TransUNET-DDPM: A transformer-enhanced diffusion model for subject-specific brain network generation and classification

Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based arc...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 197; no. Pt A; p. 110996
Main Authors Ajith, Meenu, Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
DOI10.1016/j.compbiomed.2025.110996

Cover

Abstract Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability. •TransUNET-DDPM combines transformers with diffusion models to generate anatomically and functionally accurate 3D brain connectivity networks.•A transfer learning strategy enables efficient training and domain adaptation from large-scale unsupervised data to condition-specific neuroimaging tasks.•Class-conditioned ICN synthesis improves schizophrenia classification by augmenting scarce datasets with diagnostically meaningful synthetic samples.
AbstractList Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability.
Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating high-quality and meaningful visual information. In this paper, we introduce TransUNET-DDPM, a novel framework that fuses transformer-based architectures with denoising diffusion probabilistic models (DDPMs) to generate high-quality, 2D and 3D intrinsic connectivity networks (ICNs). This architecture addresses limitations of traditional linear methods like independent component analysis (ICA) by leveraging the nonlinear modeling capabilities of DDPMs, further enhanced through transformer blocks that enable attention-driven feature encoding. To produce subject-specific 3D ICNs, an image-conditioned variant of TransUNET-DDPM is employed, utilizing a spatiotemporal encoder to incorporate resting-state fMRI (rs-fMRI) conditional information. Efficient training is achieved through a transfer learning strategy in which a large-scale, unconditional TransUNET-DDPM is first pretrained to capture general spatial and temporal patterns, followed by fine-tuning on a smaller, condition-specific neuroimaging dataset. Additionally, a class-conditioned version of the model is introduced for data augmentation in schizophrenia classification. By generating synthetic ICNs based on diagnostic labels, this variant enhances the robustness of classifiers, particularly in data-scarce scenarios. Furthermore, quantitative and qualitative evaluations demonstrate that our framework surpasses existing generative models in producing anatomically and functionally meaningful ICNs, with external dataset validation confirming its generalizability. •TransUNET-DDPM combines transformers with diffusion models to generate anatomically and functionally accurate 3D brain connectivity networks.•A transfer learning strategy enables efficient training and domain adaptation from large-scale unsupervised data to condition-specific neuroimaging tasks.•Class-conditioned ICN synthesis improves schizophrenia classification by augmenting scarce datasets with diagnostically meaningful synthetic samples.
ArticleNumber 110996
Author Ajith, Meenu
Calhoun, Vince D.
Author_xml – sequence: 1
  givenname: Meenu
  orcidid: 0000-0002-9210-0994
  surname: Ajith
  fullname: Ajith, Meenu
  email: majith@gsu.edu
– sequence: 2
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40882475$$D View this record in MEDLINE/PubMed
BookMark eNqN0MtOIzEQBVBrBBoCzC8g_0CHcj9tVjwHkHgtwtpy22Vw0m1HdgLi76ebwIw0q6wslW9dqc4-2fHBIyGUwZQBq4_nUx36ZetCj2aaQ15NGQMh6h9kwngjMqiKcodMABhkJc-rPbKf0hwASijgJ9krgfO8bKoJeZ9F5dPzw9Usu7x8uj-hZ3Q1TmyIPcYM_avyGg01ztp1csHTPhjs6PBP07qdo15laYnaWadpG5Xz1OPqPcQFfUGPUa3GHeUN1Z1KaYx9jg7JrlVdwl9f7wF5_n01u7jJ7h6vby_O7jLNOK-yXKDlKIAZq-samamwYXkhWlFa2-ZCNTVTyrSm4KYRAnFgUFWpueIGKl0XB-Ro07tctwOWXEbXq_ghvwWGAN8EdAwpRbR_IwzkiC3n8h-2HLHlBntYPd-s4nDAm8Mok3Y4crk4uEgT3DYlp_-V6M75Qalb4Md2FX8ADf-ktQ
Cites_doi 10.1109/MSP.2021.3128348
10.1016/j.schres.2023.02.023
10.1038/nn.4135
10.1016/j.neuroimage.2021.118114
10.1109/BHI62660.2024.10913576
10.1016/j.neuroimage.2012.11.008
10.1016/S1053-8119(03)00336-7
10.1038/s41598-023-39278-0
10.3389/fnins.2019.01006
10.1016/j.jneumeth.2016.06.011
10.1109/CVPR52688.2022.01042
10.1016/j.artmed.2019.06.003
10.1016/j.inffus.2022.10.017
10.1146/annurev-statistics-010814-020120
10.1002/hbm.26783
10.1016/j.neuroimage.2012.02.018
10.1109/RBME.2012.2211076
10.1109/ACCESS.2023.3277543
10.3390/jimaging9040081
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2013.11.046
10.1016/j.dsp.2019.04.010
10.1093/brain/awt162
10.1016/j.ebiom.2018.03.017
10.1016/j.bspc.2024.107226
10.1016/j.neuroimage.2015.09.003
10.1016/j.neuroimage.2014.03.048
10.1145/3422622
10.1198/106186006X113430
10.1109/ICCV48922.2021.00986
10.1186/s13634-017-0459-y
10.1002/hbm.1048
10.1088/1361-6560/acca5c
10.1016/j.jneumeth.2020.108756
10.1038/nn.4393
10.1162/089976602760128018
10.1109/TKDE.2024.3361474
10.1146/annurev-clinpsy-032511-143049
10.1002/hbm.20022
10.1002/hbm.21170
10.1038/nn.4361
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
DOI 10.1016/j.compbiomed.2025.110996
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
ExternalDocumentID 40882475
10_1016_j_compbiomed_2025_110996
S0010482525013484
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG073949
– fundername: NIMH NIH HHS
  grantid: R01 MH123610
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AAYXX
CITATION
NPM
ID FETCH-LOGICAL-c1885-29ef8e901dfc66e1d5e71239b94ffb29a761aadbd38d799ee109a54c8a8d05c63
IEDL.DBID AIKHN
ISSN 0010-4825
IngestDate Wed Sep 10 03:23:46 EDT 2025
Wed Sep 03 16:39:07 EDT 2025
Sat Sep 06 17:21:05 EDT 2025
Mon Sep 08 07:21:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Intrinsic connectivity networks
Diffusion models
Data augmentation
Transformer architectures
Schizophrenia classification
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1885-29ef8e901dfc66e1d5e71239b94ffb29a761aadbd38d799ee109a54c8a8d05c63
ORCID 0000-0002-9210-0994
PMID 40882475
ParticipantIDs pubmed_primary_40882475
crossref_primary_10_1016_j_compbiomed_2025_110996
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110996
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110996
PublicationCentury 2000
PublicationDate October 2025
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ho, Jain, Abbeel (b10) 2020; 33
Hinton (b27) 2002; 14
Zhao, Huang, Zhi, Yan, Ma, Yang, Li, Ke, Jiang, Calhoun (b34) 2020; 341
Lee, Lee, Park, Kim, Ryu (b60) 2019; 22
Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller (b40) 2016; 19
Aïssa-El-Bey, Seghouane (b22) 2017; 2017
Kebaili, Lapuyade-Lahorgue, Ruan (b50) 2023; 9
Selvan, Faye, Middleton, Pai (b9) 2020
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson, Griffanti, Douaud, Okell, Weale, Dragonu, Garratt, Hudson, Collins, Jenkinson, Matthews, Smith (b39) 2016; 19
Taha, Abdel-Raheem (b18) 2022
Huang, Hu, Han, Lv, Liu, Guo, Liu (b29) 2016
Shaik, Cherukuri, Calhoun, Ye (b38) 2025
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (b46) 2014; 90
Zou, Hastie, Tibshirani (b21) 2006; 15
Liang, Cao, Deng, Kong, Zhao, Jin, Ma, Wang, Li, Wang (b58) 2023; 254
Calhoun, Adali, Pearlson, Pekar (b19) 2001; 14
Zeng, Wang, Hu, Yang, Pu, Shen, Chen, Liu, Yin, Tan (b33) 2018; 30
Calhoun, Adali (b20) 2012; 5
Müller-Franzes, Niehues, Khader, Arasteh, Haarburger, Kuhl, Wang, Han, Nolte, Nebelung (b51) 2023; 13
Bhinge, Long, Calhoun, Adali (b47) 2019; 13
Keator, van Erp, Turner, Glover, Mueller, Liu, Voyvodic, Rasmussen, Calhoun, Lee (b42) 2016; 124
Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole (b48) 2020
M. Ajith, V. Calhoun, Denoising Diffusion Probabilistic Models for High-Fidelity fMRI Intrinsic Connectivity Network Data Generation, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, 2024.
Hu, Yang (b53) 2021; 237
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (b55) 2011; 32
Pinaya, Tudosiu, Dafflon, Da Costa, Fernandez, Nachev, Ourselin, Cardoso (b16) 2022
Pan, Wang, Qiu, Axente, Chang, Peng, Patel, Shelton, Patel, Roper (b12) 2023; 68
Ehrhardt, Wilms (b8) 2022
Liu, Huang, Hu, Zhu, Wong, Tan (b35) 2022
Rezende, Mohamed (b6) 2015
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b4) 2020; 63
Cao, Tan, Gao, Xu, Chen, Heng, Li (b3) 2024
Khalid, Khawaja, Nauman (b30) 2023; 11
Bi, Abrol, Fu, Calhoun (b36) 2024; 45
van de Ven, Formisano, Prvulovic, Roeder, Linden (b25) 2004; 22
Monteiro, Rao, Shawe-Taylor, Mourao-Miranda, Initiative (b23) 2016; 271
Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen (b43) 2020; 28
Kingma, Welling (b5) 2013
Yan, Qu, Hu, Abrol, Cai, Qiao, Plis, Wang, Sui, Calhoun (b26) 2022; 39
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (b41) 2012; 62
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (b52) 2015; 18
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
Zhou, Li, Lu, Cheng, Zhang (b49) 2023; 91
Jenkinson, Bannister, Brady, Smith (b44) 2002; 17
Qadar, Aïssa-El-Bey, Seghouane (b24) 2019; 92
Thanh-Tung, Tran (b7) 2020
Song, Meng, Ermon (b11) 2020
Leech, Sharp (b57) 2014; 137
Meng, Iraji, Fu, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson (b54) 2023; 38
Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b1) 2015
Hjelm, Calhoun, Salakhutdinov, Allen, Adali, Plis (b28) 2014; 96
Whitfield-Gabrieli, Ford (b59) 2012; 8
Salakhutdinov (b2) 2015; 2
Dorjsembe, Odonchimed, Xiao (b14) 2022
Qureshi, Oh, Lee (b32) 2019; 98
Andersson, Skare, Ashburner (b45) 2003; 20
Pal, Roy, Basu, Bepari (b17) 2013
Du, Fan (b56) 2013; 69
Huang, Wang, Ju, Ding, Zhang (b37) 2025; 102
10.1016/j.compbiomed.2025.110996_b15
10.1016/j.compbiomed.2025.110996_b13
Shaik (10.1016/j.compbiomed.2025.110996_b38) 2025
Huang (10.1016/j.compbiomed.2025.110996_b37) 2025; 102
Pal (10.1016/j.compbiomed.2025.110996_b17) 2013
Meng (10.1016/j.compbiomed.2025.110996_b54) 2023; 38
Bi (10.1016/j.compbiomed.2025.110996_b36) 2024; 45
Aïssa-El-Bey (10.1016/j.compbiomed.2025.110996_b22) 2017; 2017
Leech (10.1016/j.compbiomed.2025.110996_b57) 2014; 137
Monteiro (10.1016/j.compbiomed.2025.110996_b23) 2016; 271
Kebaili (10.1016/j.compbiomed.2025.110996_b50) 2023; 9
Hinton (10.1016/j.compbiomed.2025.110996_b27) 2002; 14
Kingma (10.1016/j.compbiomed.2025.110996_b5) 2013
Salimi-Khorshidi (10.1016/j.compbiomed.2025.110996_b46) 2014; 90
Qureshi (10.1016/j.compbiomed.2025.110996_b32) 2019; 98
Finn (10.1016/j.compbiomed.2025.110996_b52) 2015; 18
Salakhutdinov (10.1016/j.compbiomed.2025.110996_b2) 2015; 2
Müller-Franzes (10.1016/j.compbiomed.2025.110996_b51) 2023; 13
Zhao (10.1016/j.compbiomed.2025.110996_b34) 2020; 341
van de Ven (10.1016/j.compbiomed.2025.110996_b25) 2004; 22
Lee (10.1016/j.compbiomed.2025.110996_b60) 2019; 22
Zou (10.1016/j.compbiomed.2025.110996_b21) 2006; 15
Zeng (10.1016/j.compbiomed.2025.110996_b33) 2018; 30
Cao (10.1016/j.compbiomed.2025.110996_b3) 2024
Erhardt (10.1016/j.compbiomed.2025.110996_b55) 2011; 32
Selvan (10.1016/j.compbiomed.2025.110996_b9) 2020
Pinaya (10.1016/j.compbiomed.2025.110996_b16) 2022
Huang (10.1016/j.compbiomed.2025.110996_b29) 2016
Hjelm (10.1016/j.compbiomed.2025.110996_b28) 2014; 96
Taha (10.1016/j.compbiomed.2025.110996_b18) 2022
Zhou (10.1016/j.compbiomed.2025.110996_b49) 2023; 91
10.1016/j.compbiomed.2025.110996_b31
Calhoun (10.1016/j.compbiomed.2025.110996_b19) 2001; 14
Du (10.1016/j.compbiomed.2025.110996_b56) 2013; 69
Miller (10.1016/j.compbiomed.2025.110996_b39) 2016; 19
Khalid (10.1016/j.compbiomed.2025.110996_b30) 2023; 11
Song (10.1016/j.compbiomed.2025.110996_b11) 2020
Jenkinson (10.1016/j.compbiomed.2025.110996_b44) 2002; 17
Bhinge (10.1016/j.compbiomed.2025.110996_b47) 2019; 13
Thanh-Tung (10.1016/j.compbiomed.2025.110996_b7) 2020
Glasser (10.1016/j.compbiomed.2025.110996_b40) 2016; 19
Whitfield-Gabrieli (10.1016/j.compbiomed.2025.110996_b59) 2012; 8
Dorjsembe (10.1016/j.compbiomed.2025.110996_b14) 2022
Song (10.1016/j.compbiomed.2025.110996_b48) 2020
Ehrhardt (10.1016/j.compbiomed.2025.110996_b8) 2022
Pan (10.1016/j.compbiomed.2025.110996_b12) 2023; 68
Qadar (10.1016/j.compbiomed.2025.110996_b24) 2019; 92
Keator (10.1016/j.compbiomed.2025.110996_b42) 2016; 124
Andersson (10.1016/j.compbiomed.2025.110996_b45) 2003; 20
Ho (10.1016/j.compbiomed.2025.110996_b10) 2020; 33
Calhoun (10.1016/j.compbiomed.2025.110996_b20) 2012; 5
Goodfellow (10.1016/j.compbiomed.2025.110996_b4) 2020; 63
Du (10.1016/j.compbiomed.2025.110996_b43) 2020; 28
Liang (10.1016/j.compbiomed.2025.110996_b58) 2023; 254
Sohl-Dickstein (10.1016/j.compbiomed.2025.110996_b1) 2015
Van Essen (10.1016/j.compbiomed.2025.110996_b41) 2012; 62
Rezende (10.1016/j.compbiomed.2025.110996_b6) 2015
Yan (10.1016/j.compbiomed.2025.110996_b26) 2022; 39
Liu (10.1016/j.compbiomed.2025.110996_b35) 2022
Hu (10.1016/j.compbiomed.2025.110996_b53) 2021; 237
References_xml – volume: 341
  year: 2020
  ident: b34
  article-title: Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders
  publication-title: J. Neurosci. Methods
– volume: 91
  start-page: 134
  year: 2023
  end-page: 148
  ident: b49
  article-title: GAN review: Models and medical image fusion applications
  publication-title: Inf. Fusion
– volume: 15
  start-page: 265
  year: 2006
  end-page: 286
  ident: b21
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Statist.
– volume: 30
  start-page: 74
  year: 2018
  end-page: 85
  ident: b33
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
– year: 2020
  ident: b11
  article-title: Denoising diffusion implicit models
– volume: 13
  start-page: 12098
  year: 2023
  ident: b51
  article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
  publication-title: Sci. Rep.
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  ident: b56
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: Neuroimage
– volume: 32
  start-page: 2075
  year: 2011
  end-page: 2095
  ident: b55
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Hum. Brain Mapp.
– start-page: 1530
  year: 2015
  end-page: 1538
  ident: b6
  article-title: Variational inference with normalizing flows
  publication-title: International Conference on Machine Learning
– volume: 9
  start-page: 81
  year: 2023
  ident: b50
  article-title: Deep learning approaches for data augmentation in medical imaging: a review
  publication-title: J. Imaging
– volume: 96
  start-page: 245
  year: 2014
  end-page: 260
  ident: b28
  article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks
  publication-title: NeuroImage
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: b46
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 2
  start-page: 361
  year: 2015
  end-page: 385
  ident: b2
  article-title: Learning deep generative models
  publication-title: Annu. Rev. Stat. Appl.
– volume: 124
  start-page: 1074
  year: 2016
  end-page: 1079
  ident: b42
  article-title: The function biomedical informatics research network data repository
  publication-title: Neuroimage
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: b39
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nature Neurosci.
– volume: 8
  start-page: 49
  year: 2012
  end-page: 76
  ident: b59
  article-title: Default mode network activity and connectivity in psychopathology
  publication-title: Annu. Rev. Clin. Psychol.
– start-page: 1
  year: 2020
  end-page: 10
  ident: b7
  article-title: Catastrophic forgetting and mode collapse in GANs
  publication-title: 2020 International Joint Conference on Neural Networks (Ijcnn)
– volume: 19
  start-page: 1175
  year: 2016
  end-page: 1187
  ident: b40
  article-title: The human connectome project’s neuroimaging approach
  publication-title: Nature Neurosci.
– volume: 13
  start-page: 1006
  year: 2019
  ident: b47
  article-title: Spatial dynamic functional connectivity analysis identifies distinctive biomarkers in schizophrenia
  publication-title: Front. Neurosci.
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: b52
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature Neurosci.
– volume: 68
  year: 2023
  ident: b12
  article-title: 2D medical image synthesis using transformer-based denoising diffusion probabilistic model
  publication-title: Phys. Med. Biol.
– start-page: 80
  year: 2020
  end-page: 90
  ident: b9
  article-title: Uncertainty quantification in medical image segmentation with normalizing flows
  publication-title: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings 11
– year: 2020
  ident: b48
  article-title: Score-based generative modeling through stochastic differential equations
– volume: 22
  year: 2019
  ident: b60
  article-title: Default mode network connectivity is associated with long-term clinical outcome in patients with schizophrenia
  publication-title: NeuroImage: Clin.
– year: 2022
  ident: b14
  article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models
  publication-title: Medical Imaging with Deep Learning
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: b45
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  ident: b20
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 137
  start-page: 12
  year: 2014
  end-page: 32
  ident: b57
  article-title: The role of the posterior cingulate cortex in cognition and disease
  publication-title: Brain
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: b19
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– start-page: 148
  year: 2022
  end-page: 153
  ident: b18
  article-title: Blind source separation: A performance review approach
  publication-title: 2022 5th International Conference on Signal Processing and Information Security
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 14
  ident: b22
  article-title: Sparse and smooth canonical correlation analysis through rank-1 matrix approximation
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 45
  year: 2024
  ident: b36
  article-title: A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
  publication-title: Hum. Brain Mapp.
– start-page: 129
  year: 2022
  end-page: 162
  ident: b8
  article-title: Autoencoders and variational autoencoders in medical image analysis
  publication-title: Biomedical Image Synthesis and Simulation
– start-page: 1
  year: 2013
  end-page: 5
  ident: b17
  article-title: Blind source separation: A review and analysis
  publication-title: 2013 International Conference Oriental COCOSDA Held Jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE)
– volume: 271
  start-page: 182
  year: 2016
  end-page: 194
  ident: b23
  article-title: A multiple hold-out framework for sparse partial least squares
  publication-title: J. Neurosci. Methods
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b4
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– start-page: 2256
  year: 2015
  end-page: 2265
  ident: b1
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
  publication-title: International Conference on Machine Learning
– volume: 98
  start-page: 10
  year: 2019
  end-page: 17
  ident: b32
  article-title: 3D-CNN based discrimination of schizophrenia using resting-state fMRI
  publication-title: Artif. Intell. Med.
– start-page: 638
  year: 2016
  end-page: 641
  ident: b29
  article-title: Latent source mining in FMRI data via deep neural network
  publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging
– volume: 38
  year: 2023
  ident: b54
  article-title: Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study
  publication-title: NeuroImage: Clin.
– volume: 102
  year: 2025
  ident: b37
  article-title: AGBN-transformer: Anatomy-guided brain network transformer for schizophrenia diagnosis
  publication-title: Biomed. Signal Process. Control.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: b44
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b27
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– volume: 28
  year: 2020
  ident: b43
  article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clin.
– year: 2013
  ident: b5
  article-title: Auto-encoding variational bayes
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: b41
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 22
  start-page: 165
  year: 2004
  end-page: 178
  ident: b25
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
– year: 2022
  ident: b35
  article-title: Attention-like multimodality fusion with data augmentation for diagnosis of mental disorders using MRI
  publication-title: IEEE Trans. Neural Netw Learn. Syst.
– start-page: 1
  year: 2025
  end-page: 5
  ident: b38
  article-title: Multi-modal imaging genomics transformer: Attentive integration of imaging with genomic biomarkers for schizophrenia classification
  publication-title: 2025 IEEE 22nd International Symposium on Biomedical Imaging
– volume: 254
  start-page: 155
  year: 2023
  end-page: 162
  ident: b58
  article-title: Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder
  publication-title: Schizophr. Res.
– volume: 39
  start-page: 87
  year: 2022
  end-page: 98
  ident: b26
  article-title: Deep learning in neuroimaging: Promises and challenges
  publication-title: IEEE Signal Process. Mag.
– volume: 92
  start-page: 36
  year: 2019
  end-page: 46
  ident: b24
  article-title: Two dimensional CCA via penalized matrix decomposition for structure preserved fMRI data analysis
  publication-title: Digit. Signal Process.
– reference: R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
– year: 2024
  ident: b3
  article-title: A survey on generative diffusion models
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b10
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: M. Ajith, V. Calhoun, Denoising Diffusion Probabilistic Models for High-Fidelity fMRI Intrinsic Connectivity Network Data Generation, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, 2024.
– volume: 11
  start-page: 50364
  year: 2023
  end-page: 50381
  ident: b30
  article-title: Efficient blind source separation method for fMRI using autoencoder and spatiotemporal sparsity constraints
  publication-title: IEEE Access
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
– volume: 237
  year: 2021
  ident: b53
  article-title: Impact of inter-individual variability on the estimation of default mode network in temporal concatenation group ICA
  publication-title: Neuroimage
– start-page: 117
  year: 2022
  end-page: 126
  ident: b16
  article-title: Brain imaging generation with latent diffusion models
  publication-title: MICCAI Workshop on Deep Generative Models
– start-page: 117
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110996_b16
  article-title: Brain imaging generation with latent diffusion models
– volume: 39
  start-page: 87
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110996_b26
  article-title: Deep learning in neuroimaging: Promises and challenges
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2021.3128348
– volume: 254
  start-page: 155
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b58
  article-title: Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2023.02.023
– start-page: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110996_b17
  article-title: Blind source separation: A review and analysis
– volume: 28
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b43
  article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clin.
– start-page: 80
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b9
  article-title: Uncertainty quantification in medical image segmentation with normalizing flows
– year: 2022
  ident: 10.1016/j.compbiomed.2025.110996_b35
  article-title: Attention-like multimodality fusion with data augmentation for diagnosis of mental disorders using MRI
  publication-title: IEEE Trans. Neural Netw Learn. Syst.
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110996_b52
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.4135
– year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b48
– volume: 237
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110996_b53
  article-title: Impact of inter-individual variability on the estimation of default mode network in temporal concatenation group ICA
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118114
– ident: 10.1016/j.compbiomed.2025.110996_b31
  doi: 10.1109/BHI62660.2024.10913576
– volume: 69
  start-page: 157
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110996_b56
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.008
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.compbiomed.2025.110996_b45
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 13
  start-page: 12098
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b51
  article-title: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39278-0
– volume: 38
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b54
  article-title: Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study
  publication-title: NeuroImage: Clin.
