Research on fault diagnosis of electric gate valve in nuclear power plant based on the VMD-MDI-ISSA-RF model
•Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L divergence in feature extraction for better fault signal representation from sensor data.•Improving SSA for optimizing random forest model paramete...
Saved in:
Published in | Annals of nuclear energy Vol. 207; p. 110701 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L divergence in feature extraction for better fault signal representation from sensor data.•Improving SSA for optimizing random forest model parameters, achieving 96.375% accuracy in electric gate valve fault diagnosis.
Electric gate valve (EGV) is an essential equipment within nuclear power plant (NPP). This paper presents an advanced fault diagnosis (FD) approach, leveraging Variational Modal Decomposition (VMD), Mutual Dimensionless Indicator (MDI) and the Random Forest (RF) optimized through Improved Sparrow Search Algorithm (ISSA), aimed at improving the accuracy of fault diagnosis and optimizing the FD model during EGV failure events. To commence, we employ the VMD algorithm for modal decomposition of raw electric gate valve signals. This process yields several Intrinsic Mode Function (IMF) components with diverse frequencies, enabling the capture of the underlying dynamics of the signals and facilitating a more comprehensive analysis of the fault conditions. We subsequently apply the K-L divergence to identify key IMF components that closely resemble the original signals. These selected key IMF components serve as the foundation for extracting dimensional indicators (DI) and mutual dimensionless indicators (MDI) as signal features. Furthermore, the Improved Sparrow Search Algorithm (ISSA) is enlisted to optimize the maximum feature count and the number of decision trees in the Random Forest (RF) algorithm. Ultimately, the optimized RF algorithm is deployed for fault diagnosis. Our paper offers a comparative analysis, pitting the VMD method against Empirical Mode Decomposition (EMD) and Local Mean Decomposition (LMD). Additionally, we compare our proposed fault diagnosis model with traditional RF algorithm and the SSA-RF algorithm. Through rigorous experimentation, our results achieved an average fault diagnosis accuracy of up to 96.375%. |
---|---|
AbstractList | •Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L divergence in feature extraction for better fault signal representation from sensor data.•Improving SSA for optimizing random forest model parameters, achieving 96.375% accuracy in electric gate valve fault diagnosis.
Electric gate valve (EGV) is an essential equipment within nuclear power plant (NPP). This paper presents an advanced fault diagnosis (FD) approach, leveraging Variational Modal Decomposition (VMD), Mutual Dimensionless Indicator (MDI) and the Random Forest (RF) optimized through Improved Sparrow Search Algorithm (ISSA), aimed at improving the accuracy of fault diagnosis and optimizing the FD model during EGV failure events. To commence, we employ the VMD algorithm for modal decomposition of raw electric gate valve signals. This process yields several Intrinsic Mode Function (IMF) components with diverse frequencies, enabling the capture of the underlying dynamics of the signals and facilitating a more comprehensive analysis of the fault conditions. We subsequently apply the K-L divergence to identify key IMF components that closely resemble the original signals. These selected key IMF components serve as the foundation for extracting dimensional indicators (DI) and mutual dimensionless indicators (MDI) as signal features. Furthermore, the Improved Sparrow Search Algorithm (ISSA) is enlisted to optimize the maximum feature count and the number of decision trees in the Random Forest (RF) algorithm. Ultimately, the optimized RF algorithm is deployed for fault diagnosis. Our paper offers a comparative analysis, pitting the VMD method against Empirical Mode Decomposition (EMD) and Local Mean Decomposition (LMD). Additionally, we compare our proposed fault diagnosis model with traditional RF algorithm and the SSA-RF algorithm. Through rigorous experimentation, our results achieved an average fault diagnosis accuracy of up to 96.375%. |
ArticleNumber | 110701 |
Author | Gao, Jia-rong Liu, Yong-kuo Ding, Peng Duan, Cheng-jie Song, Ju-qing |
Author_xml | – sequence: 1 givenname: Jia-rong surname: Gao fullname: Gao, Jia-rong organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China – sequence: 2 givenname: Yong-kuo orcidid: 0000-0001-7729-7154 surname: Liu fullname: Liu, Yong-kuo email: lyk08@126.com organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China – sequence: 3 givenname: Cheng-jie surname: Duan fullname: Duan, Cheng-jie organization: Lead-Bismuth Fast Reactor Project Department, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen, 518028, China – sequence: 4 givenname: Peng orcidid: 0009-0001-0401-0113 surname: Ding fullname: Ding, Peng organization: Lead-Bismuth Fast Reactor Project Department, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen, 518028, China – sequence: 5 givenname: Ju-qing surname: Song fullname: Song, Ju-qing organization: School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, 523808, China |
BookMark | eNqFkNFOwjAUhhujiYA-gklfoLNn67rtyhAQJYGYgHrbdOsZlJSOrAPj2zsC996cc_V__59vSG5945GQJ-ARcJDPu0j7Y4Ueo5jHIgLgGYcbMoA8S1gMnN-SAU-4ZCIVxT0ZhrDjHOJciAFxKwyo22pLG09rfXQdNVZvfBNsoE1N0WHVtbaiG90hPWl3Qmo97ftcH6OH5gf767TvaKkDmjOm2yL9Xk7Zcjpn8_V6zFYzum8MugdyV2sX8PH6R-Rr9vo5eWeLj7f5ZLxgVT-5Y1ksAXmKAGUsUm4ESFHmphQyB51KKDEpcuS5zozQRSILncQl1nkRp5kpM5mMSHrhVm0TQou1OrR2r9tfBVydlamduipTZ2XqoqzPvVxy2I87WWxVqCz6Co1tew3KNPYfwh82YXfk |
Cites_doi | 10.1016/j.asoc.2014.02.008 10.1109/TEVC.2003.816583 10.1080/21642583.2019.1708830 10.1016/S0952-1976(03)00022-8 10.3390/electronics12224681 10.1016/j.ymssp.2015.10.024 10.1109/ICRoM.2016.7886855 10.1016/j.measurement.2019.107315 10.1016/j.measurement.2018.04.062 10.1007/s12206-014-1012-7 10.3390/electronics12020410 10.1016/j.measurement.2011.03.004 10.1016/j.aej.2016.12.010 10.1016/j.eswa.2013.12.026 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.anucene.2024.110701 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2100 |
ExternalDocumentID | 10_1016_j_anucene_2024_110701 S0306454924003645 |
GroupedDBID | --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JM 9JN A6W AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SPD SSJ SSR SSZ T5K UHS WUQ ~G- AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c187t-7261e05e11b2450d4164b8db4681a561be398e08a7d4a9369a32bef89257db763 |
IEDL.DBID | AIKHN |
ISSN | 0306-4549 |
IngestDate | Thu Sep 26 21:49:50 EDT 2024 Sat Jul 20 16:35:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MDI ISSA Algorithm RF Algorithm Electric Gate Valves Fault Diagnosis Nuclear Power Plant VMD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c187t-7261e05e11b2450d4164b8db4681a561be398e08a7d4a9369a32bef89257db763 |
ORCID | 0000-0001-7729-7154 0009-0001-0401-0113 |
ParticipantIDs | crossref_primary_10_1016_j_anucene_2024_110701 elsevier_sciencedirect_doi_10_1016_j_anucene_2024_110701 |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Annals of nuclear energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Li, Zhu (b0065) 2023; 12 Zhao, Feng, Zhao (b0145) 2005; 01 Li, C. An Investigation and Application of Mutual Non-Dimensionalization and Deep Learning for Fault Diagnosis in Petrochemical Units [D]. 2021. Subbaraj, Kannapiran (b0100) 2014; 19 Zeng, Liu, Zhang (b0130) 2021; 44 Chen, X. Y. Research and application of valve system health status diagnosis technology[D]. 2010. Liu, Li, Zhu, Nie, Tang (b0060) 2023; 12 (2):410 Yu, Zhang, Bi (b0125) 2015; 32 Lin, Yuan, Tian (b0055) 2023; 37 Lee, Yao (b0040) 2004; 8 Qi, H. F. Valve fault diagnosis in nuclear power plants based on neural network technology[D]. 2012. Chen, Wang, Zhang (b0010) 2015; 43 Feng, F., Feng, F., Jiang, P., et al. Application of random forest and k-nearest neighbors in the recognition of gearbox states for a certain type of tank[C]. In Proceedings of the 8th National Symposium on Rotor Dynamics, 2008: 159-161. Liu, Li, Zhu (b0070) 2023; 12 Meland, Henriksen, Hennie (b0075) 2011; 44 Flett, Bone (b0030) 2016; 72–73 Jafarian, Mobin, Jafari-Marandi (b0035) 2018; 128 Tay, Shen (b0105) 2003; 16 Zhang, Li, Ji (b0135) 2013; 21 Chen, Wang (b0015) 2023; 33 Zhang, Liu, Chen (b0140) 2014; 28 Sharifi S, Rezaei S M, Tivay A, et al. Multi-class Fault Detection In Electro-hydraulic Servo Systems Using Support Vector Machines[C]. 4th RSI International Conference on Robotics and Mechatronics (ICROM), 2016: 252-257. Ning, Han, Duan (b0080) 2020; 43 Xue, Shen (b0115) 2020; 8 Yang, G., Li, R. W., Yan, Z. Z., et al. Application of fuzzy mathematics in valve fault diagnosis[J]. Computer Science, 2007(05), 26-27+43. Li, Shi, Wang (b0045) 2020; 39 Sim, Ramli, Saifizul (b0095) 2020; 152 Ali, Hui, Hee (b0005) 2018; 57 Van Tung, Althobiani, Ball (b0110) 2014; 41 10.1016/j.anucene.2024.110701_b0050 Lin (10.1016/j.anucene.2024.110701_b0055) 2023; 37 10.1016/j.anucene.2024.110701_b0090 Sim (10.1016/j.anucene.2024.110701_b0095) 2020; 152 Van Tung (10.1016/j.anucene.2024.110701_b0110) 2014; 41 Flett (10.1016/j.anucene.2024.110701_b0030) 2016; 72–73 Chen (10.1016/j.anucene.2024.110701_b0015) 2023; 33 Li (10.1016/j.anucene.2024.110701_b0045) 2020; 39 Liu (10.1016/j.anucene.2024.110701_b0065) 2023; 12 Jafarian (10.1016/j.anucene.2024.110701_b0035) 2018; 128 Lee (10.1016/j.anucene.2024.110701_b0040) 2004; 8 Ali (10.1016/j.anucene.2024.110701_b0005) 2018; 57 Chen (10.1016/j.anucene.2024.110701_b0010) 2015; 43 Zhao (10.1016/j.anucene.2024.110701_b0145) 2005; 01 Yu (10.1016/j.anucene.2024.110701_b0125) 2015; 32 Zhang (10.1016/j.anucene.2024.110701_b0135) 2013; 21 10.1016/j.anucene.2024.110701_b0025 Liu (10.1016/j.anucene.2024.110701_b0070) 2023; 12 10.1016/j.anucene.2024.110701_b0085 Tay (10.1016/j.anucene.2024.110701_b0105) 2003; 16 10.1016/j.anucene.2024.110701_b0020 10.1016/j.anucene.2024.110701_b0120 Subbaraj (10.1016/j.anucene.2024.110701_b0100) 2014; 19 Ning (10.1016/j.anucene.2024.110701_b0080) 2020; 43 Zeng (10.1016/j.anucene.2024.110701_b0130) 2021; 44 Xue (10.1016/j.anucene.2024.110701_b0115) 2020; 8 Liu (10.1016/j.anucene.2024.110701_b0060) 2023; 12 (2):410 Zhang (10.1016/j.anucene.2024.110701_b0140) 2014; 28 Meland (10.1016/j.anucene.2024.110701_b0075) 2011; 44 |
References_xml | – volume: 39 start-page: 34 year: 2020 end-page: 44 ident: b0045 article-title: (2020) A novel approach for streamflow prediction based on variational mode decomposition (VMD) and deep gated networks publication-title: J. Hydroelectric Power contributor: fullname: Wang – volume: 43 start-page: 36 year: 2015 end-page: 42 ident: b0010 article-title: A comprehensive review of valve fault diagnosis techniques publication-title: Fluid Machinery contributor: fullname: Zhang – volume: 12 (2):410 year: 2023 ident: b0060 article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM publication-title: Electronics contributor: fullname: Tang – volume: 21 start-page: 20 year: 2013 end-page: 24 ident: b0135 article-title: Study on the characteristics of acoustic emission signals of natural gas pipeline valve internal leakage publication-title: J. Beijing Inst. Petrochem. Technol. contributor: fullname: Ji – volume: 33 start-page: 198 year: 2023 end-page: 204 ident: b0015 article-title: Short-term traffic flow prediction based on ISSA-LSTM model publication-title: J. Comput. Technol. Dev. contributor: fullname: Wang – volume: 152 year: 2020 ident: b0095 article-title: Detection and estimation of valve leakage losses in reciprocating compressor using acoustic emission technique publication-title: Measurement contributor: fullname: Saifizul – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: b0115 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. contributor: fullname: Shen – volume: 128 start-page: 527 year: 2018 end-page: 536 ident: b0035 article-title: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring publication-title: Measurement contributor: fullname: Jafari-Marandi – volume: 12 start-page: 410 year: 2023 ident: b0065 article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM publication-title: Electronics contributor: fullname: Zhu – volume: 44 start-page: 171 year: 2021 end-page: 176 ident: b0130 article-title: Fault feature analysis and detection method of electric valve publication-title: Electron. Measurement Technol. contributor: fullname: Zhang – volume: 41 start-page: 4113 year: 2014 end-page: 4122 ident: b0110 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. contributor: fullname: Ball – volume: 8 start-page: 1 year: 2004 end-page: 13 ident: b0040 article-title: Evolutionary programming using mutations based on the Levy probability distribution publication-title: IEEE Trans. Evol. Comput. contributor: fullname: Yao – volume: 01 start-page: 42 year: 2005 end-page: 44 ident: b0145 article-title: Diagnosis method of reciprocating pump valve faults publication-title: Fluid Machinery contributor: fullname: Zhao – volume: 43 start-page: 38 year: 2020 end-page: 44 ident: b0080 article-title: Valve leakage ultrasonic signal identification method based on improved CNN publication-title: J. Beijing Univ. Posts Telecommun. contributor: fullname: Duan – volume: 37 start-page: 1 year: 2023 end-page: 10 ident: b0055 article-title: Multi-parameter prediction of dissolved oxygen in eel pond based on ISSA-LSTM publication-title: Electron Technol. contributor: fullname: Tian – volume: 12 start-page: 4681 year: 2023 ident: b0070 article-title: Noise Reduction Method for the Vibration Signal of Reactor CRDM Based on CEEMDAACN-SK publication-title: Electronics contributor: fullname: Zhu – volume: 44 start-page: 1059 year: 2011 end-page: 1072 ident: b0075 article-title: Spectral analysis of internally leaking shut-down valves publication-title: Measurement contributor: fullname: Hennie – volume: 32 start-page: 1259 year: 2015 end-page: 1264 ident: b0125 article-title: Leakage acoustic emission signal identification method based on EMD and SVM publication-title: J. Comput. Appl. Chem. contributor: fullname: Bi – volume: 19 start-page: 362 year: 2014 end-page: 371 ident: b0100 article-title: Fault detection and diagnosis of pneumatic valve using adaptive neuro-fuzzy inference system approach publication-title: Appl. Soft Comput. contributor: fullname: Kannapiran – volume: 16 start-page: 39 year: 2003 end-page: 43 ident: b0105 article-title: Fault diagnosis based on rough set theory publication-title: Eng. Appl. Artif. Intel. contributor: fullname: Shen – volume: 72–73 start-page: 316 year: 2016 end-page: 327 ident: b0030 article-title: Fault detection and diagnosis of diesel engine valve trains publication-title: Mech. Syst. Sig. Process. contributor: fullname: Bone – volume: 57 start-page: 491 year: 2018 end-page: 498 ident: b0005 article-title: Automated valve fault detection based on acoustic emission parameters and support vector machine publication-title: Alex. Eng. J. contributor: fullname: Hee – volume: 28 start-page: 4441 year: 2014 end-page: 4454 ident: b0140 article-title: Fault diagnosis of rotating machinery based on kernel density estimation and Kullback-Leibler divergence publication-title: J. Mech. Sci. Technol. contributor: fullname: Chen – volume: 19 start-page: 362 year: 2014 ident: 10.1016/j.anucene.2024.110701_b0100 article-title: Fault detection and diagnosis of pneumatic valve using adaptive neuro-fuzzy inference system approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.008 contributor: fullname: Subbaraj – volume: 8 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.anucene.2024.110701_b0040 article-title: Evolutionary programming using mutations based on the Levy probability distribution publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.816583 contributor: fullname: Lee – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.anucene.2024.110701_b0115 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 contributor: fullname: Xue – volume: 16 start-page: 39 issue: 1 year: 2003 ident: 10.1016/j.anucene.2024.110701_b0105 article-title: Fault diagnosis based on rough set theory publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/S0952-1976(03)00022-8 contributor: fullname: Tay – ident: 10.1016/j.anucene.2024.110701_b0025 – volume: 44 start-page: 171 issue: 13 year: 2021 ident: 10.1016/j.anucene.2024.110701_b0130 article-title: Fault feature analysis and detection method of electric valve publication-title: Electron. Measurement Technol. contributor: fullname: Zeng – ident: 10.1016/j.anucene.2024.110701_b0085 – volume: 32 start-page: 1259 issue: 10 year: 2015 ident: 10.1016/j.anucene.2024.110701_b0125 article-title: Leakage acoustic emission signal identification method based on EMD and SVM publication-title: J. Comput. Appl. Chem. contributor: fullname: Yu – volume: 12 start-page: 4681 issue: 22 year: 2023 ident: 10.1016/j.anucene.2024.110701_b0070 article-title: Noise Reduction Method for the Vibration Signal of Reactor CRDM Based on CEEMDAACN-SK publication-title: Electronics doi: 10.3390/electronics12224681 contributor: fullname: Liu – volume: 21 start-page: 20 issue: 01 year: 2013 ident: 10.1016/j.anucene.2024.110701_b0135 article-title: Study on the characteristics of acoustic emission signals of natural gas pipeline valve internal leakage publication-title: J. Beijing Inst. Petrochem. Technol. contributor: fullname: Zhang – ident: 10.1016/j.anucene.2024.110701_b0050 – volume: 37 start-page: 1 year: 2023 ident: 10.1016/j.anucene.2024.110701_b0055 article-title: Multi-parameter prediction of dissolved oxygen in eel pond based on ISSA-LSTM publication-title: Electron Technol. contributor: fullname: Lin – volume: 72–73 start-page: 316 year: 2016 ident: 10.1016/j.anucene.2024.110701_b0030 article-title: Fault detection and diagnosis of diesel engine valve trains publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.10.024 contributor: fullname: Flett – ident: 10.1016/j.anucene.2024.110701_b0090 doi: 10.1109/ICRoM.2016.7886855 – ident: 10.1016/j.anucene.2024.110701_b0020 – volume: 01 start-page: 42 year: 2005 ident: 10.1016/j.anucene.2024.110701_b0145 article-title: Diagnosis method of reciprocating pump valve faults publication-title: Fluid Machinery contributor: fullname: Zhao – volume: 152 year: 2020 ident: 10.1016/j.anucene.2024.110701_b0095 article-title: Detection and estimation of valve leakage losses in reciprocating compressor using acoustic emission technique publication-title: Measurement doi: 10.1016/j.measurement.2019.107315 contributor: fullname: Sim – volume: 12 (2):410 year: 2023 ident: 10.1016/j.anucene.2024.110701_b0060 article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM publication-title: Electronics contributor: fullname: Liu – volume: 39 start-page: 34 issue: 03 year: 2020 ident: 10.1016/j.anucene.2024.110701_b0045 article-title: (2020) A novel approach for streamflow prediction based on variational mode decomposition (VMD) and deep gated networks publication-title: J. Hydroelectric Power contributor: fullname: Li – volume: 33 start-page: 198 issue: 04 year: 2023 ident: 10.1016/j.anucene.2024.110701_b0015 article-title: Short-term traffic flow prediction based on ISSA-LSTM model publication-title: J. Comput. Technol. Dev. contributor: fullname: Chen – volume: 128 start-page: 527 year: 2018 ident: 10.1016/j.anucene.2024.110701_b0035 article-title: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring publication-title: Measurement doi: 10.1016/j.measurement.2018.04.062 contributor: fullname: Jafarian – volume: 43 start-page: 38 issue: 03 year: 2020 ident: 10.1016/j.anucene.2024.110701_b0080 article-title: Valve leakage ultrasonic signal identification method based on improved CNN publication-title: J. Beijing Univ. Posts Telecommun. contributor: fullname: Ning – ident: 10.1016/j.anucene.2024.110701_b0120 – volume: 28 start-page: 4441 issue: 11 year: 2014 ident: 10.1016/j.anucene.2024.110701_b0140 article-title: Fault diagnosis of rotating machinery based on kernel density estimation and Kullback-Leibler divergence publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-014-1012-7 contributor: fullname: Zhang – volume: 12 start-page: 410 issue: 2 year: 2023 ident: 10.1016/j.anucene.2024.110701_b0065 article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM publication-title: Electronics doi: 10.3390/electronics12020410 contributor: fullname: Liu – volume: 43 start-page: 36 issue: 09 year: 2015 ident: 10.1016/j.anucene.2024.110701_b0010 article-title: A comprehensive review of valve fault diagnosis techniques publication-title: Fluid Machinery contributor: fullname: Chen – volume: 44 start-page: 1059 issue: 6 year: 2011 ident: 10.1016/j.anucene.2024.110701_b0075 article-title: Spectral analysis of internally leaking shut-down valves publication-title: Measurement doi: 10.1016/j.measurement.2011.03.004 contributor: fullname: Meland – volume: 57 start-page: 491 issue: 1 year: 2018 ident: 10.1016/j.anucene.2024.110701_b0005 article-title: Automated valve fault detection based on acoustic emission parameters and support vector machine publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.12.010 contributor: fullname: Ali – volume: 41 start-page: 4113 issue: 9 year: 2014 ident: 10.1016/j.anucene.2024.110701_b0110 article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.026 contributor: fullname: Van Tung |
SSID | ssj0012844 |
Score | 2.4157822 |
Snippet | •Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 110701 |
SubjectTerms | Electric Gate Valves Fault Diagnosis ISSA Algorithm MDI Nuclear Power Plant RF Algorithm VMD |
Title | Research on fault diagnosis of electric gate valve in nuclear power plant based on the VMD-MDI-ISSA-RF model |
URI | https://dx.doi.org/10.1016/j.anucene.2024.110701 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76QNCDaFWsj7IHr9vmsXkdS2tplfZgrfQWsskupJQ0tKlHf7uzeWhF8OAxgQ3hy-4332Zn5gN4kBiEuOlI6vCQU2bogrqWdKhmodYPo4BrucfSdGaPF-xpaS1rMKhqYVRaZcn9BafnbF3e6ZVo9tI47s2V2mWqwRjT8sO0OjQxHBk4tZv9yfN49nWYgAxcdJHCzbMa8F3I01upAt8QWQV3igZTOfFOaQ_zK0QdhJ3RGZyWepH0i1c6h5pIWnBy0EWwBUd5Fme4u4B1lUdHNgmRwX6dkahIpYt3ZCNJ4XkTh0T9OyM4x94FiROSqJ7GwZakyjGNpGsEm6joFqnHoEAkb9MhnQ4ndDKf9-nLiOT2OZewGD2-Dsa0tFOgoe46GXVwsyQ0S-g6N5ilRSjFGHcjzmxXD1BGcWF6rtDcwIlYoHz-AtPgQroeruqIIw9dQSPZJOIaiK2FUkamNANuMztknvA0Q5qGZ1uORM3Uhm6FoJ8WXTP8Kp1s5ZeQ-wpyv4C8DW6Fs__j8_vI7H8Pvfn_0Fs4VldFaeEdNLLtXtyjxsh4B-rdD71TzqRP0A3OfQ |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxqgHo6gRn3vwutDH9nUkIAEFDgKGW9Ntd5MSUhoeHv3tzvahGBMPXttu03zdznzb_WY-gEeJSYibjqQODzllhi6oa0mHahZy_TAKuJZ5LA1Hdm_KnmfWrALtshZGySqL2J_H9CxaF0eaBZrNNI6bY8V2mWowxrRsM20P9plqN46TuvHxpfNQ8TfvIYVLZ3X5dxlPc67Ke0OMKbhONJhSxDuFOcyvBLWTdLqncFKwRdLKH-gMKiKpwfFOD8EaHGQaznB9DotSRUeWCZHBdrEhUS6ki9dkKUnueBOHRP05IzjD3gWJE5KojsbBiqTKL42kC4SaqNwWqdsgPSRvww4ddvq0Px636GuXZOY5FzDtPk3aPVqYKdBQd50NdXCpJDRL6Do3mKVFSMQYdyPObFcPkERxYXqu0NzAiVigXP4C0-BCuh5-0xHHKHQJ1WSZiCsgthZKGZnSDLjN7JB5wtMMaRqebTkSGVMdGiWCfpr3zPBLMdncLyD3FeR-Dnkd3BJn_8fL9zGu_z30-v9DH-CwNxkO_EF_9HIDR-pMXmR4C9XNaivukG1s-H02mz4Bp1vPVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+fault+diagnosis+of+electric+gate+valve+in+nuclear+power+plant+based+on+the+VMD-MDI-ISSA-RF+model&rft.jtitle=Annals+of+nuclear+energy&rft.au=Gao%2C+Jia-rong&rft.au=Liu%2C+Yong-kuo&rft.au=Duan%2C+Cheng-jie&rft.au=Ding%2C+Peng&rft.date=2024-11-01&rft.issn=0306-4549&rft.volume=207&rft.spage=110701&rft_id=info:doi/10.1016%2Fj.anucene.2024.110701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_anucene_2024_110701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |