CoralMatrix: A Scalable and Robust Secure Framework for Enhancing IoT Cybersecurity
In the current age of digital transformation, the Internet of Things (IoT) has revolutionized everyday objects, and IoT gateways play a critical role in managing the data flow within these networks. However, the dynamic and extensive nature of IoT networks presents significant cybersecurity challeng...
Saved in:
Published in | International Journal of Computational and Experimental Science and Engineering Vol. 11; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
07.01.2025
|
Online Access | Get full text |
ISSN | 2149-9144 2149-9144 |
DOI | 10.22399/ijcesen.825 |
Cover
Loading…
Abstract | In the current age of digital transformation, the Internet of Things (IoT) has revolutionized everyday objects, and IoT gateways play a critical role in managing the data flow within these networks. However, the dynamic and extensive nature of IoT networks presents significant cybersecurity challenges that necessitate the development of adaptive security systems to protect against evolving threats. This paper proposes the CoralMatrix Security framework, a novel approach to IoT cybersecurity that employs advanced machine learning algorithms. This framework incorporates the AdaptiNet Intelligence Model, which integrates deep learning and reinforcement learning for effective real-time threat detection and response. To comprehensively evaluate the performance of the framework, this study utilized the N-BaIoT dataset, facilitating a quantitative analysis that provided valuable insights into the model's capabilities. The results of the analysis demonstrate the robustness of the CoralMatrix Security framework across various dimensions of IoT cybersecurity. Notably, the framework achieved a high detection accuracy rate of approximately 83.33%, highlighting its effectiveness in identifying and responding to cybersecurity threats in real-time. Additionally, the research examined the framework's scalability, adaptability, resource efficiency, and robustness against diverse cyber-attack types, all of which were quantitatively assessed to provide a comprehensive understanding of its capabilities. This study suggests future work to optimize the framework for larger IoT networks and adapt continuously to emerging threats, aiming to expand its application across diverse IoT scenarios. With its proposed algorithms, the CoralMatrix Security framework has emerged as a promising, efficient, effective, and scalable solution for the dynamic challenges of IoT Cyber Security. |
---|---|
AbstractList | In the current age of digital transformation, the Internet of Things (IoT) has revolutionized everyday objects, and IoT gateways play a critical role in managing the data flow within these networks. However, the dynamic and extensive nature of IoT networks presents significant cybersecurity challenges that necessitate the development of adaptive security systems to protect against evolving threats. This paper proposes the CoralMatrix Security framework, a novel approach to IoT cybersecurity that employs advanced machine learning algorithms. This framework incorporates the AdaptiNet Intelligence Model, which integrates deep learning and reinforcement learning for effective real-time threat detection and response. To comprehensively evaluate the performance of the framework, this study utilized the N-BaIoT dataset, facilitating a quantitative analysis that provided valuable insights into the model's capabilities. The results of the analysis demonstrate the robustness of the CoralMatrix Security framework across various dimensions of IoT cybersecurity. Notably, the framework achieved a high detection accuracy rate of approximately 83.33%, highlighting its effectiveness in identifying and responding to cybersecurity threats in real-time. Additionally, the research examined the framework's scalability, adaptability, resource efficiency, and robustness against diverse cyber-attack types, all of which were quantitatively assessed to provide a comprehensive understanding of its capabilities. This study suggests future work to optimize the framework for larger IoT networks and adapt continuously to emerging threats, aiming to expand its application across diverse IoT scenarios. With its proposed algorithms, the CoralMatrix Security framework has emerged as a promising, efficient, effective, and scalable solution for the dynamic challenges of IoT Cyber Security. |
Author | Srinivasa Chakravarthi Lade Vutukuru, Srikanth Reddy |
Author_xml | – sequence: 1 givenname: Srikanth Reddy surname: Vutukuru fullname: Vutukuru, Srikanth Reddy – sequence: 2 surname: Srinivasa Chakravarthi Lade fullname: Srinivasa Chakravarthi Lade |
BookMark | eNptkMtOwzAURC1UJErpjg_wB5ASPxIn7KqoLZWKkGhZR87NNRhSG9mpoH9PgS4QYjWzODOLc04Gzjsk5JKlE85FWV7bF8CIblLw7IQMOZNlUjIpB7_6GRnHaJtU5DxjeSmHZF35oLs73Qf7cUOndA26002HVLuWPvhmF3u6RtgFpPOgt_juwys1PtCZe9YOrHuiS7-h1b7BEL842-8vyKnRXcTxMUfkcT7bVLfJ6n6xrKarBFhRZIkE1vJUGJBpziGXQmkOwghEDQpS4Ni0LQjWKMmYEixTJoMCCqVEidw0YkSufn4h-BgDmvot2K0O-5ql9beT-uikPjg54PwPDrbXvfWuD9p2_48-AcXvadw |
CitedBy_id | crossref_primary_10_22399_ijcesen_836 crossref_primary_10_22399_ijcesen_869 crossref_primary_10_22399_ijcesen_1193 crossref_primary_10_22399_ijcesen_1037 crossref_primary_10_22399_ijcesen_785 crossref_primary_10_22399_ijcesen_854 crossref_primary_10_22399_ijcesen_1265 crossref_primary_10_22399_ijcesen_831 |
Cites_doi | 10.1109/10.532127 10.1109/ICICICT46008.2019.8993222 10.1109/BigData.2015.7363816 10.1109/ICCCN.2018.8487335 10.22399/ijcesen.409 10.53898/etej2024114 10.22362/ijcert/2023/v10/i07/v10i0702 10.1109/I-SMAC61858.2024.10714601 10.22399/ijcesen.722 10.22399/ijcesen.526 10.22399/ijcesen.417 10.22399/ijcesen.708 10.1016/j.cose.2011.05.008 10.1016/j.measen.2022.100548 10.1016/j.future.2019.09.038 10.22399/ijcesen.597 10.22399/ijcesen.490 10.1186/s40537-020-00318-5 10.22399/ijcesen.395 10.52783/jes.642 10.22399/ijcesen.480 10.1145/2980765.2980768 10.1016/j.iot.2023.100704 10.1016/j.comcom.2024.04.007 10.1109/MSP.2018.2825478 10.1016/j.heliyon.2024.e38917 10.1016/j.jnca.2017.02.009 10.1109/ACCESS.2024.3486983 10.22362/ijcert/2023/v10/i05/v10i0504 10.1109/COMST.2020.2986444 10.1002/nem.2084 10.1109/ICAAIC60222.2024.10575903 10.22362/ijcert/2023/v10/i08/v10i082 10.1007/s42979-021-00592-x 10.22362/ijcert/2023/v10/i10/v10i106 10.1016/j.jpdc.2019.08.005 10.1109/COMST.2019.2896380 10.52783/jes.641 10.1504/IJESMS.2023.127397 10.1109/ComNet55492.2022.9998441 10.22362/ijcert/2023/v10/i10/v10i104 10.54392/irjmt24324 10.22399/ijcesen.512 10.3390/bdcc8030021 10.22399/ijcesen.672 10.22399/ijcesen.732 10.22399/ijcesen.572 10.1109/ACCESS.2020.2996214 10.22399/ijcesen.1317040 10.22362/ijcert/2024/v11/i10/v11i1001 10.1109/ISNCC49221.2020.9297251 10.54216/IJWAC.020103 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.22399/ijcesen.825 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2149-9144 |
ExternalDocumentID | 10_22399_ijcesen_825 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c1885-4c1d203fc4062c6437a2c3f3eeac7c0c2ebddc31b741173157f5c8c87739e2fb3 |
ISSN | 2149-9144 |
IngestDate | Thu Apr 24 23:04:19 EDT 2025 Tue Jul 01 03:13:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1885-4c1d203fc4062c6437a2c3f3eeac7c0c2ebddc31b741173157f5c8c87739e2fb3 |
OpenAccessLink | https://ijcesen.com/index.php/ijcesen/article/download/825/491 |
ParticipantIDs | crossref_primary_10_22399_ijcesen_825 crossref_citationtrail_10_22399_ijcesen_825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-07 |
PublicationDateYYYYMMDD | 2025-01-07 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | International Journal of Computational and Experimental Science and Engineering |
PublicationYear | 2025 |
References | 15142 15141 15185 15140 15184 15183 15146 15145 15144 15143 15182 15181 15180 15149 15148 15147 15153 15152 15151 15150 15157 15156 15155 15154 15159 15158 15164 15163 15162 15161 15124 15168 15167 15166 15165 15160 15128 15127 15126 15125 15169 15129 15131 15175 15130 15174 15173 15172 15135 15179 15134 15178 15133 15177 15132 15176 15171 15170 15139 15138 15137 15136 |
References_xml | – ident: 15150 doi: 10.1109/10.532127 – ident: 15143 – ident: 15128 – ident: 15132 doi: 10.1109/ICICICT46008.2019.8993222 – ident: 15152 doi: 10.1109/BigData.2015.7363816 – ident: 15135 doi: 10.1109/ICCCN.2018.8487335 – ident: 15172 doi: 10.22399/ijcesen.409 – ident: 15159 doi: 10.53898/etej2024114 – ident: 15168 doi: 10.22362/ijcert/2023/v10/i07/v10i0702 – ident: 15162 doi: 10.1109/I-SMAC61858.2024.10714601 – ident: 15183 doi: 10.22399/ijcesen.722 – ident: 15163 – ident: 15179 doi: 10.22399/ijcesen.526 – ident: 15184 doi: 10.22399/ijcesen.417 – ident: 15175 doi: 10.22399/ijcesen.708 – ident: 15145 doi: 10.1016/j.cose.2011.05.008 – ident: 15155 doi: 10.1016/j.measen.2022.100548 – ident: 15127 – ident: 15171 – ident: 15141 doi: 10.1016/j.future.2019.09.038 – ident: 15185 doi: 10.22399/ijcesen.597 – ident: 15177 doi: 10.22399/ijcesen.490 – ident: 15144 doi: 10.1186/s40537-020-00318-5 – ident: 15160 – ident: 15181 doi: 10.22399/ijcesen.395 – ident: 15158 doi: 10.52783/jes.642 – ident: 15178 doi: 10.22399/ijcesen.480 – ident: 15153 doi: 10.1145/2980765.2980768 – ident: 15149 doi: 10.1016/j.iot.2023.100704 – ident: 15156 doi: 10.1016/j.comcom.2024.04.007 – ident: 15140 doi: 10.1109/MSP.2018.2825478 – ident: 15147 doi: 10.1016/j.heliyon.2024.e38917 – ident: 15139 doi: 10.1016/j.jnca.2017.02.009 – ident: 15161 – ident: 15165 – ident: 15154 doi: 10.1109/ACCESS.2024.3486983 – ident: 15126 doi: 10.22362/ijcert/2023/v10/i05/v10i0504 – ident: 15169 doi: 10.1109/COMST.2020.2986444 – ident: 15146 doi: 10.1002/nem.2084 – ident: 15148 doi: 10.1109/ICAAIC60222.2024.10575903 – ident: 15167 doi: 10.22362/ijcert/2023/v10/i08/v10i082 – ident: 15170 doi: 10.1007/s42979-021-00592-x – ident: 15131 doi: 10.22362/ijcert/2023/v10/i10/v10i106 – ident: 15129 – ident: 15136 doi: 10.1016/j.jpdc.2019.08.005 – ident: 15142 doi: 10.1109/COMST.2019.2896380 – ident: 15138 doi: 10.52783/jes.641 – ident: 15133 doi: 10.1504/IJESMS.2023.127397 – ident: 15134 doi: 10.1109/ComNet55492.2022.9998441 – ident: 15130 doi: 10.22362/ijcert/2023/v10/i10/v10i104 – ident: 15164 doi: 10.54392/irjmt24324 – ident: 15182 doi: 10.22399/ijcesen.512 – ident: 15125 doi: 10.3390/bdcc8030021 – ident: 15174 doi: 10.22399/ijcesen.672 – ident: 15166 – ident: 15180 doi: 10.22399/ijcesen.732 – ident: 15173 doi: 10.22399/ijcesen.572 – ident: 15137 doi: 10.1109/ACCESS.2020.2996214 – ident: 15176 doi: 10.22399/ijcesen.1317040 – ident: 15157 doi: 10.22362/ijcert/2024/v11/i10/v11i1001 – ident: 15124 doi: 10.1109/ISNCC49221.2020.9297251 – ident: 15151 doi: 10.54216/IJWAC.020103 |
SSID | ssib036251694 ssib044740609 |
Score | 1.9416457 |
Snippet | In the current age of digital transformation, the Internet of Things (IoT) has revolutionized everyday objects, and IoT gateways play a critical role in... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | CoralMatrix: A Scalable and Robust Secure Framework for Enhancing IoT Cybersecurity |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6uHCZmNg0GJt8YKeqXewkONkNVZ3QRHdpQdwq23HUAmqnkqBtB_72fbaTNHQ9wC5Rldhpku_T83vP7wchJylXwqTM9ExkYKCwLIIcDDLYPLnmLE9k4ro3jH6cnl9G36_j607nsZ1dUqi-_rM1r-R_UMU54GqzZF-AbHNTnMBv4IsjEMbxWRgPbHr9yBbZ_-UzzMf44i4XyqUdLlV5X3iPurEaqo_CcoGFw8XMFtqw0QLLSXfwW0ELrDrZtdXVf_2FlfLqm0HUF-y_DdutAmqJ4S6sKx7W6F6VRXlbrkrnel3Nb4HuDEBnWePfH9uNpQd5L7s-7uABbz-bdy9kZtp-Ch47P4VYizMOWwyi1Vd77Jst52p5zDZ5tynmuU3IBTjzG21TtPqJz51-Wk17Y5VrYg9h9bj502r2FLNfkV0OM8MK9tHjsJZHWNvtLmIjr6JIQP1xUUPNg_tcCnfDL63HaWk5LXVlsk9eV1DRM0-aN6RjFgdk3CLMV3pGa7pQ4EQ9XainC23oQkEX2tCFgi70CV3ekstvw8ngvFd11ehpliRxL9Is40GYa7wL13bfVnId5qHBEix0oLlRWaZDpqBrMhGyWOSxTnQiRJganqvwHdlZLBfmPaGBjFIhmZISRgSXgZQKGq4xUZCaU6nEIenWX2Gqq5LztvPJ3XQbCIfkczP6py-1snXc0TPHfSB7ax4ek51iVZqP0CAL9cnB_BeDrXlR |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoralMatrix%3A+A+Scalable+and+Robust+Secure+Framework+for+Enhancing+IoT+Cybersecurity&rft.jtitle=International+Journal+of+Computational+and+Experimental+Science+and+Engineering&rft.au=Vutukuru%2C+Srikanth+Reddy&rft.au=Srinivasa+Chakravarthi+Lade&rft.date=2025-01-07&rft.issn=2149-9144&rft.eissn=2149-9144&rft.volume=11&rft.issue=1&rft_id=info:doi/10.22399%2Fijcesen.825&rft.externalDBID=n%2Fa&rft.externalDocID=10_22399_ijcesen_825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2149-9144&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2149-9144&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2149-9144&client=summon |