– volume: 13
  start-page: 1006
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110996_b47
  article-title: Spatial dynamic functional connectivity analysis identifies distinctive biomarkers in schizophrenia
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01006
– volume: 271
  start-page: 182
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110996_b23
  article-title: A multiple hold-out framework for sparse partial least squares
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.06.011
– ident: 10.1016/j.compbiomed.2025.110996_b15
  doi: 10.1109/CVPR52688.2022.01042
– volume: 98
  start-page: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110996_b32
  article-title: 3D-CNN based discrimination of schizophrenia using resting-state fMRI
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.06.003
– volume: 91
  start-page: 134
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b49
  article-title: GAN review: Models and medical image fusion applications
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.10.017
– volume: 2
  start-page: 361
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110996_b2
  article-title: Learning deep generative models
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-010814-020120
– year: 2022
  ident: 10.1016/j.compbiomed.2025.110996_b14
  article-title: Three-dimensional medical image synthesis with denoising diffusion probabilistic models
– volume: 45
  issue: 17
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110996_b36
  article-title: A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26783
– start-page: 1530
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110996_b6
  article-title: Variational inference with normalizing flows
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2025.110996_b41
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– start-page: 148
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110996_b18
  article-title: Blind source separation: A performance review approach
– volume: 5
  start-page: 60
  year: 2012
  ident: 10.1016/j.compbiomed.2025.110996_b20
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2211076
– volume: 11
  start-page: 50364
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b30
  article-title: Efficient blind source separation method for fMRI using autoencoder and spatiotemporal sparsity constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3277543
– start-page: 129
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110996_b8
  article-title: Autoencoders and variational autoencoders in medical image analysis
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b10
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b11
– volume: 9
  start-page: 81
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b50
  article-title: Deep learning approaches for data augmentation in medical imaging: a review
  publication-title: J. Imaging
  doi: 10.3390/jimaging9040081
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.compbiomed.2025.110996_b44
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110996_b46
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 92
  start-page: 36
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110996_b24
  article-title: Two dimensional CCA via penalized matrix decomposition for structure preserved fMRI data analysis
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.04.010
– volume: 22
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110996_b60
  article-title: Default mode network connectivity is associated with long-term clinical outcome in patients with schizophrenia
  publication-title: NeuroImage: Clin.
– volume: 137
  start-page: 12
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110996_b57
  article-title: The role of the posterior cingulate cortex in cognition and disease
  publication-title: Brain
  doi: 10.1093/brain/awt162
– year: 2013
  ident: 10.1016/j.compbiomed.2025.110996_b5
– volume: 30
  start-page: 74
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110996_b33
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.017
– volume: 102
  year: 2025
  ident: 10.1016/j.compbiomed.2025.110996_b37
  article-title: AGBN-transformer: Anatomy-guided brain network transformer for schizophrenia diagnosis
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2024.107226
– volume: 124
  start-page: 1074
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110996_b42
  article-title: The function biomedical informatics research network data repository
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.003
– volume: 96
  start-page: 245
  year: 2014
  ident: 10.1016/j.compbiomed.2025.110996_b28
  article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.048
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b4
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 15
  start-page: 265
  issue: 2
  year: 2006
  ident: 10.1016/j.compbiomed.2025.110996_b21
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/106186006X113430
– start-page: 1
  year: 2025
  ident: 10.1016/j.compbiomed.2025.110996_b38
  article-title: Multi-modal imaging genomics transformer: Attentive integration of imaging with genomic biomarkers for schizophrenia classification
– ident: 10.1016/j.compbiomed.2025.110996_b13
  doi: 10.1109/ICCV48922.2021.00986
– start-page: 638
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110996_b29
  article-title: Latent source mining in FMRI data via deep neural network
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2025.110996_b22
  article-title: Sparse and smooth canonical correlation analysis through rank-1 matrix approximation
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-017-0459-y
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b7
  article-title: Catastrophic forgetting and mode collapse in GANs
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2025.110996_b19
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– volume: 68
  issue: 10
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110996_b12
  article-title: 2D medical image synthesis using transformer-based denoising diffusion probabilistic model
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/acca5c
– volume: 341
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110996_b34
  article-title: Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108756
– volume: 19
  start-page: 1523
  issn: 1097-6256
  issue: 11
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110996_b39
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.4393
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.compbiomed.2025.110996_b27
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110996_b3
  article-title: A survey on generative diffusion models
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2024.3361474
– volume: 8
  start-page: 49
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2025.110996_b59
  article-title: Default mode network activity and connectivity in psychopathology
  publication-title: Annu. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-032511-143049
– volume: 22
  start-page: 165
  issue: 3
  year: 2004
  ident: 10.1016/j.compbiomed.2025.110996_b25
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20022
– volume: 32
  start-page: 2075
  issue: 12
  year: 2011
  ident: 10.1016/j.compbiomed.2025.110996_b55
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21170
– start-page: 2256
  year: 2015
  ident: 10.1016/j.compbiomed.2025.110996_b1
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
– volume: 19
  start-page: 1175
  issue: 9
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110996_b40
  article-title: The human connectome project’s neuroimaging approach
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.4361
SSID ssj0004030
Score 2.4199197
Snippet Generative AI for image synthesis has significantly progressed with the advent of advanced diffusion models. These models have set new benchmarks in creating...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Publisher
StartPage 110996
SubjectTerms Data augmentation
Diffusion models
Intrinsic connectivity networks
Schizophrenia classification
Transformer architectures
Title TransUNET-DDPM: A transformer-enhanced diffusion model for subject-specific brain network generation and classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525013484
https://dx.doi.org/10.1016/j.compbiomed.2025.110996
https://www.ncbi.nlm.nih.gov/pubmed/40882475
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4tuxLqpWp5FFpAPnA1JOtHbDitWNC2aFccdiVukZ047XIIiO6qt_72zsQJjwtC6jFOxrHG1rz8zQzAcZkNhQ2J53hAJJdOWu6Fr7gwKnHCowNQUBxyOtOThfxxq257cNHlwhCsspX9UaY30rodOW25efqwXFKOL86EDg4q8VRIIzdggP_Vqg-D0ffryew5PTIRMRMFRQ4RtICeCPMi5HbMdEdncaiaCpxUwf9NLfVCBV19go-t7chGcXmfoRfqLdictrfj2_CnUTyL2eWcj8c30zM2YqvOLg2PPNS_mut-Rk1R1hQlY00fHIbv2e-1p4gMp8xLQg8xT70jWB1R4uxnU52aNpG5umQF2dz0WTO0A4ury_nFhLeNFXiRGqP40IbKBLQEyqrQOqSlChlqMOutrCo_tC7TqXOlL4UpM2tDQJ44JQvjTJmoQotd6Nf3ddgDhgOJMJVVoaqkQ2_FZdZrpwulDVXO2Ye0Y2T-EOtn5B2w7C5_Zn5OzM8j8_fBdhzPu_xQlGg5Cvl30J4_0b46R--k_hI3-GmtklwQmamv_zXvN_hATxEEeAD91eM6HKIxs_JHsHHyNz1qj-w_ScT08w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSMCCeFOeHlgNSW0nNkyIFhVoK4ZW6hbZiQ1lCFVpxcZvxxcnLSwIidUvWZ-te9jf3SF0nsUNKk2gibsgjDDFJNFUW0IFDxTVzgFI4R2y24vaA_Yw5MMldFvFwgCtspT9XqYX0rpsuSzRvByPRhDj61ZyDo5T4iFlgi2jFcZpDLy-i88Fz4MF1MehOIEDw0s6jyd5AW_bx7k7V7HBi_ybkL__Vx31TQHdbaKN0nLEN35zW2jJ5NtotVv-je-gj0LtDHqtPmk2n7pX-AZPK6vUTIjJX4rPfgwlUWbwRoaLKjjY9eP3mYb3GAJxl8AdwhoqR-Dcc8Txc5GbGo4QqzzDKVjcMKxo2kWDu1b_tk3KsgokDYXgpCGNFcbZAZlNo8iEGTex019SS2atbkgVR6FSmc6oyGIpjXGYKM5SoUQW8DSie6iWv-XmAGHXEFBhJTfWMuV8FRVLHako5ZGAvDl1FFZAJmOfPSOpaGWvyQL8BMBPPPh1JCvEkyo61MmzxIn4P8y9ns_9cYv-OHvfH_B8rwwcEBbzw3-te4bW2v1uJ-nc9x6P0Dr0eDrgMapNJzNz4syaqT4tru0XX6j1vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TransUNET-DDPM%3A+A+transformer-enhanced+diffusion+model+for+subject-specific+brain+network+generation+and+classification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ajith%2C+Meenu&rft.au=Calhoun%2C+Vince+D.&rft.date=2025-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=197&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110996&rft.externalDocID=S0010482525013484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon