From GaN crystallinity to device performance: Nucleation mode vs Surface energy of single-crystalline AlN template

In this paper, the surface state of the single-crystalline AlN template's impact on the epitaxial growth of gallium nitride (GaN) was studied. Subsequently, Schottky barrier devices were fabricated and analyzed. The results indicate that surface states subjected to different treatments exhibit...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 1002; p. 175363
Main Authors Liang, Zhiwen, Yuan, Ye, Feng, Wenyong, Li, Xin, Liu, Zenghui, Liang, Yisheng, Wang, Fengge, Xu, Yanyan, Yang, Xien, Li, Xiaodong, Lin, Lizhang, Zhang, Baijun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the surface state of the single-crystalline AlN template's impact on the epitaxial growth of gallium nitride (GaN) was studied. Subsequently, Schottky barrier devices were fabricated and analyzed. The results indicate that surface states subjected to different treatments exhibit varying epitaxial growth modes at the initial nucleation stage, which have a correlated effect on surface topography, crystalline quality, strain and other material characteristics of the epitaxial GaN. Higher surface energy leads to a reduction in screw dislocation of GaN material, but has less influence on edge dislocation. Single-crystalline AlN templates with higher surface energy are more likely to exhibit Stranski-Krastanow and Frank-van der Merwe growth model and achieve high-quality epitaxial materials. Schottky devices prepared using GaN material with lower screw dislocation density exhibit lower reverse leakage current. First-principles simulation analysis revealed that the migration barrier of gallium and nitrogen atoms on the surface can be overcome with the larger surface energy of single-crystalline AlN template. This facilitates their migration on the surface, resulting in higher quality material epitaxy. The conclusions of this work provide insights for quality control of epitaxial GaN materials on single-crystalline AlN templates, as well as for studying device leakage in the backend of the device fabrication process, or similar homogeneous compound semiconductor heteroepitaxy studies. •The correlation between surface energy, epitaxy and device was established for GaN epitaxial on single-crystalline AlN.•Surface energy prefers to driving Stranski-Krastanow growth mode and reducing screw dislocation density during GaN epitaxy.•The results confirm that reverse leakage of GaN SBD is more sensitive to screw dislocation rather than edge dislocation.
AbstractList In this paper, the surface state of the single-crystalline AlN template's impact on the epitaxial growth of gallium nitride (GaN) was studied. Subsequently, Schottky barrier devices were fabricated and analyzed. The results indicate that surface states subjected to different treatments exhibit varying epitaxial growth modes at the initial nucleation stage, which have a correlated effect on surface topography, crystalline quality, strain and other material characteristics of the epitaxial GaN. Higher surface energy leads to a reduction in screw dislocation of GaN material, but has less influence on edge dislocation. Single-crystalline AlN templates with higher surface energy are more likely to exhibit Stranski-Krastanow and Frank-van der Merwe growth model and achieve high-quality epitaxial materials. Schottky devices prepared using GaN material with lower screw dislocation density exhibit lower reverse leakage current. First-principles simulation analysis revealed that the migration barrier of gallium and nitrogen atoms on the surface can be overcome with the larger surface energy of single-crystalline AlN template. This facilitates their migration on the surface, resulting in higher quality material epitaxy. The conclusions of this work provide insights for quality control of epitaxial GaN materials on single-crystalline AlN templates, as well as for studying device leakage in the backend of the device fabrication process, or similar homogeneous compound semiconductor heteroepitaxy studies. •The correlation between surface energy, epitaxy and device was established for GaN epitaxial on single-crystalline AlN.•Surface energy prefers to driving Stranski-Krastanow growth mode and reducing screw dislocation density during GaN epitaxy.•The results confirm that reverse leakage of GaN SBD is more sensitive to screw dislocation rather than edge dislocation.
ArticleNumber 175363
Author Liu, Zenghui
Feng, Wenyong
Wang, Fengge
Yuan, Ye
Liang, Yisheng
Yang, Xien
Zhang, Baijun
Liang, Zhiwen
Li, Xiaodong
Lin, Lizhang
Xu, Yanyan
Li, Xin
Author_xml – sequence: 1
  givenname: Zhiwen
  surname: Liang
  fullname: Liang, Zhiwen
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  organization: Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
– sequence: 3
  givenname: Wenyong
  surname: Feng
  fullname: Feng, Wenyong
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 4
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 5
  givenname: Zenghui
  surname: Liu
  fullname: Liu, Zenghui
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 6
  givenname: Yisheng
  surname: Liang
  fullname: Liang, Yisheng
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 7
  givenname: Fengge
  surname: Wang
  fullname: Wang, Fengge
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 8
  givenname: Yanyan
  surname: Xu
  fullname: Xu, Yanyan
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 9
  givenname: Xien
  surname: Yang
  fullname: Yang, Xien
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 10
  givenname: Xiaodong
  surname: Li
  fullname: Li, Xiaodong
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 11
  givenname: Lizhang
  surname: Lin
  fullname: Lin, Lizhang
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 12
  givenname: Baijun
  surname: Zhang
  fullname: Zhang, Baijun
  email: zhbaij@mail.sysu.edu.cn
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
BookMark eNqFkNFKwzAUhoNMcE4fQcgLtCZN06beyBhuCmNeqNchTU5GStuMpBv07e3YwEtvzrk5_8d_vns0630PCD1RklJCi-cmbVTbat-lGcnylJacFewGzakoWZIXRTVDc1JlPBFMiDt0H2NDCKEVo3MU1sF3eKN2WIcxDhPH9W4Y8eCxgZPTgA8QrA-d6jW84N1Rt6AG53vceQP4FPHXMVg13UEPYT9ib3F0_b6F5A8IeNnu8ADdoVUDPKBbq9oIj9e9QD_rt-_Ve7L93HyslttET8WHxHBecZszomsChZlGlllSM0OZ0LXgmeCG1yUXeVVCKfIaWGkM0KJithLTXCB-4ergYwxg5SG4ToVRUiLP4mQjr-LkWZy8iJtyr5ccTOVODoKM2sH0vnEB9CCNd_8QfgFL630k
Cites_doi 10.1021/acsami.1c18926
10.1364/OE.492088
10.1021/acsami.1c20352
10.1103/PhysRevLett.77.3865
10.7567/JJAP.54.030101
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.80.245403
10.1088/1674-4926/42/12/122804
10.1007/s12274-021-3855-4
10.1039/D3CE00987D
10.1103/PhysRevB.64.195406
10.35848/1882-0786/ac8412
10.1088/0022-3727/38/10A/019
10.35848/1347-4065/ab9d5f
10.3390/electronics11091430
10.1016/0022-0248(94)90086-8
10.1021/acsami.0c14622
10.1039/D3CE01077E
10.1088/0953-8984/21/33/335802
10.1063/1.3093700
10.7567/1347-4065/ab02e7
10.1063/1.1329672
10.1088/1361-6641/ab3374
10.1088/1361-6641/aa7248
10.7567/1347-4065/ab06b1
10.1103/PhysRevB.50.17953
10.1016/j.jallcom.2015.08.225
10.1002/pssc.200304083
10.1016/j.jallcom.2023.169793
10.1021/acsami.7b14801
10.1007/s40843-020-1275-4
10.1007/s11664-021-09227-6
10.1109/JEDS.2020.2963902
10.1063/1.120688
10.1016/j.jcrysgro.2019.125376
10.1063/1.96549
10.1016/j.jallcom.2020.157508
10.1063/1.1330247
10.1109/TED.2012.2216535
10.35848/1347-4065/aca810
10.1063/1.1314877
10.1103/PhysRevB.72.045423
10.35848/1882-0786/abe522
10.1016/j.tsf.2006.04.006
10.1109/LPT.2011.2177654
10.1016/j.jallcom.2020.155557
10.1088/1361-6641/ab7149
10.1063/1.368814
10.1109/TED.2018.2850066
10.1063/1.1328091
10.1109/LED.2005.857701
10.7567/1347-4065/ab12c9
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jallcom.2024.175363
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
ExternalDocumentID 10_1016_j_jallcom_2024_175363
S0925838824019509
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SMS
T9H
WUQ
ID FETCH-LOGICAL-c187t-d5595f430cb0e6db0e22f0b3d138cb85285d5b758497e784be37dde1693f98693
IEDL.DBID AIKHN
ISSN 0925-8388
IngestDate Thu Sep 26 21:08:11 EDT 2024
Sat Jul 27 15:41:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Single-crystalline AlN
GaN
Device
Surface energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187t-d5595f430cb0e6db0e22f0b3d138cb85285d5b758497e784be37dde1693f98693
ParticipantIDs crossref_primary_10_1016_j_jallcom_2024_175363
elsevier_sciencedirect_doi_10_1016_j_jallcom_2024_175363
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of alloys and compounds
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sokudo, Akiyama, Ito (bib27) 2023; 62
Mamor (bib55) 2009; 21
Palacios, Rajan, Poblenz, Keller, DenBaars, Speck, Mishra (bib10) 2005; 26
Akiyama, Seta, Nakamura, Ito (bib28) 2019; 3
Thissen, Grundmeier, Wippermann, Schmidt (bib59) 2009; 80
Qu, Xu, Cao, Wang, Wang, Shi, Xu (bib18) 2022; 14
Ueda (bib4) 2019; 58
Nakajima, Ujihara, Miyashita, Sazaki (bib30) 2001; 89
Kaganer, Brandt, Trampert, Ploog (bib44) 2005; 72
Mula, Adelmann, Moehl, Oullier, Daudin (bib32) 1997; 64
Henkelman, Uberuaga, Jónsson (bib42) 2000; 113
Sumiya, Fukuda, Yasiro, Honda (bib20) 2020; 532
Kresse (bib40) 1996; 54
Janssen, De Palma, Verlaak, Heremans, Dehaen (bib45) 2006; 515
Chang, Zhao, Spampinato, Franquet, Chang (bib17) 2020; 35
Li, Li, Peng, Yang, Zhang, Luo, Pan (bib16) 2020; 838
Fujita (bib7) 2015; 54
Heinke, Kirchner, Einfeldt, Hommel (bib50) 2000; 77
Greco, Giannazzo, Fiorenza, Di Franco, Alberti, Iucolano, Cora, Pecz, Roccaforte (bib56) 2017; 215
Tian, Hu, Zhang, Liu, Yang (bib3) 2020; 63
Fanming, Judy, Guangnan, Wenmao, Hui, Tianli, Lingli, Hongyu (bib11) 2018; 7
Yen, Lai, Yang, Wang, Ko, Hon, Chang (bib25) 2012; 24
Özen, Şenay, Pat, Korkmaz (bib46) 2015; 653
Najda, Perlin, Suski, Marona, Leszczyński, Wisniewski, Stanczyk, Schiavon, Slight, Watson, Gwyn, Kelly, Watson (bib2) 2022; 11
Uren, Moreke, Kuball (bib8) 2012; 59
Amano, Sawaki, Akasaki, Toyoda (bib14) 1986; 48
Perdew, Burke, Ernzerhof (bib41) 1996; 77
Erwin, Lyons (bib26) 2020; 12
Kim (bib36) 2021; 50
Tao, Xu, Zhang, Su, Gao, Zhang, Zhou, Hao (bib19) 2023; 31
Nakamura, Senoh, Nagahama, Iwasa, Yamada, Matsushita, Kiyoku, Sugimoto, Kozaki, Umemoto, Sano, Chocho (bib15) 1998; 72
Lorenz, Gonsalves, Kim, Narayanan, Mahajan (bib48) 2000; 77
Harima (bib53) 2002; 14
Yoshida, Shibata (bib22) 2020; 59
Mula, Adelmann, Moehl, Oullier, Daudin (bib33) 2001; 64
Liang, Zhang, Wang, Xu, Yang, Liang, Li, Liu, Lin, Zhang (bib58) 2024; 26
Pan, Chen, Chen, Zhang, Yang, Hu, Kang, Yuan, Jia, Liang, Wang, Zhang, Shen (bib52) 2024; 26
Fu, Fu, Huang, Yang, Cheng, Peri, Chen, Montes, Yang, Zhou, Deng, Qi, Smith, Goodnick, Zhao (bib35) 2020; 8
Sohi, Martin, Grandjean (bib13) 2017; 32
Izyumskaya, Avrutin, Ding, Özgür, Morkoç, Fujioka (bib1) 2019; 34
Fujikura, Konno, Kimura (bib21) 2022; 15
Tsumuki, Akiyama, Pradipto, Nakamura, Ito (bib29) 2019; 58
Wang, Uesugi, Xiao, Norimatsu, Miyake (bib37) 2021; 14
Sitar, Smith, Davis (bib49) 1994; 141
Liu, Yuan, Sheng, Wang, Zhang, Huang, Zhang, Kang, Luo, Li, Wang, Wang, Xiao, Liu, Wang, Wang (bib38) 2021; 42
Vineyard (bib43) 1957; 3
King, Barnak, Bremser (bib47) 1998; 84
Kuchuk, de Oliveira, Ghosh, Mazur, Stanchu, Teodoro, Ware, Salamo (bib54) 2022; 15
Tasco, Campa, Tarantini, Passaseo, González-Posada, Redondo-Cubero, Lorenz, Franco, Muñoz (bib12) 2009; 105
Wang, You, Guo, Xue, Yang, Chen, Liu, Lu, Zhang, Zheng (bib57) 2020; 116
Oka (bib5) 2019; 58
Blochl (bib39) 1994; 50
Maidebura, Malin, Zhuravlev (bib31) 2022; 120
Feng, Chen, Lin, Chen, Wang, Chen, Pei (bib60) 2023; 951
Yu, Hao, Deng, Li, Wang, Luo, Wang, Sun, Han, Xiong, Li (bib23) 2021; 855
Vickers, Kappers, Datta, McAleese, Smeeton, Rayment, Humphreys (bib51) 2005; 38
Zdanowicz, Herman, Opolczynska, Gorantla, Olszewski, Serafinczuk, Hommel, Kudrawiec (bib6) 2022; 14
Gogneau, Enjalbert, Fossard, Hori, Adelmann, Brault, Martinez-Guerrero, Simon, Bellet-Amalric, Jalabert, Pelekanos, Rouvière, Daudin, Si Dang, Mariette, Monroy (bib34) 2004; 1
He, Zhao, Zhang, He, Wu, Liu, Zhang, Liu, Chen (bib24) 2017; 9
Yacoub, Zweipfennig, Lükens, Behmenburg, Fahle, Eickelkamp, Heuken, Kalisch, Vescan (bib9) 2018; 65
Thissen (10.1016/j.jallcom.2024.175363_bib59) 2009; 80
Wang (10.1016/j.jallcom.2024.175363_bib37) 2021; 14
Feng (10.1016/j.jallcom.2024.175363_bib60) 2023; 951
Oka (10.1016/j.jallcom.2024.175363_bib5) 2019; 58
Sitar (10.1016/j.jallcom.2024.175363_bib49) 1994; 141
Blochl (10.1016/j.jallcom.2024.175363_bib39) 1994; 50
Gogneau (10.1016/j.jallcom.2024.175363_bib34) 2004; 1
Özen (10.1016/j.jallcom.2024.175363_bib46) 2015; 653
Izyumskaya (10.1016/j.jallcom.2024.175363_bib1) 2019; 34
Yacoub (10.1016/j.jallcom.2024.175363_bib9) 2018; 65
Tasco (10.1016/j.jallcom.2024.175363_bib12) 2009; 105
Kuchuk (10.1016/j.jallcom.2024.175363_bib54) 2022; 15
Harima (10.1016/j.jallcom.2024.175363_bib53) 2002; 14
Yen (10.1016/j.jallcom.2024.175363_bib25) 2012; 24
Yu (10.1016/j.jallcom.2024.175363_bib23) 2021; 855
Liang (10.1016/j.jallcom.2024.175363_bib58) 2024; 26
Janssen (10.1016/j.jallcom.2024.175363_bib45) 2006; 515
Maidebura (10.1016/j.jallcom.2024.175363_bib31) 2022; 120
Pan (10.1016/j.jallcom.2024.175363_bib52) 2024; 26
Greco (10.1016/j.jallcom.2024.175363_bib56) 2017; 215
Kim (10.1016/j.jallcom.2024.175363_bib36) 2021; 50
King (10.1016/j.jallcom.2024.175363_bib47) 1998; 84
Wang (10.1016/j.jallcom.2024.175363_bib57) 2020; 116
Sumiya (10.1016/j.jallcom.2024.175363_bib20) 2020; 532
Palacios (10.1016/j.jallcom.2024.175363_bib10) 2005; 26
Henkelman (10.1016/j.jallcom.2024.175363_bib42) 2000; 113
Li (10.1016/j.jallcom.2024.175363_bib16) 2020; 838
Mula (10.1016/j.jallcom.2024.175363_bib33) 2001; 64
Fujikura (10.1016/j.jallcom.2024.175363_bib21) 2022; 15
Yoshida (10.1016/j.jallcom.2024.175363_bib22) 2020; 59
Amano (10.1016/j.jallcom.2024.175363_bib14) 1986; 48
Qu (10.1016/j.jallcom.2024.175363_bib18) 2022; 14
Mula (10.1016/j.jallcom.2024.175363_bib32) 1997; 64
Kaganer (10.1016/j.jallcom.2024.175363_bib44) 2005; 72
Vickers (10.1016/j.jallcom.2024.175363_bib51) 2005; 38
Perdew (10.1016/j.jallcom.2024.175363_bib41) 1996; 77
Tao (10.1016/j.jallcom.2024.175363_bib19) 2023; 31
Heinke (10.1016/j.jallcom.2024.175363_bib50) 2000; 77
Fujita (10.1016/j.jallcom.2024.175363_bib7) 2015; 54
Vineyard (10.1016/j.jallcom.2024.175363_bib43) 1957; 3
Chang (10.1016/j.jallcom.2024.175363_bib17) 2020; 35
Tian (10.1016/j.jallcom.2024.175363_bib3) 2020; 63
Fu (10.1016/j.jallcom.2024.175363_bib35) 2020; 8
Uren (10.1016/j.jallcom.2024.175363_bib8) 2012; 59
Sokudo (10.1016/j.jallcom.2024.175363_bib27) 2023; 62
Erwin (10.1016/j.jallcom.2024.175363_bib26) 2020; 12
Sohi (10.1016/j.jallcom.2024.175363_bib13) 2017; 32
Kresse (10.1016/j.jallcom.2024.175363_bib40) 1996; 54
He (10.1016/j.jallcom.2024.175363_bib24) 2017; 9
Mamor (10.1016/j.jallcom.2024.175363_bib55) 2009; 21
Akiyama (10.1016/j.jallcom.2024.175363_bib28) 2019; 3
Lorenz (10.1016/j.jallcom.2024.175363_bib48) 2000; 77
Najda (10.1016/j.jallcom.2024.175363_bib2) 2022; 11
Tsumuki (10.1016/j.jallcom.2024.175363_bib29) 2019; 58
Nakamura (10.1016/j.jallcom.2024.175363_bib15) 1998; 72
Fanming (10.1016/j.jallcom.2024.175363_bib11) 2018; 7
Liu (10.1016/j.jallcom.2024.175363_bib38) 2021; 42
Ueda (10.1016/j.jallcom.2024.175363_bib4) 2019; 58
Zdanowicz (10.1016/j.jallcom.2024.175363_bib6) 2022; 14
Nakajima (10.1016/j.jallcom.2024.175363_bib30) 2001; 89
References_xml – volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: bib39
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B, Condens. Matter
  contributor:
    fullname: Blochl
– volume: 48
  start-page: 353
  year: 1986
  end-page: 355
  ident: bib14
  article-title: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Toyoda
– volume: 38
  start-page: A99
  year: 2005
  end-page: A104
  ident: bib51
  article-title: In-plane imperfections in GaN studied by x-ray diffraction
  publication-title: J. Phys. D.
  contributor:
    fullname: Humphreys
– volume: 58
  start-page: SC1009
  year: 2019
  ident: bib29
  article-title: Theoretical investigations on the growth mode of GaN thin films on an AlN(0001) substrate
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Ito
– volume: 59
  start-page: 3327
  year: 2012
  end-page: 3333
  ident: bib8
  article-title: Buffer design to minimize current collapse in GaN/AlGaN HFETs
  publication-title: IEEE Trans. Electron Devices
  contributor:
    fullname: Kuball
– volume: 105
  year: 2009
  ident: bib12
  article-title: Investigation of different mechanisms of GaN growth induced on AlN and GaN nucleation layers
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Muñoz
– volume: 59
  year: 2020
  ident: bib22
  article-title: GaN substrates having a low dislocation density and a small off-angle variation prepared by hydride vapor phase epitaxy and maskless-3D
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Shibata
– volume: 532
  year: 2020
  ident: bib20
  article-title: Influence of thin MOCVD-grown GaN layer on underlying AlN template
  publication-title: J. Cryst. Growth
  contributor:
    fullname: Honda
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11185
  ident: bib40
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  contributor:
    fullname: Kresse
– volume: 63
  start-page: 1348
  year: 2020
  end-page: 1363
  ident: bib3
  article-title: Design and growth of GaN-based blue and green laser diodes
  publication-title: Sci. China Mater.
  contributor:
    fullname: Yang
– volume: 11
  start-page: 1430
  year: 2022
  ident: bib2
  article-title: GaN laser diode technology for visible-light communications
  publication-title: Electronics
  contributor:
    fullname: Watson
– volume: 15
  start-page: 2405
  year: 2022
  end-page: 2412
  ident: bib54
  article-title: Coherent-interface-induced strain in large lattice-mismatched materials: a new approach for modeling Raman shift
  publication-title: Nano Res.
  contributor:
    fullname: Salamo
– volume: 84
  start-page: 5248
  year: 1998
  end-page: 5260
  ident: bib47
  article-title: Cleaning of AlN and GaN surfaces
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Bremser
– volume: 7
  start-page: 377
  year: 2018
  ident: bib11
  article-title: A comprehensive review of recent progress on GaN high electron mobility transistors
  publication-title: Devices Fabr. Reliab. Electron.
  contributor:
    fullname: Hongyu
– volume: 215
  year: 2017
  ident: bib56
  article-title: Barrier inhomogeneity of Ni Schottky contacts to bulk GaN
  publication-title: Phys. Status Solidi (a)
  contributor:
    fullname: Roccaforte
– volume: 21
  year: 2009
  ident: bib55
  article-title: Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts
  publication-title: J. Phys. Condens. Matter.: Inst. Phys. J.
  contributor:
    fullname: Mamor
– volume: 14
  start-page: 2263
  year: 2022
  end-page: 2274
  ident: bib18
  article-title: Long-range orbital hybridization in remote epitaxy: the nucleation mechanism of GaN on different substrates via single-layer graphene
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Xu
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: bib42
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Jónsson
– volume: 34
  year: 2019
  ident: bib1
  article-title: Emergence of high quality sputtered III-nitride semiconductors and devices
  publication-title: Semicond. Sci. Technol.
  contributor:
    fullname: Fujioka
– volume: 62
  start-page: SC1014
  year: 2023
  ident: bib27
  article-title: First-principles study for self-limiting growth of GaN layers on AlN(0001) surface
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Ito
– volume: 9
  start-page: 43386
  year: 2017
  end-page: 43392
  ident: bib24
  article-title: High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Chen
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib41
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Ernzerhof
– volume: 80
  year: 2009
  ident: bib59
  article-title: Water adsorption on theα-Al2O3(0001)surface
  publication-title: Phys. Rev. B
  contributor:
    fullname: Schmidt
– volume: 855
  year: 2021
  ident: bib23
  article-title: Low-temperaturevan der waals epitaxy of GaN films on graphene through AlN buffer by plasma-assisted molecular beam epitaxy
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Li
– volume: 72
  start-page: 211
  year: 1998
  end-page: 213
  ident: bib15
  article-title: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Chocho
– volume: 838
  year: 2020
  ident: bib16
  article-title: Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Pan
– volume: 951
  year: 2023
  ident: bib60
  article-title: Activating the κ-Ga2O3 surface for epitaxy growth and dopant incorporation using low chemical-hardness metal overlayers
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Pei
– volume: 65
  start-page: 3192
  year: 2018
  end-page: 3198
  ident: bib9
  article-title: Effect of carbon doping level on static and dynamic properties of AlGaN/GaN heterostructures grown on silicon
  publication-title: IEEE Trans. Electron Devices
  contributor:
    fullname: Vescan
– volume: 14
  year: 2021
  ident: bib37
  article-title: High-quality AlN/sapphire templates prepared by thermal cycle annealing for high-performance ultraviolet light-emitting diodes
  publication-title: Appl. Phys. Express
  contributor:
    fullname: Miyake
– volume: 58
  start-page: SC0804
  year: 2019
  ident: bib4
  article-title: GaN power devices: current status and future challenges
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Ueda
– volume: 3
  start-page: 121
  year: 1957
  end-page: 127
  ident: bib43
  article-title: Frequency factors and isotope effects in solid state rate processes
  contributor:
    fullname: Vineyard
– volume: 653
  start-page: 162
  year: 2015
  end-page: 167
  ident: bib46
  article-title: Investigation on the morphology and surface free energy of the AlGaN thin film
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Korkmaz
– volume: 120
  year: 2022
  ident: bib31
  article-title: Modification of the surface energy and morphology of GaN monolayers on the AlN surface in an ammonia flow
  publication-title: Clean. AlN GaN Surf., Appl. Phys. Lett.
  contributor:
    fullname: Zhuravlev
– volume: 14
  start-page: R967
  year: 2002
  ident: bib53
  article-title: Properties of GaN and related compounds studied by means of Raman scattering
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Harima
– volume: 77
  start-page: 2145
  year: 2000
  end-page: 2147
  ident: bib50
  article-title: X-ray diffraction analysis of the defect structure in epitaxial GaN
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Hommel
– volume: 77
  start-page: 3391
  year: 2000
  end-page: 3393
  ident: bib48
  article-title: Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Mahajan
– volume: 50
  start-page: 6688
  year: 2021
  end-page: 6707
  ident: bib36
  article-title: Vertical schottky contacts to bulk GaN single crystals and current transport mechanisms: a review
  publication-title: J. Electron. Mater.
  contributor:
    fullname: Kim
– volume: 32
  year: 2017
  ident: bib13
  article-title: Critical thickness of GaN on AlN: impact of growth temperature and dislocation density
  publication-title: Semicond. Sci. Technol.
  contributor:
    fullname: Grandjean
– volume: 64
  year: 2001
  ident: bib33
  article-title: Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)
  publication-title: Phys. Rev. B
  contributor:
    fullname: Daudin
– volume: 141
  start-page: 11
  year: 1994
  end-page: 21
  ident: bib49
  article-title: Interface chemistry and surface morphology in the initial stages of growth of GaN and AlN on a-SiC and sapphire
  publication-title: J. Cryst. Growth
  contributor:
    fullname: Davis
– volume: 116
  year: 2020
  ident: bib57
  article-title: Do all screw dislocations cause leakage in GaN-based devices
  publication-title: ?, Appl. Phys. Lett.
  contributor:
    fullname: Zheng
– volume: 26
  start-page: 809
  year: 2024
  end-page: 816
  ident: bib58
  article-title: Comparative study of epitaxial growth and Ni/GaN Schottky device on patterned sapphire substrates
  publication-title: CrystEngComm
  contributor:
    fullname: Zhang
– volume: 72
  year: 2005
  ident: bib44
  article-title: X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films
  publication-title: Phys. Rev. B
  contributor:
    fullname: Ploog
– volume: 26
  start-page: 620
  year: 2024
  end-page: 630
  ident: bib52
  article-title: Effect of grain coalescence on dislocation and stress in GaN films grown on nanoscale patterned sapphire substrates
  publication-title: CrystEngComm
  contributor:
    fullname: Shen
– volume: 26
  start-page: 781
  year: 2005
  end-page: 783
  ident: bib10
  article-title: High-power AlGaN/GaN HEMTs for Ka-band applications
  publication-title: IEEE Electron Device Lett.
  contributor:
    fullname: Mishra
– volume: 35
  year: 2020
  ident: bib17
  article-title: The influence of AlN nucleation layer on RF transmission loss of GaN buffer on high resistivity Si (111) substrate
  publication-title: Semicond. Sci. Technol.
  contributor:
    fullname: Chang
– volume: 3
  year: 2019
  ident: bib28
  article-title: Modified approach for calculating individual energies of polar and semipolar surfaces of group-III nitrides
  publication-title: Phys. Rev. Mater.
  contributor:
    fullname: Ito
– volume: 89
  start-page: 146
  year: 2001
  end-page: 153
  ident: bib30
  article-title: Effects of misfit dislocations and AlN buffer layer on the GaInN/GaN phase diagram of the growth mode
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Sazaki
– volume: 24
  start-page: 294
  year: 2012
  end-page: 296
  ident: bib25
  article-title: GaN-based light-emitting diode with sputtered AlN nucleation layer
  publication-title: IEEE Photon. Technol. Lett.
  contributor:
    fullname: Chang
– volume: 1
  start-page: 1445
  year: 2004
  end-page: 1450
  ident: bib34
  article-title: Recent progress in growth and physics of GaN/AlN quantum dots
  publication-title: Phys. Status Solidi (C. )
  contributor:
    fullname: Monroy
– volume: 58
  start-page: SB0805
  year: 2019
  ident: bib5
  article-title: Recent development of vertical GaN power devices
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Oka
– volume: 8
  start-page: 74
  year: 2020
  end-page: 83
  ident: bib35
  article-title: Reverse leakage analysis for as-grown and regrown vertical GaN-on-GaN schottky barrier diodes
  publication-title: IEEE J. Electron Devices Soc.
  contributor:
    fullname: Zhao
– volume: 14
  start-page: 6131
  year: 2022
  end-page: 6137
  ident: bib6
  article-title: Toward h-BN/GaN schottky diodes: spectroscopic study on the electronic phenomena at the interface
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Kudrawiec
– volume: 12
  start-page: 49245
  year: 2020
  end-page: 49251
  ident: bib26
  article-title: Atomic layer epitaxy of III-nitrides: a microscopic model of homoepitaxial growth
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Lyons
– volume: 54
  year: 2015
  ident: bib7
  article-title: Wide-bandgap semiconductor materials: for their full bloom
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Fujita
– volume: 515
  start-page: 1433
  year: 2006
  end-page: 1438
  ident: bib45
  article-title: Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide
  publication-title: Thin Solid Films
  contributor:
    fullname: Dehaen
– volume: 42
  year: 2021
  ident: bib38
  article-title: Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by MOCVD
  publication-title: J. Semicond.
  contributor:
    fullname: Wang
– volume: 31
  start-page: 20850
  year: 2023
  end-page: 20860
  ident: bib19
  article-title: Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation
  publication-title: Opt. Express
  contributor:
    fullname: Hao
– volume: 64
  year: 1997
  ident: bib32
  article-title: Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN
  publication-title: Phys. Rev. B
  contributor:
    fullname: Daudin
– volume: 15
  year: 2022
  ident: bib21
  article-title: Hydride vapor phase epitaxial growth of AlGaN
  publication-title: Appl. Phys. Express
  contributor:
    fullname: Kimura
– volume: 14
  start-page: 2263
  year: 2022
  ident: 10.1016/j.jallcom.2024.175363_bib18
  article-title: Long-range orbital hybridization in remote epitaxy: the nucleation mechanism of GaN on different substrates via single-layer graphene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18926
  contributor:
    fullname: Qu
– volume: 31
  start-page: 20850
  year: 2023
  ident: 10.1016/j.jallcom.2024.175363_bib19
  article-title: Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation
  publication-title: Opt. Express
  doi: 10.1364/OE.492088
  contributor:
    fullname: Tao
– volume: 14
  start-page: 6131
  year: 2022
  ident: 10.1016/j.jallcom.2024.175363_bib6
  article-title: Toward h-BN/GaN schottky diodes: spectroscopic study on the electronic phenomena at the interface
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c20352
  contributor:
    fullname: Zdanowicz
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jallcom.2024.175363_bib41
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 54
  year: 2015
  ident: 10.1016/j.jallcom.2024.175363_bib7
  article-title: Wide-bandgap semiconductor materials: for their full bloom
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.030101
  contributor:
    fullname: Fujita
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jallcom.2024.175363_bib40
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse
– volume: 80
  year: 2009
  ident: 10.1016/j.jallcom.2024.175363_bib59
  article-title: Water adsorption on theα-Al2O3(0001)surface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245403
  contributor:
    fullname: Thissen
– volume: 7
  start-page: 377
  year: 2018
  ident: 10.1016/j.jallcom.2024.175363_bib11
  article-title: A comprehensive review of recent progress on GaN high electron mobility transistors
  publication-title: Devices Fabr. Reliab. Electron.
  contributor:
    fullname: Fanming
– volume: 42
  year: 2021
  ident: 10.1016/j.jallcom.2024.175363_bib38
  article-title: Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by MOCVD
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/42/12/122804
  contributor:
    fullname: Liu
– volume: 15
  start-page: 2405
  year: 2022
  ident: 10.1016/j.jallcom.2024.175363_bib54
  article-title: Coherent-interface-induced strain in large lattice-mismatched materials: a new approach for modeling Raman shift
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3855-4
  contributor:
    fullname: Kuchuk
– volume: 26
  start-page: 620
  year: 2024
  ident: 10.1016/j.jallcom.2024.175363_bib52
  article-title: Effect of grain coalescence on dislocation and stress in GaN films grown on nanoscale patterned sapphire substrates
  publication-title: CrystEngComm
  doi: 10.1039/D3CE00987D
  contributor:
    fullname: Pan
– volume: 64
  year: 2001
  ident: 10.1016/j.jallcom.2024.175363_bib33
  article-title: Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.195406
  contributor:
    fullname: Mula
– volume: 15
  year: 2022
  ident: 10.1016/j.jallcom.2024.175363_bib21
  article-title: Hydride vapor phase epitaxial growth of AlGaN
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ac8412
  contributor:
    fullname: Fujikura
– volume: 3
  year: 2019
  ident: 10.1016/j.jallcom.2024.175363_bib28
  article-title: Modified approach for calculating individual energies of polar and semipolar surfaces of group-III nitrides
  publication-title: Phys. Rev. Mater.
  contributor:
    fullname: Akiyama
– volume: 215
  year: 2017
  ident: 10.1016/j.jallcom.2024.175363_bib56
  article-title: Barrier inhomogeneity of Ni Schottky contacts to bulk GaN
  publication-title: Phys. Status Solidi (a)
  contributor:
    fullname: Greco
– volume: 38
  start-page: A99
  year: 2005
  ident: 10.1016/j.jallcom.2024.175363_bib51
  article-title: In-plane imperfections in GaN studied by x-ray diffraction
  publication-title: J. Phys. D.
  doi: 10.1088/0022-3727/38/10A/019
  contributor:
    fullname: Vickers
– volume: 59
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib22
  article-title: GaN substrates having a low dislocation density and a small off-angle variation prepared by hydride vapor phase epitaxy and maskless-3D
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ab9d5f
  contributor:
    fullname: Yoshida
– volume: 11
  start-page: 1430
  year: 2022
  ident: 10.1016/j.jallcom.2024.175363_bib2
  article-title: GaN laser diode technology for visible-light communications
  publication-title: Electronics
  doi: 10.3390/electronics11091430
  contributor:
    fullname: Najda
– volume: 3
  start-page: 121
  year: 1957
  ident: 10.1016/j.jallcom.2024.175363_bib43
  article-title: Frequency factors and isotope effects in solid state rate processes
  contributor:
    fullname: Vineyard
– volume: 141
  start-page: 11
  year: 1994
  ident: 10.1016/j.jallcom.2024.175363_bib49
  article-title: Interface chemistry and surface morphology in the initial stages of growth of GaN and AlN on a-SiC and sapphire
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(94)90086-8
  contributor:
    fullname: Sitar
– volume: 12
  start-page: 49245
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib26
  article-title: Atomic layer epitaxy of III-nitrides: a microscopic model of homoepitaxial growth
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14622
  contributor:
    fullname: Erwin
– volume: 26
  start-page: 809
  year: 2024
  ident: 10.1016/j.jallcom.2024.175363_bib58
  article-title: Comparative study of epitaxial growth and Ni/GaN Schottky device on patterned sapphire substrates
  publication-title: CrystEngComm
  doi: 10.1039/D3CE01077E
  contributor:
    fullname: Liang
– volume: 21
  year: 2009
  ident: 10.1016/j.jallcom.2024.175363_bib55
  article-title: Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts
  publication-title: J. Phys. Condens. Matter.: Inst. Phys. J.
  doi: 10.1088/0953-8984/21/33/335802
  contributor:
    fullname: Mamor
– volume: 105
  year: 2009
  ident: 10.1016/j.jallcom.2024.175363_bib12
  article-title: Investigation of different mechanisms of GaN growth induced on AlN and GaN nucleation layers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3093700
  contributor:
    fullname: Tasco
– volume: 58
  start-page: SB0805
  year: 2019
  ident: 10.1016/j.jallcom.2024.175363_bib5
  article-title: Recent development of vertical GaN power devices
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab02e7
  contributor:
    fullname: Oka
– volume: 113
  start-page: 9901
  year: 2000
  ident: 10.1016/j.jallcom.2024.175363_bib42
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
  contributor:
    fullname: Henkelman
– volume: 14
  start-page: R967
  year: 2002
  ident: 10.1016/j.jallcom.2024.175363_bib53
  article-title: Properties of GaN and related compounds studied by means of Raman scattering
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Harima
– volume: 34
  year: 2019
  ident: 10.1016/j.jallcom.2024.175363_bib1
  article-title: Emergence of high quality sputtered III-nitride semiconductors and devices
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab3374
  contributor:
    fullname: Izyumskaya
– volume: 64
  year: 1997
  ident: 10.1016/j.jallcom.2024.175363_bib32
  article-title: Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN
  publication-title: Phys. Rev. B
  contributor:
    fullname: Mula
– volume: 32
  year: 2017
  ident: 10.1016/j.jallcom.2024.175363_bib13
  article-title: Critical thickness of GaN on AlN: impact of growth temperature and dislocation density
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aa7248
  contributor:
    fullname: Sohi
– volume: 58
  start-page: SC1009
  year: 2019
  ident: 10.1016/j.jallcom.2024.175363_bib29
  article-title: Theoretical investigations on the growth mode of GaN thin films on an AlN(0001) substrate
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab06b1
  contributor:
    fullname: Tsumuki
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jallcom.2024.175363_bib39
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B, Condens. Matter
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blochl
– volume: 653
  start-page: 162
  year: 2015
  ident: 10.1016/j.jallcom.2024.175363_bib46
  article-title: Investigation on the morphology and surface free energy of the AlGaN thin film
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.08.225
  contributor:
    fullname: Özen
– volume: 1
  start-page: 1445
  year: 2004
  ident: 10.1016/j.jallcom.2024.175363_bib34
  article-title: Recent progress in growth and physics of GaN/AlN quantum dots
  publication-title: Phys. Status Solidi (C. )
  doi: 10.1002/pssc.200304083
  contributor:
    fullname: Gogneau
– volume: 951
  year: 2023
  ident: 10.1016/j.jallcom.2024.175363_bib60
  article-title: Activating the κ-Ga2O3 surface for epitaxy growth and dopant incorporation using low chemical-hardness metal overlayers
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.169793
  contributor:
    fullname: Feng
– volume: 9
  start-page: 43386
  year: 2017
  ident: 10.1016/j.jallcom.2024.175363_bib24
  article-title: High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14801
  contributor:
    fullname: He
– volume: 120
  year: 2022
  ident: 10.1016/j.jallcom.2024.175363_bib31
  article-title: Modification of the surface energy and morphology of GaN monolayers on the AlN surface in an ammonia flow
  publication-title: Clean. AlN GaN Surf., Appl. Phys. Lett.
  contributor:
    fullname: Maidebura
– volume: 63
  start-page: 1348
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib3
  article-title: Design and growth of GaN-based blue and green laser diodes
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1275-4
  contributor:
    fullname: Tian
– volume: 50
  start-page: 6688
  year: 2021
  ident: 10.1016/j.jallcom.2024.175363_bib36
  article-title: Vertical schottky contacts to bulk GaN single crystals and current transport mechanisms: a review
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-021-09227-6
  contributor:
    fullname: Kim
– volume: 8
  start-page: 74
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib35
  article-title: Reverse leakage analysis for as-grown and regrown vertical GaN-on-GaN schottky barrier diodes
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2020.2963902
  contributor:
    fullname: Fu
– volume: 72
  start-page: 211
  year: 1998
  ident: 10.1016/j.jallcom.2024.175363_bib15
  article-title: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.120688
  contributor:
    fullname: Nakamura
– volume: 532
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib20
  article-title: Influence of thin MOCVD-grown GaN layer on underlying AlN template
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2019.125376
  contributor:
    fullname: Sumiya
– volume: 48
  start-page: 353
  year: 1986
  ident: 10.1016/j.jallcom.2024.175363_bib14
  article-title: Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96549
  contributor:
    fullname: Amano
– volume: 116
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib57
  article-title: Do all screw dislocations cause leakage in GaN-based devices
  publication-title: ?, Appl. Phys. Lett.
  contributor:
    fullname: Wang
– volume: 855
  year: 2021
  ident: 10.1016/j.jallcom.2024.175363_bib23
  article-title: Low-temperaturevan der waals epitaxy of GaN films on graphene through AlN buffer by plasma-assisted molecular beam epitaxy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.157508
  contributor:
    fullname: Yu
– volume: 89
  start-page: 146
  year: 2001
  ident: 10.1016/j.jallcom.2024.175363_bib30
  article-title: Effects of misfit dislocations and AlN buffer layer on the GaInN/GaN phase diagram of the growth mode
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1330247
  contributor:
    fullname: Nakajima
– volume: 59
  start-page: 3327
  year: 2012
  ident: 10.1016/j.jallcom.2024.175363_bib8
  article-title: Buffer design to minimize current collapse in GaN/AlGaN HFETs
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2012.2216535
  contributor:
    fullname: Uren
– volume: 62
  start-page: SC1014
  year: 2023
  ident: 10.1016/j.jallcom.2024.175363_bib27
  article-title: First-principles study for self-limiting growth of GaN layers on AlN(0001) surface
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/aca810
  contributor:
    fullname: Sokudo
– volume: 77
  start-page: 2145
  year: 2000
  ident: 10.1016/j.jallcom.2024.175363_bib50
  article-title: X-ray diffraction analysis of the defect structure in epitaxial GaN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1314877
  contributor:
    fullname: Heinke
– volume: 72
  year: 2005
  ident: 10.1016/j.jallcom.2024.175363_bib44
  article-title: X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.045423
  contributor:
    fullname: Kaganer
– volume: 14
  year: 2021
  ident: 10.1016/j.jallcom.2024.175363_bib37
  article-title: High-quality AlN/sapphire templates prepared by thermal cycle annealing for high-performance ultraviolet light-emitting diodes
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/abe522
  contributor:
    fullname: Wang
– volume: 515
  start-page: 1433
  year: 2006
  ident: 10.1016/j.jallcom.2024.175363_bib45
  article-title: Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.04.006
  contributor:
    fullname: Janssen
– volume: 24
  start-page: 294
  year: 2012
  ident: 10.1016/j.jallcom.2024.175363_bib25
  article-title: GaN-based light-emitting diode with sputtered AlN nucleation layer
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2011.2177654
  contributor:
    fullname: Yen
– volume: 838
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib16
  article-title: Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.155557
  contributor:
    fullname: Li
– volume: 35
  year: 2020
  ident: 10.1016/j.jallcom.2024.175363_bib17
  article-title: The influence of AlN nucleation layer on RF transmission loss of GaN buffer on high resistivity Si (111) substrate
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab7149
  contributor:
    fullname: Chang
– volume: 84
  start-page: 5248
  year: 1998
  ident: 10.1016/j.jallcom.2024.175363_bib47
  article-title: Cleaning of AlN and GaN surfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368814
  contributor:
    fullname: King
– volume: 65
  start-page: 3192
  year: 2018
  ident: 10.1016/j.jallcom.2024.175363_bib9
  article-title: Effect of carbon doping level on static and dynamic properties of AlGaN/GaN heterostructures grown on silicon
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2850066
  contributor:
    fullname: Yacoub
– volume: 77
  start-page: 3391
  year: 2000
  ident: 10.1016/j.jallcom.2024.175363_bib48
  article-title: Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1328091
  contributor:
    fullname: Lorenz
– volume: 26
  start-page: 781
  year: 2005
  ident: 10.1016/j.jallcom.2024.175363_bib10
  article-title: High-power AlGaN/GaN HEMTs for Ka-band applications
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2005.857701
  contributor:
    fullname: Palacios
– volume: 58
  start-page: SC0804
  year: 2019
  ident: 10.1016/j.jallcom.2024.175363_bib4
  article-title: GaN power devices: current status and future challenges
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab12c9
  contributor:
    fullname: Ueda
SSID ssj0001931
Score 2.4941027
Snippet In this paper, the surface state of the single-crystalline AlN template's impact on the epitaxial growth of gallium nitride (GaN) was studied. Subsequently,...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 175363
SubjectTerms Device
GaN
Single-crystalline AlN
Surface energy
Title From GaN crystallinity to device performance: Nucleation mode vs Surface energy of single-crystalline AlN template
URI https://dx.doi.org/10.1016/j.jallcom.2024.175363
Volume 1002
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BEWI5rKCAll1APnBN6zhf9t6qarsFRC6AxC2KHVuiCm0VChIXfjszaUJBQhy4WEpkR9GM9d44mXkDcOpETlRMyscm90LDlae4sV7BdeS01LGohecv03h8E57fRrdrMGxrYSitssH-JabXaN3c6TfW7M_v7vpXXAn65yeRk6iXqVqHDaSjMOzAxuDsYpy-ATLGKHXjPJzv0YJVIU9_0pvkZUl5IwLJqkeylXHwOUW9o53RDvxs4kU2WL7SLqzZaRe2hm2bti5sv1MU7MJmndFpHvagGlWze_Y_T5mpnjEEJO1tjLjZYsYKS_DA5quagb8sJV3j2kuMmuOwpwd29Vi5HOfZujyQzRyj7wql9VYPtGxQpozkrUqMWffhZvTvejj2mgYLnvFlsvAKPE5ELgy40dzGBQ5COK6Dwg-k0TISMioijSeKUCU2kaG2QYJwSPotTkkcD6AznU3tL2BShX6Sm0KoxCHpR8oqHhudSyucMVwfQq-1aTZf6mhkbYLZJGuckJETsqUTDkG2ls8-bIgMsf7rpb-_v_QP_KArIic_OoLOonq0xxh1LPQJrPde_JNmb70C00HX8A
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BEQIGBAVE-fTAmtZ1vmw2VFEKtFloJbYodmypVWirUJBY-O340kQFCTGweEjOUeSz7j0nd-8ArgxLEIpR-VgljqeocARV2kmp9I3kMmCF8PwgCnoj7-HZf16DTlULg2mVZexfxvQiWpdXWuVqtubjceuJCob__LjFJOxlKtZhA9kA5nU1P1d5HpahFG3zrLWD5qsyntakOUmyDLNGmIWqJopWBu7vAPUNdLp7sFuyRXKzfKF9WNPTOmx1qiZtddj5pidYh80in1O9HkDezWcv5C6JiMo_LAFE5W3Lt8liRlKNwYHMVxUD1yRCVePCRwRb45D3V_L0lpvE2umiOJDMDMGvCpl2Vg_U5CaLCIpbZZaxHsKoezvs9JyyvYKj2jxcOKk9TPjGc6mSVAepHRgzVLpp2-VKcp9xP_WlPU94ItQh96R2QxsMUb3FCG7HI6hNZ1N9DIQLrx0mKmUiNBbyfaEFDZRMuGZGKSob0KzWNJ4vVTTiKr1sEpdOiNEJ8dIJDeDVysc_tkNsI_3fU0_-P_UStnrDQT_u30ePp7CNdxCm2v4Z1Bb5mz63_GMhL4r99QW9VdjF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+GaN+crystallinity+to+device+performance%3A+Nucleation+mode+vs+Surface+energy+of+single-crystalline+AlN+template&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Liang%2C+Zhiwen&rft.au=Yuan%2C+Ye&rft.au=Feng%2C+Wenyong&rft.au=Li%2C+Xin&rft.date=2024-10-15&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=1002&rft_id=info:doi/10.1016%2Fj.jallcom.2024.175363&rft.externalDocID=S0925838824019509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon