TransUNET-DDPM: A transformer-enhanced diffusion model for subject-specific brain network generation and classification
Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based arc...
Saved in:
Published in | Computers in biology and medicine Vol. 197; no. Pt A; p. 110996 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 |
DOI | 10.1016/j.compbiomed.2025.110996 |
Cover
Abstract | Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability.
•TransUNET-DDPM combines transformers with diffusion models to generate anatomically and functionally accurate 3D brain connectivity networks.•A transfer learning strategy enables efficient training and domain adaptation from large-scale unsupervised data to condition-specific neuroimaging tasks.•Class-conditioned ICN synthesis improves schizophrenia classification by augmenting scarce datasets with diagnostically meaningful synthetic samples. |
---|---|
AbstractList | Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability. Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability. •TransUNET-DDPM combines transformers with diffusion models to generate anatomically and functionally accurate 3D brain connectivity networks.•A transfer learning strategy enables efficient training and domain adaptation from large-scale unsupervised data to condition-specific neuroimaging tasks.•Class-conditioned ICN synthesis improves schizophrenia classification by augmenting scarce datasets with diagnostically meaningful synthetic samples. |
ArticleNumber | 110996 |
Author | Ajith, Meenu Calhoun, Vince D. |
Author_xml | – sequence: 1 givenname: Meenu orcidid: 0000-0002-9210-0994 surname: Ajith fullname: Ajith, Meenu email: majith@gsu.edu – sequence: 2 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40882475$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0MtOIzEQBVBrBBoCzC8g_0CHcj9tVjwHkHgtwtpy22Vw0m1HdgLi76ebwIw0q6wslW9dqc4-2fHBIyGUwZQBq4_nUx36ZetCj2aaQ15NGQMh6h9kwngjMqiKcodMABhkJc-rPbKf0hwASijgJ9krgfO8bKoJeZ9F5dPzw9Usu7x8uj-hZ3Q1TmyIPcYM_avyGg01ztp1csHTPhjs6PBP07qdo15laYnaWadpG5Xz1OPqPcQFfUGPUa3GHeUN1Z1KaYx9jg7JrlVdwl9f7wF5_n01u7jJ7h6vby_O7jLNOK-yXKDlKIAZq-samamwYXkhWlFa2-ZCNTVTyrSm4KYRAnFgUFWpueIGKl0XB-Ro07tctwOWXEbXq_ghvwWGAN8EdAwpRbR_IwzkiC3n8h-2HLHlBntYPd-s4nDAm8Mok3Y4crk4uEgT3DYlp_-V6M75Qalb4Md2FX8ADf-ktQ |
Cites_doi | 10.1109/MSP.2021.3128348 10.1016/j.schres.2023.02.023 10.1038/nn.4135 10.1016/j.neuroimage.2021.118114 10.1109/BHI62660.2024.10913576 10.1016/j.neuroimage.2012.11.008 10.1016/S1053-8119(03)00336-7 10.1038/s41598-023-39278-0 10.3389/fnins.2019.01006 10.1016/j.jneumeth.2016.06.011 10.1109/CVPR52688.2022.01042 10.1016/j.artmed.2019.06.003 10.1016/j.inffus.2022.10.017 10.1146/annurev-statistics-010814-020120 10.1002/hbm.26783 10.1016/j.neuroimage.2012.02.018 10.1109/RBME.2012.2211076 10.1109/ACCESS.2023.3277543 10.3390/jimaging9040081 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2013.11.046 10.1016/j.dsp.2019.04.010 10.1093/brain/awt162 10.1016/j.ebiom.2018.03.017 10.1016/j.bspc.2024.107226 10.1016/j.neuroimage.2015.09.003 10.1016/j.neuroimage.2014.03.048 10.1145/3422622 10.1198/106186006X113430 10.1109/ICCV48922.2021.00986 10.1186/s13634-017-0459-y 10.1002/hbm.1048 10.1088/1361-6560/acca5c 10.1016/j.jneumeth.2020.108756 10.1038/nn.4393 10.1162/089976602760128018 10.1109/TKDE.2024.3361474 10.1146/annurev-clinpsy-032511-143049 10.1002/hbm.20022 10.1002/hbm.21170 10.1038/nn.4361 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM |
DOI | 10.1016/j.compbiomed.2025.110996 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
ExternalDocumentID | 40882475 10_1016_j_compbiomed_2025_110996 S0010482525013484 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG073949 – fundername: NIMH NIH HHS grantid: R01 MH123610 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- AAYXX CITATION NPM |
ID | FETCH-LOGICAL-c1885-29ef8e901dfc66e1d5e71239b94ffb29a761aadbd38d799ee109a54c8a8d05c63 |
IEDL.DBID | AIKHN |
ISSN | 0010-4825 |
IngestDate | Wed Sep 10 03:23:46 EDT 2025 Wed Sep 03 16:39:07 EDT 2025 Sat Sep 06 17:21:05 EDT 2025 Mon Sep 08 07:21:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Intrinsic connectivity networks Diffusion models Data augmentation Transformer architectures Schizophrenia classification |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1885-29ef8e901dfc66e1d5e71239b94ffb29a761aadbd38d799ee109a54c8a8d05c63 |
ORCID | 0000-0002-9210-0994 |
PMID | 40882475 |
ParticipantIDs | pubmed_primary_40882475 crossref_primary_10_1016_j_compbiomed_2025_110996 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110996 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110996 |
PublicationCentury | 2000 |
PublicationDate | October 2025 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ho, Jain, Abbeel (b10) 2020; 33 Hinton (b27) 2002; 14 Zhao, Huang, Zhi, Yan, Ma, Yang, Li, Ke, Jiang, Calhoun (b34) 2020; 341 Lee, Lee, Park, Kim, Ryu (b60) 2019; 22 Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller (b40) 2016; 19 Aïssa-El-Bey, Seghouane (b22) 2017; 2017 Kebaili, Lapuyade-Lahorgue, Ruan (b50) 2023; 9 Selvan, Faye, Middleton, Pai (b9) 2020 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Matthews, Smith (b39) 2016; 19 Taha, Abdel-Raheem (b18) 2022 Huang, Hu, Han, Lv, Liu, Guo, Liu (b29) 2016 Shaik, Cherukuri, Calhoun, Ye (b38) 2025 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (b46) 2014; 90 Zou, Hastie, Tibshirani (b21) 2006; 15 Liang, Cao, Deng, Kong, Zhao, Jin, Ma, Wang, Li, Wang (b58) 2023; 254 Calhoun, Adali, Pearlson, Pekar (b19) 2001; 14 Zeng, Wang, Hu, Yang, Pu, Shen, Chen, Liu, Yin, Tan (b33) 2018; 30 Calhoun, Adali (b20) 2012; 5 Müller-Franzes, Niehues, Khader, Arasteh, Haarburger, Kuhl, Wang, Han, Nolte, Nebelung (b51) 2023; 13 Bhinge, Long, Calhoun, Adali (b47) 2019; 13 Keator, van Erp, Turner, Glover, Mueller, Liu, Voyvodic, Rasmussen, Calhoun, Lee (b42) 2016; 124 Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole (b48) 2020 M. Ajith, V. Calhoun, Denoising Diffusion Probabilistic Models for High-Fidelity fMRI Intrinsic Connectivity Network Data Generation, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, 2024. Hu, Yang (b53) 2021; 237 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022. Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (b55) 2011; 32 Pinaya, Tudosiu, Dafflon, Da Costa, Fernandez, Nachev, Ourselin, Cardoso (b16) 2022 Pan, Wang, Qiu, Axente, Chang, Peng, Patel, Shelton, Patel, Roper (b12) 2023; 68 Ehrhardt, Wilms (b8) 2022 Liu, Huang, Hu, Zhu, Wong, Tan (b35) 2022 Rezende, Mohamed (b6) 2015 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b4) 2020; 63 Cao, Tan, Gao, Xu, Chen, Heng, Li (b3) 2024 Khalid, Khawaja, Nauman (b30) 2023; 11 Bi, Abrol, Fu, Calhoun (b36) 2024; 45 van de Ven, Formisano, Prvulovic, Roeder, Linden (b25) 2004; 22 Monteiro, Rao, Shawe-Taylor, Mourao-Miranda, Initiative (b23) 2016; 271 Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen (b43) 2020; 28 Kingma, Welling (b5) 2013 Yan, Qu, Hu, Abrol, Cai, Qiao, Plis, Wang, Sui, Calhoun (b26) 2022; 39 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (b41) 2012; 62 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (b52) 2015; 18 R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695. Zhou, Li, Lu, Cheng, Zhang (b49) 2023; 91 Jenkinson, Bannister, Brady, Smith (b44) 2002; 17 Qadar, Aïssa-El-Bey, Seghouane (b24) 2019; 92 Thanh-Tung, Tran (b7) 2020 Song, Meng, Ermon (b11) 2020 Leech, Sharp (b57) 2014; 137 Meng, Iraji, Fu, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson (b54) 2023; 38 Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b1) 2015 Hjelm, Calhoun, Salakhutdinov, Allen, Adali, Plis (b28) 2014; 96 Whitfield-Gabrieli, Ford (b59) 2012; 8 Salakhutdinov (b2) 2015; 2 Dorjsembe, Odonchimed, Xiao (b14) 2022 Qureshi, Oh, Lee (b32) 2019; 98 Andersson, Skare, Ashburner (b45) 2003; 20 Pal, Roy, Basu, Bepari (b17) 2013 Du, Fan (b56) 2013; 69 Huang, Wang, Ju, Ding, Zhang (b37) 2025; 102 10.1016/j.compbiomed.2025.110996_b15 10.1016/j.compbiomed.2025.110996_b13 Shaik (10.1016/j.compbiomed.2025.110996_b38) 2025 Huang (10.1016/j.compbiomed.2025.110996_b37) 2025; 102 Pal (10.1016/j.compbiomed.2025.110996_b17) 2013 Meng (10.1016/j.compbiomed.2025.110996_b54) 2023; 38 Bi (10.1016/j.compbiomed.2025.110996_b36) 2024; 45 Aïssa-El-Bey (10.1016/j.compbiomed.2025.110996_b22) 2017; 2017 Leech (10.1016/j.compbiomed.2025.110996_b57) 2014; 137 Monteiro (10.1016/j.compbiomed.2025.110996_b23) 2016; 271 Kebaili (10.1016/j.compbiomed.2025.110996_b50) 2023; 9 Hinton (10.1016/j.compbiomed.2025.110996_b27) 2002; 14 Kingma (10.1016/j.compbiomed.2025.110996_b5) 2013 Salimi-Khorshidi (10.1016/j.compbiomed.2025.110996_b46) 2014; 90 Qureshi (10.1016/j.compbiomed.2025.110996_b32) 2019; 98 Finn (10.1016/j.compbiomed.2025.110996_b52) 2015; 18 Salakhutdinov (10.1016/j.compbiomed.2025.110996_b2) 2015; 2 Müller-Franzes (10.1016/j.compbiomed.2025.110996_b51) 2023; 13 Zhao (10.1016/j.compbiomed.2025.110996_b34) 2020; 341 van de Ven (10.1016/j.compbiomed.2025.110996_b25) 2004; 22 Lee (10.1016/j.compbiomed.2025.110996_b60) 2019; 22 Zou (10.1016/j.compbiomed.2025.110996_b21) 2006; 15 Zeng (10.1016/j.compbiomed.2025.110996_b33) 2018; 30 Cao (10.1016/j.compbiomed.2025.110996_b3) 2024 Erhardt (10.1016/j.compbiomed.2025.110996_b55) 2011; 32 Selvan (10.1016/j.compbiomed.2025.110996_b9) 2020 Pinaya (10.1016/j.compbiomed.2025.110996_b16) 2022 Huang (10.1016/j.compbiomed.2025.110996_b29) 2016 Hjelm (10.1016/j.compbiomed.2025.110996_b28) 2014; 96 Taha (10.1016/j.compbiomed.2025.110996_b18) 2022 Zhou (10.1016/j.compbiomed.2025.110996_b49) 2023; 91 10.1016/j.compbiomed.2025.110996_b31 Calhoun (10.1016/j.compbiomed.2025.110996_b19) 2001; 14 Du (10.1016/j.compbiomed.2025.110996_b56) 2013; 69 Miller (10.1016/j.compbiomed.2025.110996_b39) 2016; 19 Khalid (10.1016/j.compbiomed.2025.110996_b30) 2023; 11 Song (10.1016/j.compbiomed.2025.110996_b11) 2020 Jenkinson (10.1016/j.compbiomed.2025.110996_b44) 2002; 17 Bhinge (10.1016/j.compbiomed.2025.110996_b47) 2019; 13 Thanh-Tung (10.1016/j.compbiomed.2025.110996_b7) 2020 Glasser (10.1016/j.compbiomed.2025.110996_b40) 2016; 19 Whitfield-Gabrieli (10.1016/j.compbiomed.2025.110996_b59) 2012; 8 Dorjsembe (10.1016/j.compbiomed.2025.110996_b14) 2022 Song (10.1016/j.compbiomed.2025.110996_b48) 2020 Ehrhardt (10.1016/j.compbiomed.2025.110996_b8) 2022 Pan (10.1016/j.compbiomed.2025.110996_b12) 2023; 68 Qadar (10.1016/j.compbiomed.2025.110996_b24) 2019; 92 Keator (10.1016/j.compbiomed.2025.110996_b42) 2016; 124 Andersson (10.1016/j.compbiomed.2025.110996_b45) 2003; 20 Ho (10.1016/j.compbiomed.2025.110996_b10) 2020; 33 Calhoun (10.1016/j.compbiomed.2025.110996_b20) 2012; 5 Goodfellow (10.1016/j.compbiomed.2025.110996_b4) 2020; 63 Du (10.1016/j.compbiomed.2025.110996_b43) 2020; 28 Liang (10.1016/j.compbiomed.2025.110996_b58) 2023; 254 Sohl-Dickstein (10.1016/j.compbiomed.2025.110996_b1) 2015 Van Essen (10.1016/j.compbiomed.2025.110996_b41) 2012; 62 Rezende (10.1016/j.compbiomed.2025.110996_b6) 2015 Yan (10.1016/j.compbiomed.2025.110996_b26) 2022; 39 Liu (10.1016/j.compbiomed.2025.110996_b35) 2022 Hu (10.1016/j.compbiomed.2025.110996_b53) 2021; 237 |
References_xml | – volume: 341 year: 2020 ident: b34 article-title: Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders publication-title: J. Neurosci. Methods – volume: 91 start-page: 134 year: 2023 end-page: 148 ident: b49 article-title: GAN review: Models and medical image fusion applications publication-title: Inf. Fusion – volume: 15 start-page: 265 year: 2006 end-page: 286 ident: b21 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Statist. – volume: 30 start-page: 74 year: 2018 end-page: 85 ident: b33 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine – year: 2020 ident: b11 article-title: Denoising diffusion implicit models – volume: 13 start-page: 12098 year: 2023 ident: b51 article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis publication-title: Sci. Rep. – volume: 69 start-page: 157 year: 2013 end-page: 197 ident: b56 article-title: Group information guided ICA for fMRI data analysis publication-title: Neuroimage – volume: 32 start-page: 2075 year: 2011 end-page: 2095 ident: b55 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum. Brain Mapp. – start-page: 1530 year: 2015 end-page: 1538 ident: b6 article-title: Variational inference with normalizing flows publication-title: International Conference on Machine Learning – volume: 9 start-page: 81 year: 2023 ident: b50 article-title: Deep learning approaches for data augmentation in medical imaging: a review publication-title: J. Imaging – volume: 96 start-page: 245 year: 2014 end-page: 260 ident: b28 article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks publication-title: NeuroImage – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: b46 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 2 start-page: 361 year: 2015 end-page: 385 ident: b2 article-title: Learning deep generative models publication-title: Annu. Rev. Stat. Appl. – volume: 124 start-page: 1074 year: 2016 end-page: 1079 ident: b42 article-title: The function biomedical informatics research network data repository publication-title: Neuroimage – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: b39 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nature Neurosci. – volume: 8 start-page: 49 year: 2012 end-page: 76 ident: b59 article-title: Default mode network activity and connectivity in psychopathology publication-title: Annu. Rev. Clin. Psychol. – start-page: 1 year: 2020 end-page: 10 ident: b7 article-title: Catastrophic forgetting and mode collapse in GANs publication-title: 2020 International Joint Conference on Neural Networks (Ijcnn) – volume: 19 start-page: 1175 year: 2016 end-page: 1187 ident: b40 article-title: The human connectome project’s neuroimaging approach publication-title: Nature Neurosci. – volume: 13 start-page: 1006 year: 2019 ident: b47 article-title: Spatial dynamic functional connectivity analysis identifies distinctive biomarkers in schizophrenia publication-title: Front. Neurosci. – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: b52 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature Neurosci. – volume: 68 year: 2023 ident: b12 article-title: 2D medical image synthesis using transformer-based denoising diffusion probabilistic model publication-title: Phys. Med. Biol. – start-page: 80 year: 2020 end-page: 90 ident: b9 article-title: Uncertainty quantification in medical image segmentation with normalizing flows publication-title: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings 11 – year: 2020 ident: b48 article-title: Score-based generative modeling through stochastic differential equations – volume: 22 year: 2019 ident: b60 article-title: Default mode network connectivity is associated with long-term clinical outcome in patients with schizophrenia publication-title: NeuroImage: Clin. – year: 2022 ident: b14 article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models publication-title: Medical Imaging with Deep Learning – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: b45 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 5 start-page: 60 year: 2012 end-page: 73 ident: b20 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. – volume: 137 start-page: 12 year: 2014 end-page: 32 ident: b57 article-title: The role of the posterior cingulate cortex in cognition and disease publication-title: Brain – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: b19 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – start-page: 148 year: 2022 end-page: 153 ident: b18 article-title: Blind source separation: A performance review approach publication-title: 2022 5th International Conference on Signal Processing and Information Security – volume: 2017 start-page: 1 year: 2017 end-page: 14 ident: b22 article-title: Sparse and smooth canonical correlation analysis through rank-1 matrix approximation publication-title: EURASIP J. Adv. Signal Process. – volume: 45 year: 2024 ident: b36 article-title: A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data publication-title: Hum. Brain Mapp. – start-page: 129 year: 2022 end-page: 162 ident: b8 article-title: Autoencoders and variational autoencoders in medical image analysis publication-title: Biomedical Image Synthesis and Simulation – start-page: 1 year: 2013 end-page: 5 ident: b17 article-title: Blind source separation: A review and analysis publication-title: 2013 International Conference Oriental COCOSDA Held Jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE) – volume: 271 start-page: 182 year: 2016 end-page: 194 ident: b23 article-title: A multiple hold-out framework for sparse partial least squares publication-title: J. Neurosci. Methods – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: b4 article-title: Generative adversarial networks publication-title: Commun. ACM – start-page: 2256 year: 2015 end-page: 2265 ident: b1 article-title: Deep unsupervised learning using nonequilibrium thermodynamics publication-title: International Conference on Machine Learning – volume: 98 start-page: 10 year: 2019 end-page: 17 ident: b32 article-title: 3D-CNN based discrimination of schizophrenia using resting-state fMRI publication-title: Artif. Intell. Med. – start-page: 638 year: 2016 end-page: 641 ident: b29 article-title: Latent source mining in FMRI data via deep neural network publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging – volume: 38 year: 2023 ident: b54 article-title: Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study publication-title: NeuroImage: Clin. – volume: 102 year: 2025 ident: b37 article-title: AGBN-transformer: Anatomy-guided brain network transformer for schizophrenia diagnosis publication-title: Biomed. Signal Process. Control. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: b44 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: b27 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – volume: 28 year: 2020 ident: b43 article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders publication-title: NeuroImage: Clin. – year: 2013 ident: b5 article-title: Auto-encoding variational bayes – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: b41 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – volume: 22 start-page: 165 year: 2004 end-page: 178 ident: b25 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum. Brain Mapp. – year: 2022 ident: b35 article-title: Attention-like multimodality fusion with data augmentation for diagnosis of mental disorders using MRI publication-title: IEEE Trans. Neural Netw Learn. Syst. – start-page: 1 year: 2025 end-page: 5 ident: b38 article-title: Multi-modal imaging genomics transformer: Attentive integration of imaging with genomic biomarkers for schizophrenia classification publication-title: 2025 IEEE 22nd International Symposium on Biomedical Imaging – volume: 254 start-page: 155 year: 2023 end-page: 162 ident: b58 article-title: Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder publication-title: Schizophr. Res. – volume: 39 start-page: 87 year: 2022 end-page: 98 ident: b26 article-title: Deep learning in neuroimaging: Promises and challenges publication-title: IEEE Signal Process. Mag. – volume: 92 start-page: 36 year: 2019 end-page: 46 ident: b24 article-title: Two dimensional CCA via penalized matrix decomposition for structure preserved fMRI data analysis publication-title: Digit. Signal Process. – reference: R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695. – year: 2024 ident: b3 article-title: A survey on generative diffusion models publication-title: IEEE Trans. Knowl. Data Eng. – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: b10 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – reference: M. Ajith, V. Calhoun, Denoising Diffusion Probabilistic Models for High-Fidelity fMRI Intrinsic Connectivity Network Data Generation, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, 2024. – volume: 11 start-page: 50364 year: 2023 end-page: 50381 ident: b30 article-title: Efficient blind source separation method for fMRI using autoencoder and spatiotemporal sparsity constraints publication-title: IEEE Access – reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022. – volume: 237 year: 2021 ident: b53 article-title: Impact of inter-individual variability on the estimation of default mode network in temporal concatenation group ICA publication-title: Neuroimage – start-page: 117 year: 2022 end-page: 126 ident: b16 article-title: Brain imaging generation with latent diffusion models publication-title: MICCAI Workshop on Deep Generative Models – start-page: 117 year: 2022 ident: 10.1016/j.compbiomed.2025.110996_b16 article-title: Brain imaging generation with latent diffusion models – volume: 39 start-page: 87 issue: 2 year: 2022 ident: 10.1016/j.compbiomed.2025.110996_b26 article-title: Deep learning in neuroimaging: Promises and challenges publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2021.3128348 – volume: 254 start-page: 155 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b58 article-title: Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder publication-title: Schizophr. Res. doi: 10.1016/j.schres.2023.02.023 – start-page: 1 year: 2013 ident: 10.1016/j.compbiomed.2025.110996_b17 article-title: Blind source separation: A review and analysis – volume: 28 year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b43 article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders publication-title: NeuroImage: Clin. – start-page: 80 year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b9 article-title: Uncertainty quantification in medical image segmentation with normalizing flows – year: 2022 ident: 10.1016/j.compbiomed.2025.110996_b35 article-title: Attention-like multimodality fusion with data augmentation for diagnosis of mental disorders using MRI publication-title: IEEE Trans. Neural Netw Learn. Syst. – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.compbiomed.2025.110996_b52 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature Neurosci. doi: 10.1038/nn.4135 – year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b48 – volume: 237 year: 2021 ident: 10.1016/j.compbiomed.2025.110996_b53 article-title: Impact of inter-individual variability on the estimation of default mode network in temporal concatenation group ICA publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118114 – ident: 10.1016/j.compbiomed.2025.110996_b31 doi: 10.1109/BHI62660.2024.10913576 – volume: 69 start-page: 157 year: 2013 ident: 10.1016/j.compbiomed.2025.110996_b56 article-title: Group information guided ICA for fMRI data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.008 – volume: 20 start-page: 870 issue: 2 year: 2003 ident: 10.1016/j.compbiomed.2025.110996_b45 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 13 start-page: 12098 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b51 article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis publication-title: Sci. Rep. doi: 10.1038/s41598-023-39278-0 – volume: 38 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b54 article-title: Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study publication-title: NeuroImage: Clin. – volume: 13 start-page: 1006 year: 2019 ident: 10.1016/j.compbiomed.2025.110996_b47 article-title: Spatial dynamic functional connectivity analysis identifies distinctive biomarkers in schizophrenia publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01006 – volume: 271 start-page: 182 year: 2016 ident: 10.1016/j.compbiomed.2025.110996_b23 article-title: A multiple hold-out framework for sparse partial least squares publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.06.011 – ident: 10.1016/j.compbiomed.2025.110996_b15 doi: 10.1109/CVPR52688.2022.01042 – volume: 98 start-page: 10 year: 2019 ident: 10.1016/j.compbiomed.2025.110996_b32 article-title: 3D-CNN based discrimination of schizophrenia using resting-state fMRI publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.06.003 – volume: 91 start-page: 134 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b49 article-title: GAN review: Models and medical image fusion applications publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.10.017 – volume: 2 start-page: 361 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2025.110996_b2 article-title: Learning deep generative models publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-010814-020120 – year: 2022 ident: 10.1016/j.compbiomed.2025.110996_b14 article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models – volume: 45 issue: 17 year: 2024 ident: 10.1016/j.compbiomed.2025.110996_b36 article-title: A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26783 – start-page: 1530 year: 2015 ident: 10.1016/j.compbiomed.2025.110996_b6 article-title: Variational inference with normalizing flows – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2025.110996_b41 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – start-page: 148 year: 2022 ident: 10.1016/j.compbiomed.2025.110996_b18 article-title: Blind source separation: A performance review approach – volume: 5 start-page: 60 year: 2012 ident: 10.1016/j.compbiomed.2025.110996_b20 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2211076 – volume: 11 start-page: 50364 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b30 article-title: Efficient blind source separation method for fMRI using autoencoder and spatiotemporal sparsity constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3277543 – start-page: 129 year: 2022 ident: 10.1016/j.compbiomed.2025.110996_b8 article-title: Autoencoders and variational autoencoders in medical image analysis – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b10 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b11 – volume: 9 start-page: 81 issue: 4 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b50 article-title: Deep learning approaches for data augmentation in medical imaging: a review publication-title: J. Imaging doi: 10.3390/jimaging9040081 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.compbiomed.2025.110996_b44 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.compbiomed.2025.110996_b46 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 92 start-page: 36 year: 2019 ident: 10.1016/j.compbiomed.2025.110996_b24 article-title: Two dimensional CCA via penalized matrix decomposition for structure preserved fMRI data analysis publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.04.010 – volume: 22 year: 2019 ident: 10.1016/j.compbiomed.2025.110996_b60 article-title: Default mode network connectivity is associated with long-term clinical outcome in patients with schizophrenia publication-title: NeuroImage: Clin. – volume: 137 start-page: 12 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2025.110996_b57 article-title: The role of the posterior cingulate cortex in cognition and disease publication-title: Brain doi: 10.1093/brain/awt162 – year: 2013 ident: 10.1016/j.compbiomed.2025.110996_b5 – volume: 30 start-page: 74 year: 2018 ident: 10.1016/j.compbiomed.2025.110996_b33 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.03.017 – volume: 102 year: 2025 ident: 10.1016/j.compbiomed.2025.110996_b37 article-title: AGBN-transformer: Anatomy-guided brain network transformer for schizophrenia diagnosis publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2024.107226 – volume: 124 start-page: 1074 year: 2016 ident: 10.1016/j.compbiomed.2025.110996_b42 article-title: The function biomedical informatics research network data repository publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.003 – volume: 96 start-page: 245 year: 2014 ident: 10.1016/j.compbiomed.2025.110996_b28 article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.048 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b4 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 15 start-page: 265 issue: 2 year: 2006 ident: 10.1016/j.compbiomed.2025.110996_b21 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Statist. doi: 10.1198/106186006X113430 – start-page: 1 year: 2025 ident: 10.1016/j.compbiomed.2025.110996_b38 article-title: Multi-modal imaging genomics transformer: Attentive integration of imaging with genomic biomarkers for schizophrenia classification – ident: 10.1016/j.compbiomed.2025.110996_b13 doi: 10.1109/ICCV48922.2021.00986 – start-page: 638 year: 2016 ident: 10.1016/j.compbiomed.2025.110996_b29 article-title: Latent source mining in FMRI data via deep neural network – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2025.110996_b22 article-title: Sparse and smooth canonical correlation analysis through rank-1 matrix approximation publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-017-0459-y – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b7 article-title: Catastrophic forgetting and mode collapse in GANs – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 10.1016/j.compbiomed.2025.110996_b19 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – volume: 68 issue: 10 year: 2023 ident: 10.1016/j.compbiomed.2025.110996_b12 article-title: 2D medical image synthesis using transformer-based denoising diffusion probabilistic model publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/acca5c – volume: 341 year: 2020 ident: 10.1016/j.compbiomed.2025.110996_b34 article-title: Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108756 – volume: 19 start-page: 1523 issn: 1097-6256 issue: 11 year: 2016 ident: 10.1016/j.compbiomed.2025.110996_b39 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nature Neurosci. doi: 10.1038/nn.4393 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.compbiomed.2025.110996_b27 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – year: 2024 ident: 10.1016/j.compbiomed.2025.110996_b3 article-title: A survey on generative diffusion models publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2024.3361474 – volume: 8 start-page: 49 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2025.110996_b59 article-title: Default mode network activity and connectivity in psychopathology publication-title: Annu. Rev. Clin. Psychol. doi: 10.1146/annurev-clinpsy-032511-143049 – volume: 22 start-page: 165 issue: 3 year: 2004 ident: 10.1016/j.compbiomed.2025.110996_b25 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20022 – volume: 32 start-page: 2075 issue: 12 year: 2011 ident: 10.1016/j.compbiomed.2025.110996_b55 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21170 – start-page: 2256 year: 2015 ident: 10.1016/j.compbiomed.2025.110996_b1 article-title: Deep unsupervised learning using nonequilibrium thermodynamics – volume: 19 start-page: 1175 issue: 9 year: 2016 ident: 10.1016/j.compbiomed.2025.110996_b40 article-title: The human connectome project’s neuroimaging approach publication-title: Nature Neurosci. doi: 10.1038/nn.4361 |
SSID | ssj0004030 |
Score | 2.4199197 |
Snippet | Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 110996 |
SubjectTerms | Data augmentation Diffusion models Intrinsic connectivity networks Schizophrenia classification Transformer architectures |
Title | TransUNET-DDPM: A transformer-enhanced diffusion model for subject-specific brain network generation and classification |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525013484 https://dx.doi.org/10.1016/j.compbiomed.2025.110996 https://www.ncbi.nlm.nih.gov/pubmed/40882475 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4tuxLqpWp5FFpAPnA1JOtHbDitWNC2aFccdiVukZ047XIIiO6qt_72zsQJjwtC6jFOxrHG1rz8zQzAcZkNhQ2J53hAJJdOWu6Fr7gwKnHCowNQUBxyOtOThfxxq257cNHlwhCsspX9UaY30rodOW25efqwXFKOL86EDg4q8VRIIzdggP_Vqg-D0ffryew5PTIRMRMFRQ4RtICeCPMi5HbMdEdncaiaCpxUwf9NLfVCBV19go-t7chGcXmfoRfqLdictrfj2_CnUTyL2eWcj8c30zM2YqvOLg2PPNS_mut-Rk1R1hQlY00fHIbv2e-1p4gMp8xLQg8xT70jWB1R4uxnU52aNpG5umQF2dz0WTO0A4ury_nFhLeNFXiRGqP40IbKBLQEyqrQOqSlChlqMOutrCo_tC7TqXOlL4UpM2tDQJ44JQvjTJmoQotd6Nf3ddgDhgOJMJVVoaqkQ2_FZdZrpwulDVXO2Ye0Y2T-EOtn5B2w7C5_Zn5OzM8j8_fBdhzPu_xQlGg5Cvl30J4_0b46R--k_hI3-GmtklwQmamv_zXvN_hATxEEeAD91eM6HKIxs_JHsHHyNz1qj-w_ScT08w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSMCCeFOeHlgNSW0nNkyIFhVoK4ZW6hbZiQ1lCFVpxcZvxxcnLSwIidUvWZ-te9jf3SF0nsUNKk2gibsgjDDFJNFUW0IFDxTVzgFI4R2y24vaA_Yw5MMldFvFwgCtspT9XqYX0rpsuSzRvByPRhDj61ZyDo5T4iFlgi2jFcZpDLy-i88Fz4MF1MehOIEDw0s6jyd5AW_bx7k7V7HBi_ybkL__Vx31TQHdbaKN0nLEN35zW2jJ5NtotVv-je-gj0LtDHqtPmk2n7pX-AZPK6vUTIjJX4rPfgwlUWbwRoaLKjjY9eP3mYb3GAJxl8AdwhoqR-Dcc8Txc5GbGo4QqzzDKVjcMKxo2kWDu1b_tk3KsgokDYXgpCGNFcbZAZlNo8iEGTex019SS2atbkgVR6FSmc6oyGIpjXGYKM5SoUQW8DSie6iWv-XmAGHXEFBhJTfWMuV8FRVLHako5ZGAvDl1FFZAJmOfPSOpaGWvyQL8BMBPPPh1JCvEkyo61MmzxIn4P8y9ns_9cYv-OHvfH_B8rwwcEBbzw3-te4bW2v1uJ-nc9x6P0Dr0eDrgMapNJzNz4syaqT4tru0XX6j1vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TransUNET-DDPM%3A+A+transformer-enhanced+diffusion+model+for+subject-specific+brain+network+generation+and+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ajith%2C+Meenu&rft.au=Calhoun%2C+Vince+D.&rft.date=2025-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=197&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110996&rft.externalDocID=S0010482525013484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |