Deep Learning Empowered Water Quality Assessment: Leveraging IoT Sensor Data with LSTM Models and Interpretability Techniques

Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically leveraging IoT sensor datasets for the classification and prediction of water quality parameters. The utilization of LSTM (Long Short-Term Memory)...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Computational and Experimental Science and Engineering Vol. 10; no. 4
Main Authors Achuthankutty, Sindhu, M, Padma, K, Deiwakumari, P, Kavipriya, R, Prathipa
Format Journal Article
LanguageEnglish
Published 20.10.2024
Online AccessGet full text
ISSN2149-9144
2149-9144
DOI10.22399/ijcesen.512

Cover

Loading…
Abstract Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically leveraging IoT sensor datasets for the classification and prediction of water quality parameters. The utilization of LSTM (Long Short-Term Memory) models navigates the intricacies inherent in environmental data, emphasizing the balance between model accuracy and interpretability. This equilibrium is achieved through the deployment of interpretability methods such as LIME, SHAP, Anchor, and LORE. Additionally, the incorporation of advanced parameter optimization techniques focuses on fine-tuning essential parameters like learning rates, batch sizes, and epochs to optimize model performance. This comprehensive approach ensures not only precise predictions but also enhances the transparency and interpretability of the model, addressing the critical need for actionable information in water quality management. The research significantly contributes to the convergence of deep learning, IoT, and environmental science, offering valuable tools for informed decision-making while highlighting the importance of fine-tuning parameters for optimal model performance
AbstractList Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically leveraging IoT sensor datasets for the classification and prediction of water quality parameters. The utilization of LSTM (Long Short-Term Memory) models navigates the intricacies inherent in environmental data, emphasizing the balance between model accuracy and interpretability. This equilibrium is achieved through the deployment of interpretability methods such as LIME, SHAP, Anchor, and LORE. Additionally, the incorporation of advanced parameter optimization techniques focuses on fine-tuning essential parameters like learning rates, batch sizes, and epochs to optimize model performance. This comprehensive approach ensures not only precise predictions but also enhances the transparency and interpretability of the model, addressing the critical need for actionable information in water quality management. The research significantly contributes to the convergence of deep learning, IoT, and environmental science, offering valuable tools for informed decision-making while highlighting the importance of fine-tuning parameters for optimal model performance
Author P, Kavipriya
R, Prathipa
K, Deiwakumari
M, Padma
Achuthankutty, Sindhu
Author_xml – sequence: 1
  givenname: Sindhu
  surname: Achuthankutty
  fullname: Achuthankutty, Sindhu
– sequence: 2
  givenname: Padma
  surname: M
  fullname: M, Padma
– sequence: 3
  givenname: Deiwakumari
  surname: K
  fullname: K, Deiwakumari
– sequence: 4
  givenname: Kavipriya
  surname: P
  fullname: P, Kavipriya
– sequence: 5
  givenname: Prathipa
  surname: R
  fullname: R, Prathipa
BookMark eNptkE9PwjAYhxuDiYjc_AD9AA7Xdn-oNwKoS0aMYcbjUrq3UDO62RYJB7-7EzkY4-l9D8_vOTyXqGcaAwhdk3BEKeP8Vr9JcGBGMaFnqE9JxANOoqj3679AQ-f0KmQJjUnCoz76nAG0OAdhjTZrPN-2zR4sVPhVeLD4eSdq7Q944hw4twXj7zr4A6xYf-NZU-AlGNdYPBNe4L32G5wviwVeNBXUDgtT4cx0ptaCFyt9lBUgN0a_78BdoXMlagfD0x2gl_t5MX0M8qeHbDrJA0nGYxqIlEZxzCiRaUioYBCHVayYYiyUCsZQEUGjSiolKXBOk1QpUCyFlYQq5QlnA0R_vNI2zllQpdReeN0Yb4WuSxKWx4blqWHZNexGN39GrdVbYQ__419ckXn-
CitedBy_id crossref_primary_10_22399_ijcesen_825
crossref_primary_10_22399_ijcesen_836
crossref_primary_10_22399_ijcesen_526
crossref_primary_10_22399_ijcesen_834
crossref_primary_10_22399_ijcesen_597
crossref_primary_10_22399_ijcesen_686
crossref_primary_10_22399_ijcesen_1358
crossref_primary_10_22399_ijcesen_672
crossref_primary_10_22399_ijcesen_656
crossref_primary_10_22399_ijcesen_514
crossref_primary_10_22399_ijcesen_831
Cites_doi 10.1016/j.wroa.2023.100207
10.3390/en14206584
10.3390/e25020253
10.22399/ijcesen.359
10.1109/ICCES48766.2020.9137903
10.22399/ijcesen.1297655
10.3390/su142013231
10.1007/s10668-023-03916-4
10.22399/ijcesen.369
10.54216/JCIM.130204
10.1109/ICIT58056.2023.10225975
10.1109/ICACTA54488.2022.9752880
10.1016/j.heliyon.2024.e27920
10.1007/s00371-024-03382-7
10.3390/s21217271
10.37391/ijeer.120248
10.1080/00051144.2024.2400640
10.1007/s11468-024-02407-0
10.3390/app13042746
10.1007/978-981-16-6448-9_24
10.1007/978-981-33-4866-0_48
10.1108/9781802626056
10.1007/s11468-024-02492-1
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.22399/ijcesen.512
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2149-9144
ExternalDocumentID 10_22399_ijcesen_512
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c1882-a72455321c7012a3e50d5f3f330cfe8ed1a24dcffc2e99267ffef37ebced79693
ISSN 2149-9144
IngestDate Thu Apr 24 22:51:20 EDT 2025
Tue Jul 01 03:13:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1882-a72455321c7012a3e50d5f3f330cfe8ed1a24dcffc2e99267ffef37ebced79693
OpenAccessLink https://www.ijcesen.com/index.php/ijcesen/article/download/512/349
ParticipantIDs crossref_citationtrail_10_22399_ijcesen_512
crossref_primary_10_22399_ijcesen_512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-20
PublicationDateYYYYMMDD 2024-10-20
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-20
  day: 20
PublicationDecade 2020
PublicationTitle International Journal of Computational and Experimental Science and Engineering
PublicationYear 2024
References 6274
6296
6273
6295
6276
6298
6275
6297
6278
6277
6299
6279
6290
6292
6291
6272
6294
6271
6293
6285
6284
6287
6286
6289
6300
6288
6301
6281
6280
6283
6282
References_xml – ident: 6277
  doi: 10.1016/j.wroa.2023.100207
– ident: 6290
  doi: 10.3390/en14206584
– ident: 6301
  doi: 10.3390/e25020253
– ident: 6275
– ident: 6298
– ident: 6299
  doi: 10.22399/ijcesen.359
– ident: 6282
  doi: 10.1109/ICCES48766.2020.9137903
– ident: 6296
– ident: 6297
  doi: 10.22399/ijcesen.1297655
– ident: 6273
– ident: 6278
  doi: 10.3390/su142013231
– ident: 6284
  doi: 10.1007/s10668-023-03916-4
– ident: 6300
  doi: 10.22399/ijcesen.369
– ident: 6295
  doi: 10.54216/JCIM.130204
– ident: 6283
  doi: 10.1109/ICIT58056.2023.10225975
– ident: 6292
  doi: 10.1109/ICACTA54488.2022.9752880
– ident: 6293
– ident: 6271
  doi: 10.1016/j.heliyon.2024.e27920
– ident: 6279
  doi: 10.1007/s00371-024-03382-7
– ident: 6281
  doi: 10.3390/s21217271
– ident: 6272
– ident: 6287
  doi: 10.37391/ijeer.120248
– ident: 6288
  doi: 10.1080/00051144.2024.2400640
– ident: 6276
– ident: 6274
– ident: 6286
  doi: 10.1007/s11468-024-02407-0
– ident: 6280
  doi: 10.3390/app13042746
– ident: 6291
  doi: 10.1007/978-981-16-6448-9_24
– ident: 6285
  doi: 10.1007/978-981-33-4866-0_48
– ident: 6289
  doi: 10.1108/9781802626056
– ident: 6294
  doi: 10.1007/s11468-024-02492-1
SSID ssib036251694
ssib044740609
Score 1.9791224
Snippet Addressing the imperative demand for accurate water quality assessment, this paper delves into the application of deep learning techniques, specifically...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Deep Learning Empowered Water Quality Assessment: Leveraging IoT Sensor Data with LSTM Models and Interpretability Techniques
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEIBXUblwQSBAlEe1BzhFDvZ6bcfcKggq0HBpKnqL1vugpsWJErsoSPDj-GXMeO21KT4ULla0Xq-czKeZ2c08CHnOFHjhjKXeFMyzxzM_BD0YM8-wWCU6yjKZYqLw_GN8dMrfn0Vno9GvXtRSVWYT-X0wr-R_pApjIFfMkv0HybpFYQA-g3zhChKG641k_EbrdVsh9fN49nWNLc_Ag_wksPShLY-xGx-64pu4_T_W8DVta6J3qwXoimK72oDwS2HPZI9PFvO6Q9rltokVbqMS6zDanT2Mx6qv275j-_fJYuPm2rYR7Q1ccdZvKtDqlvpGVxvRcSjPKzzcv6hK273gJC_UeeUwsU6w6ozLB6tE82_iAoPHc6f6bejIVb7e5DvRP-tgHI0E8zuVyGA_B-rZVoyc6IGxVqf7PXb5kKlgmNQLAs6_SEzzmkRNNPcfFbmvWUoXvwg7p_r5ZfP0MsJG17cYbFWwi8b856zVaeAf4D-RTudxnoALVUceuRe3-Rj1gi97r9PzlHouz-IuudMIkR5a8O6RkS7ukx8IHW2how46WkNHG-hoB90r2iFHATlqkaOIHEXkKCJHLXIUOKDXkaMdcg_I6dvZ4vWR1_Tw8GSAmzeRMB5FIQtkAq6QCHXkq8iEJgx9afRUq0AwrqQxkuk0ZXFijDZhojOpVZLGafiQ7BWrQj8idDrlWoeZiZNUcJ0pkQpf-DoIJBhJlep9Mm5_r6VsCtxjn5XL5ZC49skLN3ttC7sMznt8w3lPyO2O2Kdkr9xU-hn4q2V2UAPxG2SZoKA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Empowered+Water+Quality+Assessment%3A+Leveraging+IoT+Sensor+Data+with+LSTM+Models+and+Interpretability+Techniques&rft.jtitle=International+Journal+of+Computational+and+Experimental+Science+and+Engineering&rft.au=Achuthankutty%2C+Sindhu&rft.au=M%2C+Padma&rft.au=K%2C+Deiwakumari&rft.au=P%2C+Kavipriya&rft.date=2024-10-20&rft.issn=2149-9144&rft.eissn=2149-9144&rft.volume=10&rft.issue=4&rft_id=info:doi/10.22399%2Fijcesen.512&rft.externalDBID=n%2Fa&rft.externalDocID=10_22399_ijcesen_512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2149-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2149-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2149-9144&client=summon