Research on fault diagnosis of electric gate valve in nuclear power plant based on the VMD-MDI-ISSA-RF model

•Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L divergence in feature extraction for better fault signal representation from sensor data.•Improving SSA for optimizing random forest model paramete...

Full description

Saved in:
Bibliographic Details
Published inAnnals of nuclear energy Vol. 207; p. 110701
Main Authors Gao, Jia-rong, Liu, Yong-kuo, Duan, Cheng-jie, Ding, Peng, Song, Ju-qing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L divergence in feature extraction for better fault signal representation from sensor data.•Improving SSA for optimizing random forest model parameters, achieving 96.375% accuracy in electric gate valve fault diagnosis. Electric gate valve (EGV) is an essential equipment within nuclear power plant (NPP). This paper presents an advanced fault diagnosis (FD) approach, leveraging Variational Modal Decomposition (VMD), Mutual Dimensionless Indicator (MDI) and the Random Forest (RF) optimized through Improved Sparrow Search Algorithm (ISSA), aimed at improving the accuracy of fault diagnosis and optimizing the FD model during EGV failure events. To commence, we employ the VMD algorithm for modal decomposition of raw electric gate valve signals. This process yields several Intrinsic Mode Function (IMF) components with diverse frequencies, enabling the capture of the underlying dynamics of the signals and facilitating a more comprehensive analysis of the fault conditions. We subsequently apply the K-L divergence to identify key IMF components that closely resemble the original signals. These selected key IMF components serve as the foundation for extracting dimensional indicators (DI) and mutual dimensionless indicators (MDI) as signal features. Furthermore, the Improved Sparrow Search Algorithm (ISSA) is enlisted to optimize the maximum feature count and the number of decision trees in the Random Forest (RF) algorithm. Ultimately, the optimized RF algorithm is deployed for fault diagnosis. Our paper offers a comparative analysis, pitting the VMD method against Empirical Mode Decomposition (EMD) and Local Mean Decomposition (LMD). Additionally, we compare our proposed fault diagnosis model with traditional RF algorithm and the SSA-RF algorithm. Through rigorous experimentation, our results achieved an average fault diagnosis accuracy of up to 96.375%.
AbstractList •Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L divergence in feature extraction for better fault signal representation from sensor data.•Improving SSA for optimizing random forest model parameters, achieving 96.375% accuracy in electric gate valve fault diagnosis. Electric gate valve (EGV) is an essential equipment within nuclear power plant (NPP). This paper presents an advanced fault diagnosis (FD) approach, leveraging Variational Modal Decomposition (VMD), Mutual Dimensionless Indicator (MDI) and the Random Forest (RF) optimized through Improved Sparrow Search Algorithm (ISSA), aimed at improving the accuracy of fault diagnosis and optimizing the FD model during EGV failure events. To commence, we employ the VMD algorithm for modal decomposition of raw electric gate valve signals. This process yields several Intrinsic Mode Function (IMF) components with diverse frequencies, enabling the capture of the underlying dynamics of the signals and facilitating a more comprehensive analysis of the fault conditions. We subsequently apply the K-L divergence to identify key IMF components that closely resemble the original signals. These selected key IMF components serve as the foundation for extracting dimensional indicators (DI) and mutual dimensionless indicators (MDI) as signal features. Furthermore, the Improved Sparrow Search Algorithm (ISSA) is enlisted to optimize the maximum feature count and the number of decision trees in the Random Forest (RF) algorithm. Ultimately, the optimized RF algorithm is deployed for fault diagnosis. Our paper offers a comparative analysis, pitting the VMD method against Empirical Mode Decomposition (EMD) and Local Mean Decomposition (LMD). Additionally, we compare our proposed fault diagnosis model with traditional RF algorithm and the SSA-RF algorithm. Through rigorous experimentation, our results achieved an average fault diagnosis accuracy of up to 96.375%.
ArticleNumber 110701
Author Gao, Jia-rong
Liu, Yong-kuo
Ding, Peng
Duan, Cheng-jie
Song, Ju-qing
Author_xml – sequence: 1
  givenname: Jia-rong
  surname: Gao
  fullname: Gao, Jia-rong
  organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
– sequence: 2
  givenname: Yong-kuo
  orcidid: 0000-0001-7729-7154
  surname: Liu
  fullname: Liu, Yong-kuo
  email: lyk08@126.com
  organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
– sequence: 3
  givenname: Cheng-jie
  surname: Duan
  fullname: Duan, Cheng-jie
  organization: Lead-Bismuth Fast Reactor Project Department, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen, 518028, China
– sequence: 4
  givenname: Peng
  orcidid: 0009-0001-0401-0113
  surname: Ding
  fullname: Ding, Peng
  organization: Lead-Bismuth Fast Reactor Project Department, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen, 518028, China
– sequence: 5
  givenname: Ju-qing
  surname: Song
  fullname: Song, Ju-qing
  organization: School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, 523808, China
BookMark eNqFkNFOwjAUhhujiYA-gklfoLNn67rtyhAQJYGYgHrbdOsZlJSOrAPj2zsC996cc_V__59vSG5945GQJ-ARcJDPu0j7Y4Ueo5jHIgLgGYcbMoA8S1gMnN-SAU-4ZCIVxT0ZhrDjHOJciAFxKwyo22pLG09rfXQdNVZvfBNsoE1N0WHVtbaiG90hPWl3Qmo97ftcH6OH5gf767TvaKkDmjOm2yL9Xk7Zcjpn8_V6zFYzum8MugdyV2sX8PH6R-Rr9vo5eWeLj7f5ZLxgVT-5Y1ksAXmKAGUsUm4ESFHmphQyB51KKDEpcuS5zozQRSILncQl1nkRp5kpM5mMSHrhVm0TQou1OrR2r9tfBVydlamduipTZ2XqoqzPvVxy2I87WWxVqCz6Co1tew3KNPYfwh82YXfk
Cites_doi 10.1016/j.asoc.2014.02.008
10.1109/TEVC.2003.816583
10.1080/21642583.2019.1708830
10.1016/S0952-1976(03)00022-8
10.3390/electronics12224681
10.1016/j.ymssp.2015.10.024
10.1109/ICRoM.2016.7886855
10.1016/j.measurement.2019.107315
10.1016/j.measurement.2018.04.062
10.1007/s12206-014-1012-7
10.3390/electronics12020410
10.1016/j.measurement.2011.03.004
10.1016/j.aej.2016.12.010
10.1016/j.eswa.2013.12.026
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.anucene.2024.110701
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2100
ExternalDocumentID 10_1016_j_anucene_2024_110701
S0306454924003645
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JM
9JN
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
UHS
WUQ
~G-
AAXKI
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c187t-7261e05e11b2450d4164b8db4681a561be398e08a7d4a9369a32bef89257db763
IEDL.DBID AIKHN
ISSN 0306-4549
IngestDate Thu Sep 26 21:49:50 EDT 2024
Sat Jul 20 16:35:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords MDI
ISSA Algorithm
RF Algorithm
Electric Gate Valves
Fault Diagnosis
Nuclear Power Plant
VMD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187t-7261e05e11b2450d4164b8db4681a561be398e08a7d4a9369a32bef89257db763
ORCID 0000-0001-7729-7154
0009-0001-0401-0113
ParticipantIDs crossref_primary_10_1016_j_anucene_2024_110701
elsevier_sciencedirect_doi_10_1016_j_anucene_2024_110701
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Annals of nuclear energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Li, Zhu (b0065) 2023; 12
Zhao, Feng, Zhao (b0145) 2005; 01
Li, C. An Investigation and Application of Mutual Non-Dimensionalization and Deep Learning for Fault Diagnosis in Petrochemical Units [D]. 2021.
Subbaraj, Kannapiran (b0100) 2014; 19
Zeng, Liu, Zhang (b0130) 2021; 44
Chen, X. Y. Research and application of valve system health status diagnosis technology[D]. 2010.
Liu, Li, Zhu, Nie, Tang (b0060) 2023; 12 (2):410
Yu, Zhang, Bi (b0125) 2015; 32
Lin, Yuan, Tian (b0055) 2023; 37
Lee, Yao (b0040) 2004; 8
Qi, H. F. Valve fault diagnosis in nuclear power plants based on neural network technology[D]. 2012.
Chen, Wang, Zhang (b0010) 2015; 43
Feng, F., Feng, F., Jiang, P., et al. Application of random forest and k-nearest neighbors in the recognition of gearbox states for a certain type of tank[C]. In Proceedings of the 8th National Symposium on Rotor Dynamics, 2008: 159-161.
Liu, Li, Zhu (b0070) 2023; 12
Meland, Henriksen, Hennie (b0075) 2011; 44
Flett, Bone (b0030) 2016; 72–73
Jafarian, Mobin, Jafari-Marandi (b0035) 2018; 128
Tay, Shen (b0105) 2003; 16
Zhang, Li, Ji (b0135) 2013; 21
Chen, Wang (b0015) 2023; 33
Zhang, Liu, Chen (b0140) 2014; 28
Sharifi S, Rezaei S M, Tivay A, et al. Multi-class Fault Detection In Electro-hydraulic Servo Systems Using Support Vector Machines[C]. 4th RSI International Conference on Robotics and Mechatronics (ICROM), 2016: 252-257.
Ning, Han, Duan (b0080) 2020; 43
Xue, Shen (b0115) 2020; 8
Yang, G., Li, R. W., Yan, Z. Z., et al. Application of fuzzy mathematics in valve fault diagnosis[J]. Computer Science, 2007(05), 26-27+43.
Li, Shi, Wang (b0045) 2020; 39
Sim, Ramli, Saifizul (b0095) 2020; 152
Ali, Hui, Hee (b0005) 2018; 57
Van Tung, Althobiani, Ball (b0110) 2014; 41
10.1016/j.anucene.2024.110701_b0050
Lin (10.1016/j.anucene.2024.110701_b0055) 2023; 37
10.1016/j.anucene.2024.110701_b0090
Sim (10.1016/j.anucene.2024.110701_b0095) 2020; 152
Van Tung (10.1016/j.anucene.2024.110701_b0110) 2014; 41
Flett (10.1016/j.anucene.2024.110701_b0030) 2016; 72–73
Chen (10.1016/j.anucene.2024.110701_b0015) 2023; 33
Li (10.1016/j.anucene.2024.110701_b0045) 2020; 39
Liu (10.1016/j.anucene.2024.110701_b0065) 2023; 12
Jafarian (10.1016/j.anucene.2024.110701_b0035) 2018; 128
Lee (10.1016/j.anucene.2024.110701_b0040) 2004; 8
Ali (10.1016/j.anucene.2024.110701_b0005) 2018; 57
Chen (10.1016/j.anucene.2024.110701_b0010) 2015; 43
Zhao (10.1016/j.anucene.2024.110701_b0145) 2005; 01
Yu (10.1016/j.anucene.2024.110701_b0125) 2015; 32
Zhang (10.1016/j.anucene.2024.110701_b0135) 2013; 21
10.1016/j.anucene.2024.110701_b0025
Liu (10.1016/j.anucene.2024.110701_b0070) 2023; 12
10.1016/j.anucene.2024.110701_b0085
Tay (10.1016/j.anucene.2024.110701_b0105) 2003; 16
10.1016/j.anucene.2024.110701_b0020
10.1016/j.anucene.2024.110701_b0120
Subbaraj (10.1016/j.anucene.2024.110701_b0100) 2014; 19
Ning (10.1016/j.anucene.2024.110701_b0080) 2020; 43
Zeng (10.1016/j.anucene.2024.110701_b0130) 2021; 44
Xue (10.1016/j.anucene.2024.110701_b0115) 2020; 8
Liu (10.1016/j.anucene.2024.110701_b0060) 2023; 12 (2):410
Zhang (10.1016/j.anucene.2024.110701_b0140) 2014; 28
Meland (10.1016/j.anucene.2024.110701_b0075) 2011; 44
References_xml – volume: 39
  start-page: 34
  year: 2020
  end-page: 44
  ident: b0045
  article-title: (2020) A novel approach for streamflow prediction based on variational mode decomposition (VMD) and deep gated networks
  publication-title: J. Hydroelectric Power
  contributor:
    fullname: Wang
– volume: 43
  start-page: 36
  year: 2015
  end-page: 42
  ident: b0010
  article-title: A comprehensive review of valve fault diagnosis techniques
  publication-title: Fluid Machinery
  contributor:
    fullname: Zhang
– volume: 12 (2):410
  year: 2023
  ident: b0060
  article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM
  publication-title: Electronics
  contributor:
    fullname: Tang
– volume: 21
  start-page: 20
  year: 2013
  end-page: 24
  ident: b0135
  article-title: Study on the characteristics of acoustic emission signals of natural gas pipeline valve internal leakage
  publication-title: J. Beijing Inst. Petrochem. Technol.
  contributor:
    fullname: Ji
– volume: 33
  start-page: 198
  year: 2023
  end-page: 204
  ident: b0015
  article-title: Short-term traffic flow prediction based on ISSA-LSTM model
  publication-title: J. Comput. Technol. Dev.
  contributor:
    fullname: Wang
– volume: 152
  year: 2020
  ident: b0095
  article-title: Detection and estimation of valve leakage losses in reciprocating compressor using acoustic emission technique
  publication-title: Measurement
  contributor:
    fullname: Saifizul
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0115
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  contributor:
    fullname: Shen
– volume: 128
  start-page: 527
  year: 2018
  end-page: 536
  ident: b0035
  article-title: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring
  publication-title: Measurement
  contributor:
    fullname: Jafari-Marandi
– volume: 12
  start-page: 410
  year: 2023
  ident: b0065
  article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM
  publication-title: Electronics
  contributor:
    fullname: Zhu
– volume: 44
  start-page: 171
  year: 2021
  end-page: 176
  ident: b0130
  article-title: Fault feature analysis and detection method of electric valve
  publication-title: Electron. Measurement Technol.
  contributor:
    fullname: Zhang
– volume: 41
  start-page: 4113
  year: 2014
  end-page: 4122
  ident: b0110
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Ball
– volume: 8
  start-page: 1
  year: 2004
  end-page: 13
  ident: b0040
  article-title: Evolutionary programming using mutations based on the Levy probability distribution
  publication-title: IEEE Trans. Evol. Comput.
  contributor:
    fullname: Yao
– volume: 01
  start-page: 42
  year: 2005
  end-page: 44
  ident: b0145
  article-title: Diagnosis method of reciprocating pump valve faults
  publication-title: Fluid Machinery
  contributor:
    fullname: Zhao
– volume: 43
  start-page: 38
  year: 2020
  end-page: 44
  ident: b0080
  article-title: Valve leakage ultrasonic signal identification method based on improved CNN
  publication-title: J. Beijing Univ. Posts Telecommun.
  contributor:
    fullname: Duan
– volume: 37
  start-page: 1
  year: 2023
  end-page: 10
  ident: b0055
  article-title: Multi-parameter prediction of dissolved oxygen in eel pond based on ISSA-LSTM
  publication-title: Electron Technol.
  contributor:
    fullname: Tian
– volume: 12
  start-page: 4681
  year: 2023
  ident: b0070
  article-title: Noise Reduction Method for the Vibration Signal of Reactor CRDM Based on CEEMDAACN-SK
  publication-title: Electronics
  contributor:
    fullname: Zhu
– volume: 44
  start-page: 1059
  year: 2011
  end-page: 1072
  ident: b0075
  article-title: Spectral analysis of internally leaking shut-down valves
  publication-title: Measurement
  contributor:
    fullname: Hennie
– volume: 32
  start-page: 1259
  year: 2015
  end-page: 1264
  ident: b0125
  article-title: Leakage acoustic emission signal identification method based on EMD and SVM
  publication-title: J. Comput. Appl. Chem.
  contributor:
    fullname: Bi
– volume: 19
  start-page: 362
  year: 2014
  end-page: 371
  ident: b0100
  article-title: Fault detection and diagnosis of pneumatic valve using adaptive neuro-fuzzy inference system approach
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: Kannapiran
– volume: 16
  start-page: 39
  year: 2003
  end-page: 43
  ident: b0105
  article-title: Fault diagnosis based on rough set theory
  publication-title: Eng. Appl. Artif. Intel.
  contributor:
    fullname: Shen
– volume: 72–73
  start-page: 316
  year: 2016
  end-page: 327
  ident: b0030
  article-title: Fault detection and diagnosis of diesel engine valve trains
  publication-title: Mech. Syst. Sig. Process.
  contributor:
    fullname: Bone
– volume: 57
  start-page: 491
  year: 2018
  end-page: 498
  ident: b0005
  article-title: Automated valve fault detection based on acoustic emission parameters and support vector machine
  publication-title: Alex. Eng. J.
  contributor:
    fullname: Hee
– volume: 28
  start-page: 4441
  year: 2014
  end-page: 4454
  ident: b0140
  article-title: Fault diagnosis of rotating machinery based on kernel density estimation and Kullback-Leibler divergence
  publication-title: J. Mech. Sci. Technol.
  contributor:
    fullname: Chen
– volume: 19
  start-page: 362
  year: 2014
  ident: 10.1016/j.anucene.2024.110701_b0100
  article-title: Fault detection and diagnosis of pneumatic valve using adaptive neuro-fuzzy inference system approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.008
  contributor:
    fullname: Subbaraj
– volume: 8
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.anucene.2024.110701_b0040
  article-title: Evolutionary programming using mutations based on the Levy probability distribution
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.816583
  contributor:
    fullname: Lee
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.anucene.2024.110701_b0115
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
  contributor:
    fullname: Xue
– volume: 16
  start-page: 39
  issue: 1
  year: 2003
  ident: 10.1016/j.anucene.2024.110701_b0105
  article-title: Fault diagnosis based on rough set theory
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/S0952-1976(03)00022-8
  contributor:
    fullname: Tay
– ident: 10.1016/j.anucene.2024.110701_b0025
– volume: 44
  start-page: 171
  issue: 13
  year: 2021
  ident: 10.1016/j.anucene.2024.110701_b0130
  article-title: Fault feature analysis and detection method of electric valve
  publication-title: Electron. Measurement Technol.
  contributor:
    fullname: Zeng
– ident: 10.1016/j.anucene.2024.110701_b0085
– volume: 32
  start-page: 1259
  issue: 10
  year: 2015
  ident: 10.1016/j.anucene.2024.110701_b0125
  article-title: Leakage acoustic emission signal identification method based on EMD and SVM
  publication-title: J. Comput. Appl. Chem.
  contributor:
    fullname: Yu
– volume: 12
  start-page: 4681
  issue: 22
  year: 2023
  ident: 10.1016/j.anucene.2024.110701_b0070
  article-title: Noise Reduction Method for the Vibration Signal of Reactor CRDM Based on CEEMDAACN-SK
  publication-title: Electronics
  doi: 10.3390/electronics12224681
  contributor:
    fullname: Liu
– volume: 21
  start-page: 20
  issue: 01
  year: 2013
  ident: 10.1016/j.anucene.2024.110701_b0135
  article-title: Study on the characteristics of acoustic emission signals of natural gas pipeline valve internal leakage
  publication-title: J. Beijing Inst. Petrochem. Technol.
  contributor:
    fullname: Zhang
– ident: 10.1016/j.anucene.2024.110701_b0050
– volume: 37
  start-page: 1
  year: 2023
  ident: 10.1016/j.anucene.2024.110701_b0055
  article-title: Multi-parameter prediction of dissolved oxygen in eel pond based on ISSA-LSTM
  publication-title: Electron Technol.
  contributor:
    fullname: Lin
– volume: 72–73
  start-page: 316
  year: 2016
  ident: 10.1016/j.anucene.2024.110701_b0030
  article-title: Fault detection and diagnosis of diesel engine valve trains
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.10.024
  contributor:
    fullname: Flett
– ident: 10.1016/j.anucene.2024.110701_b0090
  doi: 10.1109/ICRoM.2016.7886855
– ident: 10.1016/j.anucene.2024.110701_b0020
– volume: 01
  start-page: 42
  year: 2005
  ident: 10.1016/j.anucene.2024.110701_b0145
  article-title: Diagnosis method of reciprocating pump valve faults
  publication-title: Fluid Machinery
  contributor:
    fullname: Zhao
– volume: 152
  year: 2020
  ident: 10.1016/j.anucene.2024.110701_b0095
  article-title: Detection and estimation of valve leakage losses in reciprocating compressor using acoustic emission technique
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107315
  contributor:
    fullname: Sim
– volume: 12 (2):410
  year: 2023
  ident: 10.1016/j.anucene.2024.110701_b0060
  article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM
  publication-title: Electronics
  contributor:
    fullname: Liu
– volume: 39
  start-page: 34
  issue: 03
  year: 2020
  ident: 10.1016/j.anucene.2024.110701_b0045
  article-title: (2020) A novel approach for streamflow prediction based on variational mode decomposition (VMD) and deep gated networks
  publication-title: J. Hydroelectric Power
  contributor:
    fullname: Li
– volume: 33
  start-page: 198
  issue: 04
  year: 2023
  ident: 10.1016/j.anucene.2024.110701_b0015
  article-title: Short-term traffic flow prediction based on ISSA-LSTM model
  publication-title: J. Comput. Technol. Dev.
  contributor:
    fullname: Chen
– volume: 128
  start-page: 527
  year: 2018
  ident: 10.1016/j.anucene.2024.110701_b0035
  article-title: Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.062
  contributor:
    fullname: Jafarian
– volume: 43
  start-page: 38
  issue: 03
  year: 2020
  ident: 10.1016/j.anucene.2024.110701_b0080
  article-title: Valve leakage ultrasonic signal identification method based on improved CNN
  publication-title: J. Beijing Univ. Posts Telecommun.
  contributor:
    fullname: Ning
– ident: 10.1016/j.anucene.2024.110701_b0120
– volume: 28
  start-page: 4441
  issue: 11
  year: 2014
  ident: 10.1016/j.anucene.2024.110701_b0140
  article-title: Fault diagnosis of rotating machinery based on kernel density estimation and Kullback-Leibler divergence
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-014-1012-7
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 410
  issue: 2
  year: 2023
  ident: 10.1016/j.anucene.2024.110701_b0065
  article-title: Health State Identification Method of Nuclear Power Main Circulating Pump Based on EEMD and OQGA-SVM
  publication-title: Electronics
  doi: 10.3390/electronics12020410
  contributor:
    fullname: Liu
– volume: 43
  start-page: 36
  issue: 09
  year: 2015
  ident: 10.1016/j.anucene.2024.110701_b0010
  article-title: A comprehensive review of valve fault diagnosis techniques
  publication-title: Fluid Machinery
  contributor:
    fullname: Chen
– volume: 44
  start-page: 1059
  issue: 6
  year: 2011
  ident: 10.1016/j.anucene.2024.110701_b0075
  article-title: Spectral analysis of internally leaking shut-down valves
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.03.004
  contributor:
    fullname: Meland
– volume: 57
  start-page: 491
  issue: 1
  year: 2018
  ident: 10.1016/j.anucene.2024.110701_b0005
  article-title: Automated valve fault detection based on acoustic emission parameters and support vector machine
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.12.010
  contributor:
    fullname: Ali
– volume: 41
  start-page: 4113
  issue: 9
  year: 2014
  ident: 10.1016/j.anucene.2024.110701_b0110
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.026
  contributor:
    fullname: Van Tung
SSID ssj0012844
Score 2.4157822
Snippet •Introducing the Gaussian-Cauchy hybrid mutation into SSA to enhance optimization, shown effective in comparisons with SSA.•Using MDI indicators and K-L...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 110701
SubjectTerms Electric Gate Valves
Fault Diagnosis
ISSA Algorithm
MDI
Nuclear Power Plant
RF Algorithm
VMD
Title Research on fault diagnosis of electric gate valve in nuclear power plant based on the VMD-MDI-ISSA-RF model
URI https://dx.doi.org/10.1016/j.anucene.2024.110701
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76QNCDaFWsj7IHr9vmsXkdS2tplfZgrfQWsskupJQ0tKlHf7uzeWhF8OAxgQ3hy-4332Zn5gN4kBiEuOlI6vCQU2bogrqWdKhmodYPo4BrucfSdGaPF-xpaS1rMKhqYVRaZcn9BafnbF3e6ZVo9tI47s2V2mWqwRjT8sO0OjQxHBk4tZv9yfN49nWYgAxcdJHCzbMa8F3I01upAt8QWQV3igZTOfFOaQ_zK0QdhJ3RGZyWepH0i1c6h5pIWnBy0EWwBUd5Fme4u4B1lUdHNgmRwX6dkahIpYt3ZCNJ4XkTh0T9OyM4x94FiROSqJ7GwZakyjGNpGsEm6joFqnHoEAkb9MhnQ4ndDKf9-nLiOT2OZewGD2-Dsa0tFOgoe46GXVwsyQ0S-g6N5ilRSjFGHcjzmxXD1BGcWF6rtDcwIlYoHz-AtPgQroeruqIIw9dQSPZJOIaiK2FUkamNANuMztknvA0Q5qGZ1uORM3Uhm6FoJ8WXTP8Kp1s5ZeQ-wpyv4C8DW6Fs__j8_vI7H8Pvfn_0Fs4VldFaeEdNLLtXtyjxsh4B-rdD71TzqRP0A3OfQ
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxqgHo6gRn3vwutDH9nUkIAEFDgKGW9Ntd5MSUhoeHv3tzvahGBMPXttu03zdznzb_WY-gEeJSYibjqQODzllhi6oa0mHahZy_TAKuJZ5LA1Hdm_KnmfWrALtshZGySqL2J_H9CxaF0eaBZrNNI6bY8V2mWowxrRsM20P9plqN46TuvHxpfNQ8TfvIYVLZ3X5dxlPc67Ke0OMKbhONJhSxDuFOcyvBLWTdLqncFKwRdLKH-gMKiKpwfFOD8EaHGQaznB9DotSRUeWCZHBdrEhUS6ki9dkKUnueBOHRP05IzjD3gWJE5KojsbBiqTKL42kC4SaqNwWqdsgPSRvww4ddvq0Px636GuXZOY5FzDtPk3aPVqYKdBQd50NdXCpJDRL6Do3mKVFSMQYdyPObFcPkERxYXqu0NzAiVigXP4C0-BCuh5-0xHHKHQJ1WSZiCsgthZKGZnSDLjN7JB5wtMMaRqebTkSGVMdGiWCfpr3zPBLMdncLyD3FeR-Dnkd3BJn_8fL9zGu_z30-v9DH-CwNxkO_EF_9HIDR-pMXmR4C9XNaivukG1s-H02mz4Bp1vPVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+fault+diagnosis+of+electric+gate+valve+in+nuclear+power+plant+based+on+the+VMD-MDI-ISSA-RF+model&rft.jtitle=Annals+of+nuclear+energy&rft.au=Gao%2C+Jia-rong&rft.au=Liu%2C+Yong-kuo&rft.au=Duan%2C+Cheng-jie&rft.au=Ding%2C+Peng&rft.date=2024-11-01&rft.issn=0306-4549&rft.volume=207&rft.spage=110701&rft_id=info:doi/10.1016%2Fj.anucene.2024.110701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_anucene_2024_110701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon