Effect of Interface Characteristics on Load Transfer and Deformation in Composite Tunnel Linings
Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure meth...
Saved in:
Published in | Geotechnical and geological engineering Vol. 43; no. 7; p. 338 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3182 1573-1529 |
DOI | 10.1007/s10706-025-03313-w |
Cover
Abstract | Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure method to systematically evaluate the influence of interface treatment methods—namely, cushion layers and reinforcing bars—on internal pressure distribution and joint load-bearing behavior. The analysis also considers the effects of surrounding rock weathering and backfill stiffness on the interaction between the lining and the surrounding rock. The results show that the laying area of cushion layers has a negligible effect on pressure distribution, whereas higher stiffness significantly facilitates earlier contact between the inner and outer linings, enabling joint bearing at lower internal pressures and reducing the load on the inner lining. For reinforcing bars, the layout range and density substantially affect the pressure contribution mechanism, while bar diameter has a limited impact. A greater installation angle accelerates the transition from separate to joint bearing. Higher surrounding rock strength leads to a greater internal pressure contribution from the rock, resulting in a more favorable load path, particularly in later loading stages. The influence of backfill stiffness is stage-dependent: from 0 to 1.6 MPa, increased stiffness enhances initial rock support; from 1.6 to 2.3 MPa, it significantly improves joint action; beyond 2.3 MPa, a stiffer backfill helps suppress stress concentration in the lining, reduces cracking risk, and maintains a higher load share for the rock. These findings provide engineering insight into the optimization of prestressed composite lining structures for use in high-pressure tunnel environments. |
---|---|
AbstractList | Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure method to systematically evaluate the influence of interface treatment methods—namely, cushion layers and reinforcing bars—on internal pressure distribution and joint load-bearing behavior. The analysis also considers the effects of surrounding rock weathering and backfill stiffness on the interaction between the lining and the surrounding rock. The results show that the laying area of cushion layers has a negligible effect on pressure distribution, whereas higher stiffness significantly facilitates earlier contact between the inner and outer linings, enabling joint bearing at lower internal pressures and reducing the load on the inner lining. For reinforcing bars, the layout range and density substantially affect the pressure contribution mechanism, while bar diameter has a limited impact. A greater installation angle accelerates the transition from separate to joint bearing. Higher surrounding rock strength leads to a greater internal pressure contribution from the rock, resulting in a more favorable load path, particularly in later loading stages. The influence of backfill stiffness is stage-dependent: from 0 to 1.6 MPa, increased stiffness enhances initial rock support; from 1.6 to 2.3 MPa, it significantly improves joint action; beyond 2.3 MPa, a stiffer backfill helps suppress stress concentration in the lining, reduces cracking risk, and maintains a higher load share for the rock. These findings provide engineering insight into the optimization of prestressed composite lining structures for use in high-pressure tunnel environments. Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure method to systematically evaluate the influence of interface treatment methods—namely, cushion layers and reinforcing bars—on internal pressure distribution and joint load-bearing behavior. The analysis also considers the effects of surrounding rock weathering and backfill stiffness on the interaction between the lining and the surrounding rock. The results show that the laying area of cushion layers has a negligible effect on pressure distribution, whereas higher stiffness significantly facilitates earlier contact between the inner and outer linings, enabling joint bearing at lower internal pressures and reducing the load on the inner lining. For reinforcing bars, the layout range and density substantially affect the pressure contribution mechanism, while bar diameter has a limited impact. A greater installation angle accelerates the transition from separate to joint bearing. Higher surrounding rock strength leads to a greater internal pressure contribution from the rock, resulting in a more favorable load path, particularly in later loading stages. The influence of backfill stiffness is stage-dependent: from 0 to 1.6 MPa, increased stiffness enhances initial rock support; from 1.6 to 2.3 MPa, it significantly improves joint action; beyond 2.3 MPa, a stiffer backfill helps suppress stress concentration in the lining, reduces cracking risk, and maintains a higher load share for the rock. These findings provide engineering insight into the optimization of prestressed composite lining structures for use in high-pressure tunnel environments. |
ArticleNumber | 338 |
Author | Wan, Ziheng Tang, Xinwei Song, Danqing Wu, Yue |
Author_xml | – sequence: 1 givenname: Xinwei surname: Tang fullname: Tang, Xinwei organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology – sequence: 2 givenname: Ziheng surname: Wan fullname: Wan, Ziheng organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology – sequence: 3 givenname: Danqing orcidid: 0009-0004-5678-9140 surname: Song fullname: Song, Danqing email: dqsong@scut.edu.cn organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology, Nanjing University (Suzhou) High-Tech Institute, State Key Laboratory of Hydroscience and Engineering, Tsinghua University – sequence: 4 givenname: Yue surname: Wu fullname: Wu, Yue organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology |
BookMark | eNp9kMFKAzEQhoNUsK2-gKeA5-gk2d10j7JWLSx4qeeYzU7qljapyZbi27u6gjdPwzDf_w98MzLxwSMh1xxuOYC6SxwUFAxEzkBKLtnpjEx5riTjuSgnZAplAUzyhbggs5S2ACAK4FPytnQObU-DoyvfY3TGIq3eTTR22LrUdzbR4GkdTEvX0fjkMFLjW_qALsS96bvh2nlahf0hpK5Huj56jztad77zm3RJzp3ZJbz6nXPy-rhcV8-sfnlaVfc1s3yhTsw0kmeZMNyWbQGNagonmhKVKwtRYluKFniDjcxKkau8dU4iolWFabCQTlk5Jzdj7yGGjyOmXm_DMfrhpZYi40rmEvhAiZGyMaQU0elD7PYmfmoO-tukHk3qwaT-MalPQ0iOoTTAfoPxr_qf1BfopnnC |
Cites_doi | 10.1016/j.tust.2018.04.036 10.1016/j.ijmecsci.2020.105813 10.1016/j.trgeo.2022.100741 10.1016/0020-7683(89)90050-4 10.1016/j.tust.2024.105837 10.1007/s40999-016-0124-0 10.1016/S0886-7798(03)00033-6 10.1016/j.commatsci.2011.06.041 10.1016/j.undsp.2022.03.005 10.1016/j.eng.2017.12.010 10.1016/j.tust.2024.105815 10.1016/j.csite.2022.102098 10.1016/j.ijpvp.2025.105492 10.1016/j.ijpvp.2024.105239 10.1007/s10706-025-03200-4 10.1016/j.tust.2019.03.008 10.1016/j.tust.2023.105528 10.1016/j.tust.2021.104272 10.1016/j.engstruct.2024.119077 10.1038/s41598-024-73911-w 10.11779/CJGE20230380 10.3880/j.issn.1006-7647.2009.06.01 10.1016/j.nucengdes.2005.04.002 10.1007/s00419-025-02858-9 10.1007/s10706-024-02899-x 10.1016/j.tust.2013.09.004 10.1007/s10706-023-02565-8 10.1016/j.tust.2022.104683 10.3389/feart.2022.920230 10.1016/j.acme.2016.09.002 10.1007/s10064-018-1348-9 10.19760/j.ncwu.zk.2021075 10.1016/j.engstruct.2019.04.067 10.1007/s00603-025-04545-1 10.1631/jzus.A2000290 10.1016/j.tust.2022.104420 10.1007/s10706-025-03239-3 10.1016/j.anucene.2018.08.020 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
DBID | AAYXX CITATION 7TN 7UA C1K F1W H96 L.G |
DOI | 10.1007/s10706-025-03313-w |
DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-1529 |
ExternalDocumentID | 10_1007_s10706_025_03313_w |
GrantInformation_xml | – fundername: Key Laboratory of Geomechanics and Geotechnical Engineering Safety, the Chinese Academy of Sciences grantid: SKLGME023001 – fundername: Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering grantid: sklhse-KF-2025-D-02 – fundername: Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology, South China University of Technology grantid: 2021B1212040003 funderid: http://dx.doi.org/10.13039/100020755 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2024A1515010045 – fundername: Independent research project of the State Key Laboratory of Subtropical Building and Urban Science grantid: 2023ZB15 – fundername: Basic Research Program of Jiangsu grantid: BK20231217; BK20220265 |
GroupedDBID | .86 .DC .VR 06D 0R~ 0VY 1N0 203 29H 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BHPHI BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J P19 PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCK SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 8FE 8FG 8FH AARHV AAYTO AAYXX ABJCF ABQSL ABULA ACBXY ADHKG AEBTG AEFIE AEKMD AEUYN AFEXP AFGCZ AFKRA AGGDS AGQPQ AJBLW BBWZM BDATZ BGLVJ BKSAR CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HZ~ IHE KOW L6V LK5 M7R M7S N2Q NDZJH O9- OVD P0- PCBAR PHGZM PHGZT PQGLB PTHSS PUEGO RNI RZC RZE RZK S26 S28 SCLPG T16 TEORI UZXMN VFIZW WK6 7TN 7UA C1K F1W H96 L.G |
ID | FETCH-LOGICAL-c187w-ab31442a1c9d60b7b6f2b9e7f9629ed92d01beb3492575dff3eeec76abe63f7c3 |
IEDL.DBID | AGYKE |
ISSN | 0960-3182 |
IngestDate | Sat Aug 23 05:21:13 EDT 2025 Wed Aug 27 16:27:53 EDT 2025 Fri Aug 22 01:12:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Shield tunnel Internal pressure distribution Interface treatment Joint load-bearing Prestressed composite lining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c187w-ab31442a1c9d60b7b6f2b9e7f9629ed92d01beb3492575dff3eeec76abe63f7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-5678-9140 |
PQID | 3241735301 |
PQPubID | 2043601 |
ParticipantIDs | proquest_journals_3241735301 crossref_primary_10_1007_s10706_025_03313_w springer_journals_10_1007_s10706_025_03313_w |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Geotechnical and geological engineering |
PublicationTitleAbbrev | Geotech Geol Eng |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | D Kar (3313_CR15) 2025; 43 Z Deng (3313_CR8) 2022; 123 MS Abdollahi (3313_CR2) 2019; 88 S Karačić (3313_CR16) 2024; 14 X Sun (3313_CR29) 2024; 150 F Yang (3313_CR38) 2018; 16 U Ates (3313_CR5) 2014; 40 JY Rao (3313_CR26) 2016; 37 L Wang (3313_CR34) 2022; 36 Y Zhu (3313_CR41) 2022; 10 M Aghamolaei (3313_CR3) 2025; 43 L Zhou (3313_CR40) 2023; 8 WR Abdellah (3313_CR1) 2024; 42 H He (3313_CR12) 2022; 120 J Jiang (3313_CR14) 2025; 322 JH Lee (3313_CR17) 2012; 51 S Parvanova (3313_CR25) 2025; 95 B Doroodian (3313_CR10) 2022; 34 J Tao (3313_CR32) 2025; 216 L Tong (3313_CR33) 2018; 121 A Bigdeli (3313_CR6) 2021; 22 PZ Ding (3313_CR9) 2009; 29 W Lu (3313_CR21) 2024; 149 J Lubliner (3313_CR22) 1989; 25 F Ye (3313_CR39) 2024; 46 S Mai (3313_CR23) 2024; 144 J Terron-Almenara (3313_CR31) 2025; 58 A Shokoohfar (3313_CR27) 2017; 17 H Farhadian (3313_CR11) 2019; 78 X Tang (3313_CR30) 2024; 210 P Anderson (3313_CR4) 2005; 235 S Li (3313_CR18) 2018; 4 K Nishikawa (3313_CR24) 2003; 18 J Su (3313_CR28) 2019; 191 W-Q Xie (3313_CR36) 2022; 129 QJ Chen (3313_CR7) 2020; 185 GK Lohar (3313_CR20) 2024; 42 F Yang (3313_CR37) 2018; 79 |
References_xml | – volume: 79 start-page: 96 year: 2018 ident: 3313_CR37 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.04.036 – volume: 185 year: 2020 ident: 3313_CR7 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2020.105813 – volume: 34 year: 2022 ident: 3313_CR10 publication-title: Transp Geotech doi: 10.1016/j.trgeo.2022.100741 – volume: 25 start-page: 299 issue: 3 year: 1989 ident: 3313_CR22 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(89)90050-4 – volume: 150 year: 2024 ident: 3313_CR29 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2024.105837 – volume: 16 start-page: 229 issue: 2 year: 2018 ident: 3313_CR38 publication-title: Int J Civ Eng doi: 10.1007/s40999-016-0124-0 – volume: 18 start-page: 243 issue: 2 year: 2003 ident: 3313_CR24 publication-title: Tunn Undergr Space Technol doi: 10.1016/S0886-7798(03)00033-6 – volume: 51 start-page: 30 issue: 1 year: 2012 ident: 3313_CR17 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2011.06.041 – volume: 8 start-page: 252 year: 2023 ident: 3313_CR40 publication-title: Undergr Space doi: 10.1016/j.undsp.2022.03.005 – volume: 4 start-page: 131 issue: 1 year: 2018 ident: 3313_CR18 publication-title: Engineering doi: 10.1016/j.eng.2017.12.010 – volume: 149 year: 2024 ident: 3313_CR21 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2024.105815 – volume: 36 year: 2022 ident: 3313_CR34 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.102098 – volume: 216 year: 2025 ident: 3313_CR32 publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2025.105492 – volume: 210 year: 2024 ident: 3313_CR30 publication-title: Int J Press Vessels Pip doi: 10.1016/j.ijpvp.2024.105239 – volume: 43 start-page: 222 issue: 5 year: 2025 ident: 3313_CR3 publication-title: Geotech Geol Eng doi: 10.1007/s10706-025-03200-4 – volume: 88 start-page: 186 year: 2019 ident: 3313_CR2 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.03.008 – volume: 144 year: 2024 ident: 3313_CR23 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2023.105528 – volume: 120 year: 2022 ident: 3313_CR12 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2021.104272 – volume: 322 year: 2025 ident: 3313_CR14 publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.119077 – volume: 14 start-page: 22742 issue: 1 year: 2024 ident: 3313_CR16 publication-title: Sci Rep doi: 10.1038/s41598-024-73911-w – volume: 46 start-page: 2051 issue: 10 year: 2024 ident: 3313_CR39 publication-title: Chin J Geotech Eng doi: 10.11779/CJGE20230380 – volume: 29 start-page: 54 issue: 6 year: 2009 ident: 3313_CR9 publication-title: Adv Sci Technol Water Resour doi: 10.3880/j.issn.1006-7647.2009.06.01 – volume: 235 start-page: 2323 issue: 21 year: 2005 ident: 3313_CR4 publication-title: Nucl Eng des doi: 10.1016/j.nucengdes.2005.04.002 – volume: 95 start-page: 144 issue: 6 year: 2025 ident: 3313_CR25 publication-title: Arch Appl Mech doi: 10.1007/s00419-025-02858-9 – volume: 42 start-page: 6857 issue: 8 year: 2024 ident: 3313_CR20 publication-title: Geotech Geol Eng doi: 10.1007/s10706-024-02899-x – volume: 40 start-page: 46 year: 2014 ident: 3313_CR5 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.09.004 – volume: 42 start-page: 207 issue: 1 year: 2024 ident: 3313_CR1 publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02565-8 – volume: 129 year: 2022 ident: 3313_CR36 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2022.104683 – volume: 10 year: 2022 ident: 3313_CR41 publication-title: Front Earth Sci doi: 10.3389/feart.2022.920230 – volume: 17 start-page: 132 issue: 1 year: 2017 ident: 3313_CR27 publication-title: Arch Civ Mech Eng doi: 10.1016/j.acme.2016.09.002 – volume: 78 start-page: 3833 issue: 5 year: 2019 ident: 3313_CR11 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1348-9 – volume: 37 start-page: 76 issue: 1 year: 2016 ident: 3313_CR26 publication-title: Rock Soil Mech. doi: 10.19760/j.ncwu.zk.2021075 – volume: 191 start-page: 698 year: 2019 ident: 3313_CR28 publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.04.067 – volume: 58 start-page: 8111 issue: 7 year: 2025 ident: 3313_CR31 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-025-04545-1 – volume: 22 start-page: 632 issue: 8 year: 2021 ident: 3313_CR6 publication-title: J Zhejiang Univ-Sci A doi: 10.1631/jzus.A2000290 – volume: 123 year: 2022 ident: 3313_CR8 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2022.104420 – volume: 43 start-page: 287 issue: 6 year: 2025 ident: 3313_CR15 publication-title: Geotech Geol Eng doi: 10.1007/s10706-025-03239-3 – volume: 121 start-page: 582 year: 2018 ident: 3313_CR33 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2018.08.020 |
SSID | ssj0002601 |
Score | 2.380596 |
Snippet | Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 338 |
SubjectTerms | Backfill Civil Engineering Concrete Contact pressure Crack propagation Cushions Deformation Deformation effects Diameters Earth and Environmental Science Earth Sciences Finite element method Friction Geotechnical Engineering & Applied Earth Sciences Hydrogeology Insulation Internal pressure Load Load distribution Load transfer Original Paper Pressure Pressure distribution Pressure effects Prestressed concrete Rebar Rock Rocks Stiffness Stress concentration Terrestrial Pollution Tunnel linings Tunnels Waste Management/Waste Technology |
Title | Effect of Interface Characteristics on Load Transfer and Deformation in Composite Tunnel Linings |
URI | https://link.springer.com/article/10.1007/s10706-025-03313-w https://www.proquest.com/docview/3241735301 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVE2-cANjBrbsZNjxSq2E5XgFLyMJYSUoi6qxNfjuAkFBAfOiUbJPGeWeN4zwCFHLTJUijqrORVCaKo581QwJy2TnrEoX3x3L6964voxfaxJYcNm2r3ZkoyR-gvZTVXdL0tph_OE08k8LKRJlmctWOhePt2cf0bgSiYrauzJyA5mNVnmdyvfE9KsyvyxMRrzzcUK9JonnY6ZvJ6MR-bEvv8Qcfzvq6zCcl2Aku50xazBHJbrsPRFlnADnqeSxqTvSfxh6LVFcvpd2Zn0S3Lb147EZOdxQHTpyBl-kiHJS0mqYFMNhSF5GFfzNOQ2Hkcx3ITexfnD6RWtT2KgNsnUhGrDQ-PFdGJzJztGmQCiyVH5XLIcXc5cJzGhLa-UDlXqvOeIaJXUBiX3yvItaJX9EreB5DKU88KJjhOZYME8pqnCxCgvmbOGteGogaN4mwpuFDNp5cpvRfBbEf1WTNqw1yBW1B_fsAg1YqJ4GkJXG44bAGaX_7a287_bd2GRVRjG0b49aI0GY9wPJcrIHNQr8gDme6z7AYkG3kk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIry9MAGlhrbsZuxKlQF2k6t1C3Y8VliSVAf6t_HdpM-EAzMsW747Nx9Z999h9ADA8WbICUxmWKEc66IYtQSTo3IqLCUBvni_kB0R_xtHI_LprBpVe1ePUkGT73R7CZ99ktj0mAsYmSxi_YcGWj6uQUj2lr5Xy-SFRT2ROgNpmWrzO82tsPRmmP-eBYN0aZzjI5Kmohby309QTuQn6LDDfHAM_SxFB7GhcXhWs-qDHB7W38ZFznuFcrgEJIsTLDKDX6GVcsi_syxdwm-dAvwcO6rXnAvDI2YnqNR52XY7pJyXgLJoqZcEKWZS4-oirLEiIaW2kGtE5A2ETQBk1DTiLRLnr0eoYyNtQwAMimUBsGszNgFquVFDpcIJ8KRbm54w_Amp848xLGESEsrqMk0raPHCrb0aymLka4FkD3IqQM5DSCnizq6qZBNy19kmjomF0kWOwdTR08V2uvPf1u7-t_ye7TfHfZ7ae918H6NDqjf_FCMd4Nqs8kcbh2pmOm7cIa-Acyyww8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGxKcoFPDABlYb27GbsSpUBUrF0Erdgh2fJZak6of697HdbwQDc6Ibnp27d_G9Z4TuGSheBymJyRQjnHNFFKOWcGpERoWlNNgXv3dFu89fB_FgQ8Ufpt2XR5JzTYN3acon1aGx1Q3hm_SdMI1JjbGIkdku2nPpOPI7vU8bq1zsDbOC254IOmG6kM38HmO7NK355o8j0lB5WsfoaEEZcWO-xidoB_JTdLhhJHiGPucmxLiwOPzisyoD3Nz2YsZFjjuFMjiUJwsjrHKDn2AlX8RfOfbpwY9xAe5N_QQM7oQLJMbnqN967jXbZHF3AsmiupwRpZlrlaiKssSImpbawa4TkDYRNAGTUFOLtGukvTehjI21DAAyKZQGwazM2AUq5UUOlwgnwhFwbnjN8DqnLjzEsYRISyuoyTQto4clbOlwbpGRrs2QPcipAzkNIKezMqoskU0Xn8s4dawukix2yaaMHpdorx__He3qf6_fof2Pp1baeem-XaMD6tc-zOVVUGkymsKN4xcTfRu20DdOCcdL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Interface+Characteristics+on+Load+Transfer+and+Deformation+in+Composite+Tunnel+Linings&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Tang%2C+Xinwei&rft.au=Wan%2C+Ziheng&rft.au=Song%2C+Danqing&rft.au=Wu%2C+Yue&rft.date=2025-10-01&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1007%2Fs10706-025-03313-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10706_025_03313_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon |