Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken

1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was...

Full description

Saved in:
Bibliographic Details
Published inBritish poultry science pp. 1 - 13
Main Authors Deng, C, Li, M, Wang, T, Duan, W, Guo, A, Ma, G, Yang, F, Dai, F, Li, Q
Format Journal Article
LanguageEnglish
Published England 26.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic ( ). The sequence diversity statistic ( ). RNA-seq was performed on the ovarian tissues of NXC (  = 6) and Lohmann laying hens (  = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
AbstractList 1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic ( ). The sequence diversity statistic ( ). RNA-seq was performed on the ovarian tissues of NXC (  = 6) and Lohmann laying hens (  = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
Author Li, M
Ma, G
Dai, F
Guo, A
Deng, C
Wang, T
Duan, W
Yang, F
Li, Q
Author_xml – sequence: 1
  givenname: C
  surname: Deng
  fullname: Deng, C
  organization: College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
– sequence: 2
  givenname: M
  surname: Li
  fullname: Li, M
  organization: School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, China
– sequence: 3
  givenname: T
  surname: Wang
  fullname: Wang, T
  organization: School of Pharmacy, Chengdu University, Chengdu, China
– sequence: 4
  givenname: W
  surname: Duan
  fullname: Duan, W
  organization: College of Veterinary Medicine, China Agricultural University, Beijing, China
– sequence: 5
  givenname: A
  surname: Guo
  fullname: Guo, A
  organization: College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
– sequence: 6
  givenname: G
  surname: Ma
  fullname: Ma, G
  organization: Agricultural and Rural Bureau of Gejiu County, Honghe, China
– sequence: 7
  givenname: F
  surname: Yang
  fullname: Yang, F
  organization: Agricultural and Rural Bureau of Gejiu County, Honghe, China
– sequence: 8
  givenname: F
  surname: Dai
  fullname: Dai, F
  organization: College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
– sequence: 9
  givenname: Q
  surname: Li
  fullname: Li, Q
  organization: Kunming Xianghao Technology Co. Ltd., Kunming, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38922310$$D View this record in MEDLINE/PubMed
BookMark eNo9kUtPwzAQhC0EgvL4CSAfuaTY3tpxjgjxkhBc4BwZe5MaWqfYjkTv_HCStnBaafXN7GrmmOyHLiAh55xNOdPsijFWcqX0VDAxmwpQpRB6j0z4TKmCl1W1TyYjU4zQETlO6WMj0fKQHIGuhADOJuTnMWRso8k-tLTF0C29TdQER3M0IdnoV3m7yx31DkP2zZraAfDOZBwlmGjTRTr37bwwi-xz75AaZ1Z5cO3Cxgzblq5i53q7WflAn_23p3bu7SeGU3LQmEXCs908IW93t683D8XTy_3jzfVTYbkucwFWADrhGGvAGitBSzcDybUyZWmdtk3DJZdOKVZBIy3nonRVBdZJQIB3OCGXW9_hla8eU66XPllcLEzArk81sCHESsGMD6jcojZ2KUVs6lX0SxPXNWf1WED9V0A9FlDvChh0F7sT_fsS3b_qL3H4BaY3hNY
Cites_doi 10.1016/j.biopha.2020.110678
10.3389/fgene.2023.1284554
10.1093/bioinformatics/btu170
10.1186/s12711-016-0239-4
10.1111/nyas.14486
10.1093/gigascience/giab008
10.1016/j.psj.2023.102971
10.1111/jgh.12033
10.3389/fimmu.2023.1188940
10.1371/journal.pone.0261697
10.1016/s0188-4409(01)00331-9
10.3390/genes14061198
10.1186/s12864-019-5622-4
10.1038/nprot.2016.095
10.1242/dev.127.12.2695
10.1016/j.ygeno.2022.110515
10.3390/ani9080518
10.1186/s12864-021-08280-z
10.1002/cbin.12011
10.1111/age.13011
10.1007/s00335-015-9607-6
10.1155/2020/9602016
10.1534/g3.120.401701
10.1152/japplphysiol.00025.2020
10.1155/2020/3436581
10.1186/s12864-020-06900-8
10.1186/s13059-014-0550-8
10.1186/s12864-021-08213-w
10.1167/iovs.08-2751
10.3390/ani10081297
10.1186/s12864-023-09564-2
10.1080/23802359.2019.1700837
10.3389/fvets.2022.911685
10.1016/j.neulet.2019.02.003
10.1016/j.isci.2020.101644
10.2527/jas2017.1663
10.3389/fgene.2018.00737
10.1053/j.gastro.2022.11.034
10.1007/bf01553489
10.1016/j.jpi.2022.100130
10.1128/jvi.00535-11
10.1111/age.12768
10.1007/978-981-13-8023-5_51
10.1016/j.jare.2022.07.005
10.1530/joe-22-0255
10.3382/ps/pex374
10.1080/00071668.2020.1792832
10.1016/j.psj.2020.08.001
10.1016/j.anireprosci.2019.106114
10.1007/s13205-018-1504-8
10.3389/fgene.2021.622751
10.1093/g3journal/jkad237
10.3390/ijms22168911
10.1093/gigascience/gix026
10.7717/peerj.3891
10.1093/annonc/mdz384
10.1186/s12863-021-00971-6
10.1016/j.rvsc.2020.05.007
10.1038/s41598-023-34955-6
10.1016/j.psj.2020.10.005
10.1080/00071668.2021.2003752
10.3390/genes14030640
10.1186/s40104-021-00608-9
10.3389/fgene.2020.610605
10.1016/j.theriogenology.2021.09.008
10.1038/nrneph.2017.13
10.3389/fgene.2022.971464
10.1016/j.mod.2008.11.006
10.1016/j.gene.2020.144511
10.1038/s41422-020-0349-y
10.1371/journal.pgen.1007602
10.1007/s13205-019-1710-z
10.3389/fvets.2022.1034211
10.21037/jgo-23-147
10.1007/s13258-020-00988-8
10.1073/pnas.76.10.5269
10.3389/fgene.2022.1034094
10.1371/journal.pone.0127301
10.1038/s41598-019-44382-1
10.1016/j.theriogenology.2019.07.025
10.1016/j.ygcen.2012.04.016
10.1038/s41598-017-18389-5
10.1371/journal.pgen.1007989
10.3390/genes13112066
10.1177/0300060519862069
10.3390/genes12111767
10.3389/fphys.2022.954399
10.1155/2022/5749382
10.1016/j.psj.2021.101440
10.1186/s12864-022-08494-9
10.1111/j.1558-5646.1984.tb05657.x
10.1038/cr.2016.44
10.1002/vms3.575
10.1093/molbev/msab156
10.1093/bioinformatics/btac137
10.1038/s41437-018-0092-z
10.1016/j.coi.2015.12.002
10.1016/j.ijbiomac.2023.124326
10.1080/00071668.2018.1507018
10.1016/j.jare.2023.02.016
10.1016/j.ygeno.2022.110485
10.2141/jpsa.0180064
10.1073/pnas.1816107116
10.1590/1678-4685-gmb-2015-0206
10.1016/j.theriogenology.2023.10.024
10.1371/journal.pgen.1002516
10.1186/s12864-020-6456-9
10.1038/73163
10.1186/s12859-015-0848-x
10.1016/j.psj.2023.103241
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1080/00071668.2024.2367228
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1466-1799
EndPage 13
ExternalDocumentID 10_1080_00071668_2024_2367228
38922310
Genre Journal Article
Review
GroupedDBID ---
.7F
.7I
.QJ
0BK
0R~
23N
2DF
30N
36B
4.4
53G
5GY
5RE
5VS
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CQ1
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NPM
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~KM
~S~
3YN
AAYXX
ABXUL
AFWLO
CITATION
7X8
ID FETCH-LOGICAL-c187t-3c23ed2d00f3cac5385d435186a77cd8cff1515d66093f5c1127d993cd53e33b3
ISSN 0007-1668
1466-1799
IngestDate Sat Oct 26 04:51:08 EDT 2024
Fri Aug 23 04:54:10 EDT 2024
Sat Nov 02 12:23:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Nixi chicken
adaptation
candidate gene
transcriptome sequencing
genome resequencing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c187t-3c23ed2d00f3cac5385d435186a77cd8cff1515d66093f5c1127d993cd53e33b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 38922310
PQID 3072296341
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3072296341
crossref_primary_10_1080_00071668_2024_2367228
pubmed_primary_38922310
PublicationCentury 2000
PublicationDate 2024-Jun-26
PublicationDateYYYYMMDD 2024-06-26
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-Jun-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle British poultry science
PublicationTitleAlternate Br Poult Sci
PublicationYear 2024
References e_1_3_4_3_1
e_1_3_4_110_1
e_1_3_4_61_1
e_1_3_4_84_1
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
Saghizadeh M. (e_1_3_4_64_1) 2011; 17
e_1_3_4_102_1
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_106_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_85_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_66_1
e_1_3_4_47_1
e_1_3_4_89_1
e_1_3_4_101_1
e_1_3_4_73_1
e_1_3_4_105_1
e_1_3_4_96_1
e_1_3_4_31_1
e_1_3_4_109_1
e_1_3_4_50_1
e_1_3_4_92_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_112_1
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
e_1_3_4_100_1
e_1_3_4_104_1
e_1_3_4_74_1
e_1_3_4_97_1
e_1_3_4_108_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_13_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_78_1
e_1_3_4_36_1
e_1_3_4_4_1
e_1_3_4_111_1
e_1_3_4_83_1
e_1_3_4_8_1
e_1_3_4_41_1
e_1_3_4_60_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_49_1
e_1_3_4_87_1
e_1_3_4_26_1
e_1_3_4_68_1
e_1_3_4_103_1
e_1_3_4_94_1
e_1_3_4_75_1
e_1_3_4_107_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_71_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_9_1
  doi: 10.1016/j.biopha.2020.110678
– ident: e_1_3_4_31_1
  doi: 10.3389/fgene.2023.1284554
– ident: e_1_3_4_3_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_3_4_18_1
  doi: 10.1186/s12711-016-0239-4
– ident: e_1_3_4_33_1
  doi: 10.1111/nyas.14486
– ident: e_1_3_4_59_1
  doi: 10.1093/gigascience/giab008
– ident: e_1_3_4_108_1
  doi: 10.1016/j.psj.2023.102971
– ident: e_1_3_4_94_1
  doi: 10.1111/jgh.12033
– ident: e_1_3_4_110_1
  doi: 10.3389/fimmu.2023.1188940
– ident: e_1_3_4_92_1
  doi: 10.1371/journal.pone.0261697
– ident: e_1_3_4_34_1
  doi: 10.1016/s0188-4409(01)00331-9
– ident: e_1_3_4_90_1
  doi: 10.3390/genes14061198
– ident: e_1_3_4_38_1
  doi: 10.1186/s12864-019-5622-4
– ident: e_1_3_4_58_1
  doi: 10.1038/nprot.2016.095
– ident: e_1_3_4_84_1
  doi: 10.1242/dev.127.12.2695
– ident: e_1_3_4_101_1
  doi: 10.1016/j.ygeno.2022.110515
– ident: e_1_3_4_89_1
  doi: 10.3390/ani9080518
– ident: e_1_3_4_99_1
  doi: 10.1186/s12864-021-08280-z
– ident: e_1_3_4_10_1
  doi: 10.1002/cbin.12011
– ident: e_1_3_4_95_1
  doi: 10.1111/age.13011
– ident: e_1_3_4_61_1
  doi: 10.1007/s00335-015-9607-6
– ident: e_1_3_4_112_1
  doi: 10.1155/2020/9602016
– ident: e_1_3_4_111_1
  doi: 10.1534/g3.120.401701
– ident: e_1_3_4_51_1
  doi: 10.1152/japplphysiol.00025.2020
– ident: e_1_3_4_96_1
  doi: 10.1155/2020/3436581
– ident: e_1_3_4_39_1
  doi: 10.1186/s12864-020-06900-8
– ident: e_1_3_4_49_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_4_71_1
  doi: 10.1186/s12864-021-08213-w
– ident: e_1_3_4_63_1
  doi: 10.1167/iovs.08-2751
– ident: e_1_3_4_66_1
  doi: 10.3390/ani10081297
– ident: e_1_3_4_54_1
  doi: 10.1186/s12864-023-09564-2
– ident: e_1_3_4_42_1
  doi: 10.1080/23802359.2019.1700837
– ident: e_1_3_4_5_1
  doi: 10.3389/fvets.2022.911685
– ident: e_1_3_4_11_1
  doi: 10.1016/j.neulet.2019.02.003
– ident: e_1_3_4_75_1
  doi: 10.1016/j.isci.2020.101644
– ident: e_1_3_4_29_1
  doi: 10.2527/jas2017.1663
– ident: e_1_3_4_76_1
  doi: 10.3389/fgene.2018.00737
– ident: e_1_3_4_78_1
  doi: 10.1053/j.gastro.2022.11.034
– ident: e_1_3_4_13_1
  doi: 10.1007/bf01553489
– ident: e_1_3_4_62_1
  doi: 10.1016/j.jpi.2022.100130
– ident: e_1_3_4_65_1
  doi: 10.1128/jvi.00535-11
– ident: e_1_3_4_98_1
  doi: 10.1111/age.12768
– ident: e_1_3_4_20_1
  doi: 10.1007/978-981-13-8023-5_51
– ident: e_1_3_4_68_1
  doi: 10.1016/j.jare.2022.07.005
– ident: e_1_3_4_57_1
  doi: 10.1530/joe-22-0255
– ident: e_1_3_4_70_1
  doi: 10.3382/ps/pex374
– ident: e_1_3_4_81_1
  doi: 10.1080/00071668.2020.1792832
– ident: e_1_3_4_21_1
  doi: 10.1016/j.psj.2020.08.001
– ident: e_1_3_4_104_1
  doi: 10.1016/j.anireprosci.2019.106114
– ident: e_1_3_4_41_1
  doi: 10.1007/s13205-018-1504-8
– ident: e_1_3_4_7_1
  doi: 10.3389/fgene.2021.622751
– ident: e_1_3_4_35_1
  doi: 10.1093/g3journal/jkad237
– ident: e_1_3_4_87_1
  doi: 10.3390/ijms22168911
– ident: e_1_3_4_37_1
  doi: 10.1093/gigascience/gix026
– ident: e_1_3_4_106_1
  doi: 10.7717/peerj.3891
– ident: e_1_3_4_69_1
  doi: 10.1093/annonc/mdz384
– ident: e_1_3_4_82_1
  doi: 10.1186/s12863-021-00971-6
– ident: e_1_3_4_27_1
  doi: 10.1016/j.rvsc.2020.05.007
– ident: e_1_3_4_46_1
  doi: 10.1038/s41598-023-34955-6
– ident: e_1_3_4_22_1
  doi: 10.1016/j.psj.2020.10.005
– ident: e_1_3_4_86_1
  doi: 10.1080/00071668.2021.2003752
– ident: e_1_3_4_2_1
  doi: 10.3390/genes14030640
– ident: e_1_3_4_47_1
  doi: 10.1186/s40104-021-00608-9
– ident: e_1_3_4_6_1
  doi: 10.3389/fgene.2020.610605
– ident: e_1_3_4_17_1
  doi: 10.1016/j.theriogenology.2021.09.008
– ident: e_1_3_4_4_1
  doi: 10.1038/nrneph.2017.13
– ident: e_1_3_4_24_1
  doi: 10.3389/fgene.2022.971464
– ident: e_1_3_4_53_1
  doi: 10.1016/j.mod.2008.11.006
– ident: e_1_3_4_19_1
  doi: 10.1016/j.gene.2020.144511
– ident: e_1_3_4_79_1
  doi: 10.1038/s41422-020-0349-y
– ident: e_1_3_4_73_1
  doi: 10.1371/journal.pgen.1007602
– volume: 17
  start-page: 2011
  year: 2011
  ident: e_1_3_4_64_1
  article-title: ZBED4, a Cone and Müller Cell Protein in Human Retina, Has a Different Cellular Expression in Mouse
  publication-title: Molecular Vision
  contributor:
    fullname: Saghizadeh M.
– ident: e_1_3_4_93_1
  doi: 10.1007/s13205-019-1710-z
– ident: e_1_3_4_43_1
  doi: 10.3389/fvets.2022.1034211
– ident: e_1_3_4_91_1
  doi: 10.21037/jgo-23-147
– ident: e_1_3_4_30_1
  doi: 10.1007/s13258-020-00988-8
– ident: e_1_3_4_55_1
  doi: 10.1073/pnas.76.10.5269
– ident: e_1_3_4_40_1
  doi: 10.3389/fgene.2022.1034094
– ident: e_1_3_4_100_1
  doi: 10.1371/journal.pone.0127301
– ident: e_1_3_4_45_1
  doi: 10.1038/s41598-019-44382-1
– ident: e_1_3_4_44_1
  doi: 10.1016/j.theriogenology.2019.07.025
– ident: e_1_3_4_56_1
  doi: 10.1016/j.ygcen.2012.04.016
– ident: e_1_3_4_77_1
  doi: 10.1038/s41598-017-18389-5
– ident: e_1_3_4_60_1
  doi: 10.1371/journal.pgen.1007989
– ident: e_1_3_4_88_1
  doi: 10.3390/genes13112066
– ident: e_1_3_4_48_1
  doi: 10.1177/0300060519862069
– ident: e_1_3_4_105_1
  doi: 10.3390/genes12111767
– ident: e_1_3_4_52_1
  doi: 10.3389/fphys.2022.954399
– ident: e_1_3_4_14_1
  doi: 10.1155/2022/5749382
– ident: e_1_3_4_32_1
  doi: 10.1016/j.psj.2021.101440
– ident: e_1_3_4_26_1
  doi: 10.1186/s12864-022-08494-9
– ident: e_1_3_4_85_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_3_4_80_1
  doi: 10.1038/cr.2016.44
– ident: e_1_3_4_102_1
  doi: 10.1002/vms3.575
– ident: e_1_3_4_15_1
  doi: 10.1093/molbev/msab156
– ident: e_1_3_4_97_1
  doi: 10.1093/bioinformatics/btac137
– ident: e_1_3_4_12_1
  doi: 10.1038/s41437-018-0092-z
– ident: e_1_3_4_8_1
  doi: 10.1016/j.coi.2015.12.002
– ident: e_1_3_4_50_1
  doi: 10.1016/j.ijbiomac.2023.124326
– ident: e_1_3_4_103_1
  doi: 10.1080/00071668.2018.1507018
– ident: e_1_3_4_74_1
  doi: 10.1016/j.jare.2023.02.016
– ident: e_1_3_4_107_1
  doi: 10.1016/j.ygeno.2022.110485
– ident: e_1_3_4_72_1
  doi: 10.2141/jpsa.0180064
– ident: e_1_3_4_25_1
  doi: 10.1073/pnas.1816107116
– ident: e_1_3_4_83_1
  doi: 10.1590/1678-4685-gmb-2015-0206
– ident: e_1_3_4_23_1
  doi: 10.1016/j.theriogenology.2023.10.024
– ident: e_1_3_4_109_1
  doi: 10.1371/journal.pgen.1002516
– ident: e_1_3_4_28_1
  doi: 10.1186/s12864-020-6456-9
– ident: e_1_3_4_16_1
  doi: 10.1038/73163
– ident: e_1_3_4_36_1
  doi: 10.1186/s12859-015-0848-x
– ident: e_1_3_4_67_1
  doi: 10.1016/j.psj.2023.103241
SSID ssj0007185
Score 2.4384308
SecondaryResourceType review_article
Snippet 1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1
Title Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken
URI https://www.ncbi.nlm.nih.gov/pubmed/38922310
https://www.proquest.com/docview/3072296341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF3aFEp6CP1MnbRlC70ZGWl3tZaPIWlJC_UpIbmJ1e4q6BDZuDI0PfeHZ2Y_JLs40PYijITGoPeYebuaeSLkU8EqKEImT4RUs0QIWyeVZFUyk0Kxqqi5cZZC3-fy_FJ8u86vh9kTN13SVRP9a-dcyf-gCucAV5yS_Qdk-6BwAn4DvnAEhOH4Vxh_DV4PuNxHs9XbaLncYQVy-cCfA4HZuInc-g7bvEyD63y8xTo7hjGaFicKR3HXxo6VUcvQhIjB7A3Oqztj2NAYOW9-NjgGDhmg3XorHBySlvix6tXdOJTXXixbn1gGt8dmaz_2Kuxd933bZ2u_PXu1uTfBBPZQseBs7fOpkBIdUGcbOTLbmbn7VkdYwEnsuWNigu5yzM-Ob6C5vHVwgtJiKE6HQta3F8ZLj8kThv5_ONmTzvsCDeU4j8NcaLO-6z_3ydMYZVuxPLAMcXLk4jk5COsIeuJJ8YI8su1L8uzkZhW8VOwr8nuDHjTSgwKi9A960G5BIz1oTw_q6EGBHnSLHnSghwsG9KADPWjTUqQHDfR4TS6_fL44PU_CRzcSnRXTLuGacWuYSdOaa6WhHuYGJHVWSDWdopFEXaMGNlKmM17nGvT61IDI1SbnlvOKvyF77aK1bwmFQltIYaEoZEoIaVWuQQ9xzfM6hQB8RCbxwZZL761SZr1lrQelRFDKAMqIfIyPv4QsiK-2VGsX6x8lVCrGoJaIbEQOPS59yIjj0YNXjsn-wN53ZK9bre170Jpd9cEx5x4Synzg
link.rule.ids 315,783,787,27937,27938
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+genomics+and+transcriptomics+to+identify+candidate+genes+for+high-altitude+adaptation+and+egg+production+in+Nixi+chicken&rft.jtitle=British+poultry+science&rft.au=Deng%2C+C&rft.au=Li%2C+M&rft.au=Wang%2C+T&rft.au=Duan%2C+W&rft.date=2024-06-26&rft.eissn=1466-1799&rft.spage=1&rft_id=info:doi/10.1080%2F00071668.2024.2367228&rft_id=info%3Apmid%2F38922310&rft.externalDocID=38922310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1668&client=summon