Effect of Interface Characteristics on Load Transfer and Deformation in Composite Tunnel Linings

Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure meth...

Full description

Saved in:
Bibliographic Details
Published inGeotechnical and geological engineering Vol. 43; no. 7; p. 338
Main Authors Tang, Xinwei, Wan, Ziheng, Song, Danqing, Wu, Yue
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3182
1573-1529
DOI10.1007/s10706-025-03313-w

Cover

Abstract Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure method to systematically evaluate the influence of interface treatment methods—namely, cushion layers and reinforcing bars—on internal pressure distribution and joint load-bearing behavior. The analysis also considers the effects of surrounding rock weathering and backfill stiffness on the interaction between the lining and the surrounding rock. The results show that the laying area of cushion layers has a negligible effect on pressure distribution, whereas higher stiffness significantly facilitates earlier contact between the inner and outer linings, enabling joint bearing at lower internal pressures and reducing the load on the inner lining. For reinforcing bars, the layout range and density substantially affect the pressure contribution mechanism, while bar diameter has a limited impact. A greater installation angle accelerates the transition from separate to joint bearing. Higher surrounding rock strength leads to a greater internal pressure contribution from the rock, resulting in a more favorable load path, particularly in later loading stages. The influence of backfill stiffness is stage-dependent: from 0 to 1.6 MPa, increased stiffness enhances initial rock support; from 1.6 to 2.3 MPa, it significantly improves joint action; beyond 2.3 MPa, a stiffer backfill helps suppress stress concentration in the lining, reduces cracking risk, and maintains a higher load share for the rock. These findings provide engineering insight into the optimization of prestressed composite lining structures for use in high-pressure tunnel environments.
AbstractList Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure method to systematically evaluate the influence of interface treatment methods—namely, cushion layers and reinforcing bars—on internal pressure distribution and joint load-bearing behavior. The analysis also considers the effects of surrounding rock weathering and backfill stiffness on the interaction between the lining and the surrounding rock. The results show that the laying area of cushion layers has a negligible effect on pressure distribution, whereas higher stiffness significantly facilitates earlier contact between the inner and outer linings, enabling joint bearing at lower internal pressures and reducing the load on the inner lining. For reinforcing bars, the layout range and density substantially affect the pressure contribution mechanism, while bar diameter has a limited impact. A greater installation angle accelerates the transition from separate to joint bearing. Higher surrounding rock strength leads to a greater internal pressure contribution from the rock, resulting in a more favorable load path, particularly in later loading stages. The influence of backfill stiffness is stage-dependent: from 0 to 1.6 MPa, increased stiffness enhances initial rock support; from 1.6 to 2.3 MPa, it significantly improves joint action; beyond 2.3 MPa, a stiffer backfill helps suppress stress concentration in the lining, reduces cracking risk, and maintains a higher load share for the rock. These findings provide engineering insight into the optimization of prestressed composite lining structures for use in high-pressure tunnel environments.
Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to their superior structural performance and long-term durability. This work presents a finite element model based on the stratum–structure method to systematically evaluate the influence of interface treatment methods—namely, cushion layers and reinforcing bars—on internal pressure distribution and joint load-bearing behavior. The analysis also considers the effects of surrounding rock weathering and backfill stiffness on the interaction between the lining and the surrounding rock. The results show that the laying area of cushion layers has a negligible effect on pressure distribution, whereas higher stiffness significantly facilitates earlier contact between the inner and outer linings, enabling joint bearing at lower internal pressures and reducing the load on the inner lining. For reinforcing bars, the layout range and density substantially affect the pressure contribution mechanism, while bar diameter has a limited impact. A greater installation angle accelerates the transition from separate to joint bearing. Higher surrounding rock strength leads to a greater internal pressure contribution from the rock, resulting in a more favorable load path, particularly in later loading stages. The influence of backfill stiffness is stage-dependent: from 0 to 1.6 MPa, increased stiffness enhances initial rock support; from 1.6 to 2.3 MPa, it significantly improves joint action; beyond 2.3 MPa, a stiffer backfill helps suppress stress concentration in the lining, reduces cracking risk, and maintains a higher load share for the rock. These findings provide engineering insight into the optimization of prestressed composite lining structures for use in high-pressure tunnel environments.
ArticleNumber 338
Author Wan, Ziheng
Tang, Xinwei
Song, Danqing
Wu, Yue
Author_xml – sequence: 1
  givenname: Xinwei
  surname: Tang
  fullname: Tang, Xinwei
  organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 2
  givenname: Ziheng
  surname: Wan
  fullname: Wan, Ziheng
  organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 3
  givenname: Danqing
  orcidid: 0009-0004-5678-9140
  surname: Song
  fullname: Song, Danqing
  email: dqsong@scut.edu.cn
  organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology, Nanjing University (Suzhou) High-Tech Institute, State Key Laboratory of Hydroscience and Engineering, Tsinghua University
– sequence: 4
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
  organization: State Key Laboratory of Subtropical Building and Urban Science, School of Civil Engineering and Transportation, South China University of Technology
BookMark eNp9kMFKAzEQhoNUsK2-gKeA5-gk2d10j7JWLSx4qeeYzU7qljapyZbi27u6gjdPwzDf_w98MzLxwSMh1xxuOYC6SxwUFAxEzkBKLtnpjEx5riTjuSgnZAplAUzyhbggs5S2ACAK4FPytnQObU-DoyvfY3TGIq3eTTR22LrUdzbR4GkdTEvX0fjkMFLjW_qALsS96bvh2nlahf0hpK5Huj56jztad77zm3RJzp3ZJbz6nXPy-rhcV8-sfnlaVfc1s3yhTsw0kmeZMNyWbQGNagonmhKVKwtRYluKFniDjcxKkau8dU4iolWFabCQTlk5Jzdj7yGGjyOmXm_DMfrhpZYi40rmEvhAiZGyMaQU0elD7PYmfmoO-tukHk3qwaT-MalPQ0iOoTTAfoPxr_qf1BfopnnC
Cites_doi 10.1016/j.tust.2018.04.036
10.1016/j.ijmecsci.2020.105813
10.1016/j.trgeo.2022.100741
10.1016/0020-7683(89)90050-4
10.1016/j.tust.2024.105837
10.1007/s40999-016-0124-0
10.1016/S0886-7798(03)00033-6
10.1016/j.commatsci.2011.06.041
10.1016/j.undsp.2022.03.005
10.1016/j.eng.2017.12.010
10.1016/j.tust.2024.105815
10.1016/j.csite.2022.102098
10.1016/j.ijpvp.2025.105492
10.1016/j.ijpvp.2024.105239
10.1007/s10706-025-03200-4
10.1016/j.tust.2019.03.008
10.1016/j.tust.2023.105528
10.1016/j.tust.2021.104272
10.1016/j.engstruct.2024.119077
10.1038/s41598-024-73911-w
10.11779/CJGE20230380
10.3880/j.issn.1006-7647.2009.06.01
10.1016/j.nucengdes.2005.04.002
10.1007/s00419-025-02858-9
10.1007/s10706-024-02899-x
10.1016/j.tust.2013.09.004
10.1007/s10706-023-02565-8
10.1016/j.tust.2022.104683
10.3389/feart.2022.920230
10.1016/j.acme.2016.09.002
10.1007/s10064-018-1348-9
10.19760/j.ncwu.zk.2021075
10.1016/j.engstruct.2019.04.067
10.1007/s00603-025-04545-1
10.1631/jzus.A2000290
10.1016/j.tust.2022.104420
10.1007/s10706-025-03239-3
10.1016/j.anucene.2018.08.020
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
7TN
7UA
C1K
F1W
H96
L.G
DOI 10.1007/s10706-025-03313-w
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1529
ExternalDocumentID 10_1007_s10706_025_03313_w
GrantInformation_xml – fundername: Key Laboratory of Geomechanics and Geotechnical Engineering Safety, the Chinese Academy of Sciences
  grantid: SKLGME023001
– fundername: Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering
  grantid: sklhse-KF-2025-D-02
– fundername: Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology, South China University of Technology
  grantid: 2021B1212040003
  funderid: http://dx.doi.org/10.13039/100020755
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2024A1515010045
– fundername: Independent research project of the State Key Laboratory of Subtropical Building and Urban Science
  grantid: 2023ZB15
– fundername: Basic Research Program of Jiangsu
  grantid: BK20231217; BK20220265
GroupedDBID .86
.DC
.VR
06D
0R~
0VY
1N0
203
29H
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BHPHI
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
P19
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCK
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~02
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
8FE
8FG
8FH
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AEUYN
AFEXP
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
BBWZM
BDATZ
BGLVJ
BKSAR
CAG
CCPQU
CITATION
COF
EJD
FINBP
FSGXE
H13
HZ~
IHE
KOW
L6V
LK5
M7R
M7S
N2Q
NDZJH
O9-
OVD
P0-
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNI
RZC
RZE
RZK
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
7TN
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c187w-ab31442a1c9d60b7b6f2b9e7f9629ed92d01beb3492575dff3eeec76abe63f7c3
IEDL.DBID AGYKE
ISSN 0960-3182
IngestDate Sat Aug 23 05:21:13 EDT 2025
Wed Aug 27 16:27:53 EDT 2025
Fri Aug 22 01:12:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Shield tunnel
Internal pressure distribution
Interface treatment
Joint load-bearing
Prestressed composite lining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187w-ab31442a1c9d60b7b6f2b9e7f9629ed92d01beb3492575dff3eeec76abe63f7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-5678-9140
PQID 3241735301
PQPubID 2043601
ParticipantIDs proquest_journals_3241735301
crossref_primary_10_1007_s10706_025_03313_w
springer_journals_10_1007_s10706_025_03313_w
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Geotechnical and geological engineering
PublicationTitleAbbrev Geotech Geol Eng
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References D Kar (3313_CR15) 2025; 43
Z Deng (3313_CR8) 2022; 123
MS Abdollahi (3313_CR2) 2019; 88
S Karačić (3313_CR16) 2024; 14
X Sun (3313_CR29) 2024; 150
F Yang (3313_CR38) 2018; 16
U Ates (3313_CR5) 2014; 40
JY Rao (3313_CR26) 2016; 37
L Wang (3313_CR34) 2022; 36
Y Zhu (3313_CR41) 2022; 10
M Aghamolaei (3313_CR3) 2025; 43
L Zhou (3313_CR40) 2023; 8
WR Abdellah (3313_CR1) 2024; 42
H He (3313_CR12) 2022; 120
J Jiang (3313_CR14) 2025; 322
JH Lee (3313_CR17) 2012; 51
S Parvanova (3313_CR25) 2025; 95
B Doroodian (3313_CR10) 2022; 34
J Tao (3313_CR32) 2025; 216
L Tong (3313_CR33) 2018; 121
A Bigdeli (3313_CR6) 2021; 22
PZ Ding (3313_CR9) 2009; 29
W Lu (3313_CR21) 2024; 149
J Lubliner (3313_CR22) 1989; 25
F Ye (3313_CR39) 2024; 46
S Mai (3313_CR23) 2024; 144
J Terron-Almenara (3313_CR31) 2025; 58
A Shokoohfar (3313_CR27) 2017; 17
H Farhadian (3313_CR11) 2019; 78
X Tang (3313_CR30) 2024; 210
P Anderson (3313_CR4) 2005; 235
S Li (3313_CR18) 2018; 4
K Nishikawa (3313_CR24) 2003; 18
J Su (3313_CR28) 2019; 191
W-Q Xie (3313_CR36) 2022; 129
QJ Chen (3313_CR7) 2020; 185
GK Lohar (3313_CR20) 2024; 42
F Yang (3313_CR37) 2018; 79
References_xml – volume: 79
  start-page: 96
  year: 2018
  ident: 3313_CR37
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.04.036
– volume: 185
  year: 2020
  ident: 3313_CR7
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2020.105813
– volume: 34
  year: 2022
  ident: 3313_CR10
  publication-title: Transp Geotech
  doi: 10.1016/j.trgeo.2022.100741
– volume: 25
  start-page: 299
  issue: 3
  year: 1989
  ident: 3313_CR22
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(89)90050-4
– volume: 150
  year: 2024
  ident: 3313_CR29
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2024.105837
– volume: 16
  start-page: 229
  issue: 2
  year: 2018
  ident: 3313_CR38
  publication-title: Int J Civ Eng
  doi: 10.1007/s40999-016-0124-0
– volume: 18
  start-page: 243
  issue: 2
  year: 2003
  ident: 3313_CR24
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/S0886-7798(03)00033-6
– volume: 51
  start-page: 30
  issue: 1
  year: 2012
  ident: 3313_CR17
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2011.06.041
– volume: 8
  start-page: 252
  year: 2023
  ident: 3313_CR40
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2022.03.005
– volume: 4
  start-page: 131
  issue: 1
  year: 2018
  ident: 3313_CR18
  publication-title: Engineering
  doi: 10.1016/j.eng.2017.12.010
– volume: 149
  year: 2024
  ident: 3313_CR21
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2024.105815
– volume: 36
  year: 2022
  ident: 3313_CR34
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102098
– volume: 216
  year: 2025
  ident: 3313_CR32
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2025.105492
– volume: 210
  year: 2024
  ident: 3313_CR30
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/j.ijpvp.2024.105239
– volume: 43
  start-page: 222
  issue: 5
  year: 2025
  ident: 3313_CR3
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-025-03200-4
– volume: 88
  start-page: 186
  year: 2019
  ident: 3313_CR2
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.03.008
– volume: 144
  year: 2024
  ident: 3313_CR23
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2023.105528
– volume: 120
  year: 2022
  ident: 3313_CR12
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2021.104272
– volume: 322
  year: 2025
  ident: 3313_CR14
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.119077
– volume: 14
  start-page: 22742
  issue: 1
  year: 2024
  ident: 3313_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-73911-w
– volume: 46
  start-page: 2051
  issue: 10
  year: 2024
  ident: 3313_CR39
  publication-title: Chin J Geotech Eng
  doi: 10.11779/CJGE20230380
– volume: 29
  start-page: 54
  issue: 6
  year: 2009
  ident: 3313_CR9
  publication-title: Adv Sci Technol Water Resour
  doi: 10.3880/j.issn.1006-7647.2009.06.01
– volume: 235
  start-page: 2323
  issue: 21
  year: 2005
  ident: 3313_CR4
  publication-title: Nucl Eng des
  doi: 10.1016/j.nucengdes.2005.04.002
– volume: 95
  start-page: 144
  issue: 6
  year: 2025
  ident: 3313_CR25
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-025-02858-9
– volume: 42
  start-page: 6857
  issue: 8
  year: 2024
  ident: 3313_CR20
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-024-02899-x
– volume: 40
  start-page: 46
  year: 2014
  ident: 3313_CR5
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.09.004
– volume: 42
  start-page: 207
  issue: 1
  year: 2024
  ident: 3313_CR1
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-023-02565-8
– volume: 129
  year: 2022
  ident: 3313_CR36
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2022.104683
– volume: 10
  year: 2022
  ident: 3313_CR41
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2022.920230
– volume: 17
  start-page: 132
  issue: 1
  year: 2017
  ident: 3313_CR27
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2016.09.002
– volume: 78
  start-page: 3833
  issue: 5
  year: 2019
  ident: 3313_CR11
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1348-9
– volume: 37
  start-page: 76
  issue: 1
  year: 2016
  ident: 3313_CR26
  publication-title: Rock Soil Mech.
  doi: 10.19760/j.ncwu.zk.2021075
– volume: 191
  start-page: 698
  year: 2019
  ident: 3313_CR28
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.04.067
– volume: 58
  start-page: 8111
  issue: 7
  year: 2025
  ident: 3313_CR31
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-025-04545-1
– volume: 22
  start-page: 632
  issue: 8
  year: 2021
  ident: 3313_CR6
  publication-title: J Zhejiang Univ-Sci A
  doi: 10.1631/jzus.A2000290
– volume: 123
  year: 2022
  ident: 3313_CR8
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2022.104420
– volume: 43
  start-page: 287
  issue: 6
  year: 2025
  ident: 3313_CR15
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-025-03239-3
– volume: 121
  start-page: 582
  year: 2018
  ident: 3313_CR33
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2018.08.020
SSID ssj0002601
Score 2.380596
Snippet Prestressed composite linings are increasingly adopted in large-diameter tunnels subjected to high internal pressures and complex geological conditions due to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 338
SubjectTerms Backfill
Civil Engineering
Concrete
Contact pressure
Crack propagation
Cushions
Deformation
Deformation effects
Diameters
Earth and Environmental Science
Earth Sciences
Finite element method
Friction
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Insulation
Internal pressure
Load
Load distribution
Load transfer
Original Paper
Pressure
Pressure distribution
Pressure effects
Prestressed concrete
Rebar
Rock
Rocks
Stiffness
Stress concentration
Terrestrial Pollution
Tunnel linings
Tunnels
Waste Management/Waste Technology
Title Effect of Interface Characteristics on Load Transfer and Deformation in Composite Tunnel Linings
URI https://link.springer.com/article/10.1007/s10706-025-03313-w
https://www.proquest.com/docview/3241735301
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVE2-cANjBrbsZNjxSq2E5XgFLyMJYSUoi6qxNfjuAkFBAfOiUbJPGeWeN4zwCFHLTJUijqrORVCaKo581QwJy2TnrEoX3x3L6964voxfaxJYcNm2r3ZkoyR-gvZTVXdL0tph_OE08k8LKRJlmctWOhePt2cf0bgSiYrauzJyA5mNVnmdyvfE9KsyvyxMRrzzcUK9JonnY6ZvJ6MR-bEvv8Qcfzvq6zCcl2Aku50xazBHJbrsPRFlnADnqeSxqTvSfxh6LVFcvpd2Zn0S3Lb147EZOdxQHTpyBl-kiHJS0mqYFMNhSF5GFfzNOQ2Hkcx3ITexfnD6RWtT2KgNsnUhGrDQ-PFdGJzJztGmQCiyVH5XLIcXc5cJzGhLa-UDlXqvOeIaJXUBiX3yvItaJX9EreB5DKU88KJjhOZYME8pqnCxCgvmbOGteGogaN4mwpuFDNp5cpvRfBbEf1WTNqw1yBW1B_fsAg1YqJ4GkJXG44bAGaX_7a287_bd2GRVRjG0b49aI0GY9wPJcrIHNQr8gDme6z7AYkG3kk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIry9MAGlhrbsZuxKlQF2k6t1C3Y8VliSVAf6t_HdpM-EAzMsW747Nx9Z999h9ADA8WbICUxmWKEc66IYtQSTo3IqLCUBvni_kB0R_xtHI_LprBpVe1ePUkGT73R7CZ99ktj0mAsYmSxi_YcGWj6uQUj2lr5Xy-SFRT2ROgNpmWrzO82tsPRmmP-eBYN0aZzjI5Kmohby309QTuQn6LDDfHAM_SxFB7GhcXhWs-qDHB7W38ZFznuFcrgEJIsTLDKDX6GVcsi_syxdwm-dAvwcO6rXnAvDI2YnqNR52XY7pJyXgLJoqZcEKWZS4-oirLEiIaW2kGtE5A2ETQBk1DTiLRLnr0eoYyNtQwAMimUBsGszNgFquVFDpcIJ8KRbm54w_Amp848xLGESEsrqMk0raPHCrb0aymLka4FkD3IqQM5DSCnizq6qZBNy19kmjomF0kWOwdTR08V2uvPf1u7-t_ye7TfHfZ7ae918H6NDqjf_FCMd4Nqs8kcbh2pmOm7cIa-Acyyww8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgSAgGxKcoFPDABlYb27GbsSpUBUrF0Erdgh2fJZak6of697HdbwQDc6Ibnp27d_G9Z4TuGSheBymJyRQjnHNFFKOWcGpERoWlNNgXv3dFu89fB_FgQ8Ufpt2XR5JzTYN3acon1aGx1Q3hm_SdMI1JjbGIkdku2nPpOPI7vU8bq1zsDbOC254IOmG6kM38HmO7NK355o8j0lB5WsfoaEEZcWO-xidoB_JTdLhhJHiGPucmxLiwOPzisyoD3Nz2YsZFjjuFMjiUJwsjrHKDn2AlX8RfOfbpwY9xAe5N_QQM7oQLJMbnqN967jXbZHF3AsmiupwRpZlrlaiKssSImpbawa4TkDYRNAGTUFOLtGukvTehjI21DAAyKZQGwazM2AUq5UUOlwgnwhFwbnjN8DqnLjzEsYRISyuoyTQto4clbOlwbpGRrs2QPcipAzkNIKezMqoskU0Xn8s4dawukix2yaaMHpdorx__He3qf6_fof2Pp1baeem-XaMD6tc-zOVVUGkymsKN4xcTfRu20DdOCcdL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Interface+Characteristics+on+Load+Transfer+and+Deformation+in+Composite+Tunnel+Linings&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Tang%2C+Xinwei&rft.au=Wan%2C+Ziheng&rft.au=Song%2C+Danqing&rft.au=Wu%2C+Yue&rft.date=2025-10-01&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1007%2Fs10706-025-03313-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10706_025_03313_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon