Deep Learning Empowered Water Quality Assessment: Leveraging IoT Sensor Data with LSTM Models and Interpretability Techniques
Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically leveraging IoT sensor datasets for the classification and prediction of water quality parameters. The utilization of LSTM (Long Short-Term Memory)...
Saved in:
Published in | International Journal of Computational and Experimental Science and Engineering Vol. 10; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
20.10.2024
|
Online Access | Get full text |
ISSN | 2149-9144 2149-9144 |
DOI | 10.22399/ijcesen.512 |
Cover
Loading…
Abstract | Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically leveraging IoT sensor datasets for the classification and prediction of water quality parameters. The utilization of LSTM (Long Short-Term Memory) models navigates the intricacies inherent in environmental data, emphasizing the balance between model accuracy and interpretability. This equilibrium is achieved through the deployment of interpretability methods such as LIME, SHAP, Anchor, and LORE. Additionally, the incorporation of advanced parameter optimization techniques focuses on fine-tuning essential parameters like learning rates, batch sizes, and epochs to optimize model performance. This comprehensive approach ensures not only precise predictions but also enhances the transparency and interpretability of the model, addressing the critical need for actionable information in water quality management. The research significantly contributes to the convergence of deep learning, IoT, and environmental science, offering valuable tools for informed decision-making while highlighting the importance of fine-tuning parameters for optimal model performance |
---|---|
AbstractList | Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically leveraging IoT sensor datasets for the classification and prediction of water quality parameters. The utilization of LSTM (Long Short-Term Memory) models navigates the intricacies inherent in environmental data, emphasizing the balance between model accuracy and interpretability. This equilibrium is achieved through the deployment of interpretability methods such as LIME, SHAP, Anchor, and LORE. Additionally, the incorporation of advanced parameter optimization techniques focuses on fine-tuning essential parameters like learning rates, batch sizes, and epochs to optimize model performance. This comprehensive approach ensures not only precise predictions but also enhances the transparency and interpretability of the model, addressing the critical need for actionable information in water quality management. The research significantly contributes to the convergence of deep learning, IoT, and environmental science, offering valuable tools for informed decision-making while highlighting the importance of fine-tuning parameters for optimal model performance |
Author | P, Kavipriya R, Prathipa K, Deiwakumari M, Padma Achuthankutty, Sindhu |
Author_xml | – sequence: 1 givenname: Sindhu surname: Achuthankutty fullname: Achuthankutty, Sindhu – sequence: 2 givenname: Padma surname: M fullname: M, Padma – sequence: 3 givenname: Deiwakumari surname: K fullname: K, Deiwakumari – sequence: 4 givenname: Kavipriya surname: P fullname: P, Kavipriya – sequence: 5 givenname: Prathipa surname: R fullname: R, Prathipa |
BookMark | eNptkE9PwjAYhxuDiYjc_AD9AA7Xdn-oNwKoS0aMYcbjUrq3UDO62RYJB7-7EzkY4-l9D8_vOTyXqGcaAwhdk3BEKeP8Vr9JcGBGMaFnqE9JxANOoqj3679AQ-f0KmQJjUnCoz76nAG0OAdhjTZrPN-2zR4sVPhVeLD4eSdq7Q944hw4twXj7zr4A6xYf-NZU-AlGNdYPBNe4L32G5wviwVeNBXUDgtT4cx0ptaCFyt9lBUgN0a_78BdoXMlagfD0x2gl_t5MX0M8qeHbDrJA0nGYxqIlEZxzCiRaUioYBCHVayYYiyUCsZQEUGjSiolKXBOk1QpUCyFlYQq5QlnA0R_vNI2zllQpdReeN0Yb4WuSxKWx4blqWHZNexGN39GrdVbYQ__419ckXn- |
CitedBy_id | crossref_primary_10_22399_ijcesen_825 crossref_primary_10_22399_ijcesen_836 crossref_primary_10_22399_ijcesen_526 crossref_primary_10_22399_ijcesen_834 crossref_primary_10_22399_ijcesen_597 crossref_primary_10_22399_ijcesen_686 crossref_primary_10_22399_ijcesen_1358 crossref_primary_10_22399_ijcesen_672 crossref_primary_10_22399_ijcesen_656 crossref_primary_10_22399_ijcesen_514 crossref_primary_10_22399_ijcesen_831 |
