
EndPage 118
ExternalDocumentID oai_kci_go_kr_ARTI_10713443
10_9787_PBB_2025_13_108
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
DYU
OK1
OZF
P5Y
ACYCR
ID FETCH-LOGICAL-c1888-16aa14a9be12ac03e413d0a47120c5ae2f1c7fe8ae06ceb3d7456cdd584cad663
ISSN 2287-9358
IngestDate Sat Sep 06 06:29:12 EDT 2025
Thu Jul 03 08:44:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1888-16aa14a9be12ac03e413d0a47120c5ae2f1c7fe8ae06ceb3d7456cdd584cad663
Notes https://doi.org/10.9787/PBB.2025.13.108
OpenAccessLink https://www.plantbreedbio.org/journal/download_pdf.php?doi=10.9787/PBB.2025.13.108
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10713443
crossref_primary_10_9787_PBB_2025_13_108
PublicationCentury 2000
PublicationDate 2025-05-21
PublicationDateYYYYMMDD 2025-05-21
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-21
  day: 21
PublicationDecade 2020
PublicationTitle Plant breeding and biotechnology
PublicationYear 2025
Publisher 한국육종학회
Publisher_xml – name: 한국육종학회
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.18637/jss.v067.i01
– ident: ref36
  doi: 10.1038/ng.143
– ident: ref9
  doi: 10.1101/gad.1189604
– ident: ref2
  doi: 10.1186/1471-2156-9-35
– ident: ref33
  doi: 10.1038/s41598-020-60203-2
– ident: ref29
– ident: ref12
  doi: 10.1093/plphys/kiab346
– ident: ref22
– ident: ref16
  doi: 10.1007/s00122-014-2418-4
– ident: ref21
  doi: 10.1104/pp.108.125542
– ident: ref24
  doi: 10.1016/j.cj.2015.01.001
– ident: ref32
  doi: 10.1016/j.cj.2018.01.002
– ident: ref27
– ident: ref30
  doi: 10.1111/j.1365-3040.2009.02008.x
– ident: ref11
  doi: 10.1007/978-3-658-43102-0
– ident: ref25
  doi: 10.3390/genes11090957
– ident: ref13
  doi: 10.1007/978-3-319-10247-4
– ident: ref20
  doi: 10.1534/genetics.106.066811
– ident: ref8
  doi: 10.1145/2939672.2939785
– ident: ref28
  doi: 10.4249/scholarpedia.1883
– ident: ref34
  doi: 10.1038/hdy.2016.87
– ident: ref15
  doi: 10.1111/tpj.12268
– ident: ref17
  doi: 10.1093/jxb/erm159
– ident: ref14
  doi: 10.2135/cropsci2011.06.0297
– ident: ref38
  doi: 10.1105/tpc.12.12.2473
– ident: ref37
  doi: 10.1016/j.jhazmat.2022.129929
– ident: ref23
  doi: 10.1016/S0168-9525(00)89157-X
– ident: ref3
  doi: 10.1007/s00122-017-3011-4
– ident: ref18
  doi: 10.1126/science.aaa8415
– ident: ref6
  doi: 10.1023/A:1010933404324
– ident: ref4
  doi: 10.1534/g3.115.021121
– ident: ref26
  doi: 10.1111/nyas.12540
– ident: ref35
  doi: 10.1016/j.cj.2018.03.001
– ident: ref39
  doi: 10.3389/fpls.2021.777028
– ident: ref19
  doi: 10.1093/g3journal/jkad300
– ident: ref7
  doi: 10.1007/978-0-387-92125-9
– ident: ref10
– ident: ref5
  doi: 10.1137/1.9781611972788.22
– ident: ref31
  doi: 10.1371/journal.pgen.1004982
SSID ssj0001105094
Score 2.2915664
Snippet Quantitative trait locus (QTL) analysis is a powerful approach for identifying variants associated with the phenotypic variation of complex traits. However,...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 108
SubjectTerms 농학
Title Machine Learning-Based Heading Date QTL Detection in Rice
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003203529
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Plant Breeding and Biotechnology, 2025, 13(0), , pp.108-118
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0OrGCy8IBIjxpUhgCWlKiZ2ksR_zUTQQQ4BaaTxF_pyqSS2qspf9v_0vzk7SpAWhwUvkXq62c3fxffh8QeittpIZTVVIFbFhonUc8gh-WmmlMVJQ42O6519mZ8vk00V6MZncjrKWrhs5VTd_PFfyP1wFGPDVnZL9B87uOgUAtIG_cAUOw_VOPD73mZCmL5J6GRagk7Q7WuSPqlRgR55-W3yGRaUxqs9q_N5lu_UmqftsUXMKnrFXY34zQa42zW8hdzwvMa9wkbgGy3HBPYRhRgaUCvMU89LfmeO89JB9lAIXkcPq7zjcPMMsOeyF-YGYb8BwFBfVOEZBU7e9TocYxWh0QE9xXvlpQO_tGBSztMfhvpFjVg4rIQW3LnQbtq3SGsNm49WXRGykyEm7sB_qCHCb3S7116KYuqlOSTzd_W9cjftAS-7V475Sq_pyU19ta_A6PtbEn8hN4iN0j2ZZmy3wYzmE-ogrsuPyG3YP0haZclN5fzCRPfvoaL21I3Nn8RA96PyUIG-F7hGamPVjxDuBC_YFLugELnACF4DABTuBC1brwAncE7T8MF-UZ2H37Y1QEQavGZkJQRLBpSFUqCg2YOzoSIApQyOVCkMtUZk1TJhopoyMdQaWuNIa7FklNJixT9HxerM2z1AgUm0ps5pyGSWZzRhPY0GUJSyLFeiQE_Suf-L6Z1tiBShaO-LUQJzaEacmsStle4LeAEU8-f_Chud3wnqB7g-i-hIdN9tr8woMzEa-9uz7BbTSY_s
linkProvider CAB International
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Heading+Date+QTL+Detection+in+Rice&rft.jtitle=Plant+breeding+and+biotechnology&rft.au=%EC%9D%B4%EC%8A%B9%EC%98%81&rft.au=%ED%95%9C%EC%9E%AC%ED%98%81&rft.au=%EB%B0%95%ED%98%81%EC%A7%84&rft.au=%ED%95%98%EC%88%98%EA%B2%BD&rft.date=2025-05-21&rft.pub=%ED%95%9C%EA%B5%AD%EC%9C%A1%EC%A2%85%ED%95%99%ED%9A%8C&rft.issn=2287-9358&rft.eissn=2287-9366&rft.spage=108&rft.epage=118&rft_id=info:doi/10.9787%2FPBB.2025.13.108&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10713443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-9358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-9358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-9358&client=summon