Cites_doi | 10.1016/j.wroa.2023.100207 10.3390/en14206584 10.3390/e25020253 10.22399/ijcesen.359 10.1109/ICCES48766.2020.9137903 10.22399/ijcesen.1297655 10.3390/su142013231 10.1007/s10668-023-03916-4 10.22399/ijcesen.369 10.54216/JCIM.130204 10.1109/ICIT58056.2023.10225975 10.1109/ICACTA54488.2022.9752880 10.1016/j.heliyon.2024.e27920 10.1007/s00371-024-03382-7 10.3390/s21217271 10.37391/ijeer.120248 10.1080/00051144.2024.2400640 10.1007/s11468-024-02407-0 10.3390/app13042746 10.1007/978-981-16-6448-9_24 10.1007/978-981-33-4866-0_48 10.1108/9781802626056 10.1007/s11468-024-02492-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.22399/ijcesen.512 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2149-9144 |
ExternalDocumentID | 10_22399_ijcesen_512 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c1882-a72455321c7012a3e50d5f3f330cfe8ed1a24dcffc2e99267ffef37ebced79693 |
ISSN | 2149-9144 |
IngestDate | Thu Apr 24 22:51:20 EDT 2025 Tue Jul 01 03:13:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1882-a72455321c7012a3e50d5f3f330cfe8ed1a24dcffc2e99267ffef37ebced79693 |
OpenAccessLink | https://www.ijcesen.com/index.php/ijcesen/article/download/512/349 |
ParticipantIDs | crossref_citationtrail_10_22399_ijcesen_512 crossref_primary_10_22399_ijcesen_512 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-20 |
PublicationDateYYYYMMDD | 2024-10-20 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | International Journal of Computational and Experimental Science and Engineering |
PublicationYear | 2024 |
References | 6274 6296 6273 6295 6276 6298 6275 6297 6278 6277 6299 6279 6290 6292 6291 6272 6294 6271 6293 6285 6284 6287 6286 6289 6300 6288 6301 6281 6280 6283 6282 |
References_xml | – ident: 6277 doi: 10.1016/j.wroa.2023.100207 – ident: 6290 doi: 10.3390/en14206584 – ident: 6301 doi: 10.3390/e25020253 – ident: 6275 – ident: 6298 – ident: 6299 doi: 10.22399/ijcesen.359 – ident: 6282 doi: 10.1109/ICCES48766.2020.9137903 – ident: 6296 – ident: 6297 doi: 10.22399/ijcesen.1297655 – ident: 6273 – ident: 6278 doi: 10.3390/su142013231 – ident: 6284 doi: 10.1007/s10668-023-03916-4 – ident: 6300 doi: 10.22399/ijcesen.369 – ident: 6295 doi: 10.54216/JCIM.130204 – ident: 6283 doi: 10.1109/ICIT58056.2023.10225975 – ident: 6292 doi: 10.1109/ICACTA54488.2022.9752880 – ident: 6293 – ident: 6271 doi: 10.1016/j.heliyon.2024.e27920 – ident: 6279 doi: 10.1007/s00371-024-03382-7 – ident: 6281 doi: 10.3390/s21217271 – ident: 6272 – ident: 6287 doi: 10.37391/ijeer.120248 – ident: 6288 doi: 10.1080/00051144.2024.2400640 – ident: 6276 – ident: 6274 – ident: 6286 doi: 10.1007/s11468-024-02407-0 – ident: 6280 doi: 10.3390/app13042746 – ident: 6291 doi: 10.1007/978-981-16-6448-9_24 – ident: 6285 doi: 10.1007/978-981-33-4866-0_48 – ident: 6289 doi: 10.1108/9781802626056 – ident: 6294 doi: 10.1007/s11468-024-02492-1 |
SSID | ssib036251694 ssib044740609 |
Score | 1.9791224 |
Snippet | Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Deep Learning Empowered Water Quality Assessment: Leveraging IoT Sensor Data with LSTM Models and Interpretability Techniques |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEIBXUblwQSBAlEe1BzhFDvZ6bcfcKggq0HBpKnqL1vugpsWJErsoSPDj-GXMeO21KT4ULla0Xq-czKeZ2c08CHnOFHjhjKXeFMyzxzM_BD0YM8-wWCU6yjKZYqLw_GN8dMrfn0Vno9GvXtRSVWYT-X0wr-R_pApjIFfMkv0HybpFYQA-g3zhChKG641k_EbrdVsh9fN49nWNLc_Ag_wksPShLY-xGx-64pu4_T_W8DVta6J3qwXoimK72oDwS2HPZI9PFvO6Q9rltokVbqMS6zDanT2Mx6qv275j-_fJYuPm2rYR7Q1ccdZvKtDqlvpGVxvRcSjPKzzcv6hK273gJC_UeeUwsU6w6ozLB6tE82_iAoPHc6f6bejIVb7e5DvRP-tgHI0E8zuVyGA_B-rZVoyc6IGxVqf7PXb5kKlgmNQLAs6_SEzzmkRNNPcfFbmvWUoXvwg7p_r5ZfP0MsJG17cYbFWwi8b856zVaeAf4D-RTudxnoALVUceuRe3-Rj1gi97r9PzlHouz-IuudMIkR5a8O6RkS7ukx8IHW2how46WkNHG-hoB90r2iFHATlqkaOIHEXkKCJHLXIUOKDXkaMdcg_I6dvZ4vWR1_Tw8GSAmzeRMB5FIQtkAq6QCHXkq8iEJgx9afRUq0AwrqQxkuk0ZXFijDZhojOpVZLGafiQ7BWrQj8idDrlWoeZiZNUcJ0pkQpf-DoIJBhJlep9Mm5_r6VsCtxjn5XL5ZC49skLN3ttC7sMznt8w3lPyO2O2Kdkr9xU-hn4q2V2UAPxG2SZoKA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Empowered+Water+Quality+Assessment%3A+Leveraging+IoT+Sensor+Data+with+LSTM+Models+and+Interpretability+Techniques&rft.jtitle=International+Journal+of+Computational+and+Experimental+Science+and+Engineering&rft.au=Achuthankutty%2C+Sindhu&rft.au=M%2C+Padma&rft.au=K%2C+Deiwakumari&rft.au=P%2C+Kavipriya&rft.date=2024-10-20&rft.issn=2149-9144&rft.eissn=2149-9144&rft.volume=10&rft.issue=4&rft_id=info:doi/10.22399%2Fijcesen.512&rft.externalDBID=n%2Fa&rft.externalDocID=10_22399_ijcesen_512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2149-9144&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2149-9144&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2149-9144&client=summon |