Jpeg stereo image lossy recompression with mutual information enhancement
Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize t...
Saved in:
Published in | Multimedia systems Vol. 31; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize these JPEG file sizes. Unfortunately, the prevalent techniques, especially lossy recompression, frequently fail to fully utilize the correlation of coefficients, resulting in less-than-optimal compression. Moreover, they do not tap into the similarities among JPEG stereo images to boost compression. This paper proposes a novel approach, Distributed Coding for JPEG Lossy Recompression (DCLRC), to enhance the efficiency of JPEG recompression. DCLRC employs an encoding network to eliminate redundant data within the Discrete Cosine Transform (DCT) domain. This is followed by preprocessing via DCT coefficient reconstruction and alignment networks allocated for dimensionality reduction and channel alignment. More significantly, DCLRC capitalizes on the visually similar images in the DCT domain by incorporating a mutual information enhancement module. This pioneering module combines feature extraction, multi-head cross-attention, and information fusion. The experimental results show that DCLRC outperforms existing JPEG lossy recompression techniques, including ULIC, Balle2018, BPG, VCC-Intra, HEVC-Intra, JPEG2000, EILC2022, DSIN, and NDIC2022. DCLRC has achieved an average Peak Signal-to-Noise Ratio (PSNR) improvement of 2.0 dB as well as an average Multi-Scale Structural SIMilarity (MS-SSIM) improvement of 2.3 dB on the KITTI dataset at low bitrates. Such results unequivocally verify the effectiveness of DCLRC in augmenting JPEG recompression performance. Our code is available at
https://github.com/wsp11/DCLRC. |
---|---|
AbstractList | Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize these JPEG file sizes. Unfortunately, the prevalent techniques, especially lossy recompression, frequently fail to fully utilize the correlation of coefficients, resulting in less-than-optimal compression. Moreover, they do not tap into the similarities among JPEG stereo images to boost compression. This paper proposes a novel approach, Distributed Coding for JPEG Lossy Recompression (DCLRC), to enhance the efficiency of JPEG recompression. DCLRC employs an encoding network to eliminate redundant data within the Discrete Cosine Transform (DCT) domain. This is followed by preprocessing via DCT coefficient reconstruction and alignment networks allocated for dimensionality reduction and channel alignment. More significantly, DCLRC capitalizes on the visually similar images in the DCT domain by incorporating a mutual information enhancement module. This pioneering module combines feature extraction, multi-head cross-attention, and information fusion. The experimental results show that DCLRC outperforms existing JPEG lossy recompression techniques, including ULIC, Balle2018, BPG, VCC-Intra, HEVC-Intra, JPEG2000, EILC2022, DSIN, and NDIC2022. DCLRC has achieved an average Peak Signal-to-Noise Ratio (PSNR) improvement of 2.0 dB as well as an average Multi-Scale Structural SIMilarity (MS-SSIM) improvement of 2.3 dB on the KITTI dataset at low bitrates. Such results unequivocally verify the effectiveness of DCLRC in augmenting JPEG recompression performance. Our code is available at https://github.com/wsp11/DCLRC. Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize these JPEG file sizes. Unfortunately, the prevalent techniques, especially lossy recompression, frequently fail to fully utilize the correlation of coefficients, resulting in less-than-optimal compression. Moreover, they do not tap into the similarities among JPEG stereo images to boost compression. This paper proposes a novel approach, Distributed Coding for JPEG Lossy Recompression (DCLRC), to enhance the efficiency of JPEG recompression. DCLRC employs an encoding network to eliminate redundant data within the Discrete Cosine Transform (DCT) domain. This is followed by preprocessing via DCT coefficient reconstruction and alignment networks allocated for dimensionality reduction and channel alignment. More significantly, DCLRC capitalizes on the visually similar images in the DCT domain by incorporating a mutual information enhancement module. This pioneering module combines feature extraction, multi-head cross-attention, and information fusion. The experimental results show that DCLRC outperforms existing JPEG lossy recompression techniques, including ULIC, Balle2018, BPG, VCC-Intra, HEVC-Intra, JPEG2000, EILC2022, DSIN, and NDIC2022. DCLRC has achieved an average Peak Signal-to-Noise Ratio (PSNR) improvement of 2.0 dB as well as an average Multi-Scale Structural SIMilarity (MS-SSIM) improvement of 2.3 dB on the KITTI dataset at low bitrates. Such results unequivocally verify the effectiveness of DCLRC in augmenting JPEG recompression performance. Our code is available at https://github.com/wsp11/DCLRC. |
ArticleNumber | 373 |
Author | Wu, Shengping Yang, Yanchao Zhou, Junwei Zhang, Benyi Xiang, Jianwen Zhou, Lei |
Author_xml | – sequence: 1 givenname: Junwei surname: Zhou fullname: Zhou, Junwei email: junweizhou@msn.com organization: School of Computers and Artificial Intelligence, Wuhan University of Technology – sequence: 2 givenname: Benyi surname: Zhang fullname: Zhang, Benyi organization: School of Computers and Artificial Intelligence, Wuhan University of Technology – sequence: 3 givenname: Shengping surname: Wu fullname: Wu, Shengping organization: School of Computers and Artificial Intelligence, Wuhan University of Technology – sequence: 4 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: School of Computers and Artificial Intelligence, Wuhan University of Technology – sequence: 5 givenname: Yanchao surname: Yang fullname: Yang, Yanchao organization: School of Computers and Artificial Intelligence, Wuhan University of Technology – sequence: 6 givenname: Jianwen surname: Xiang fullname: Xiang, Jianwen organization: School of Computers and Artificial Intelligence, Wuhan University of Technology |
BookMark | eNp9kEtPwzAQhC0EEm3hD3CKxNmwfiSxj6jiUVSJC5wtJ9m0qRo72KlQ_z0uQeLGaaXZmV3NNyfnzjsk5IbBHQMo7yNALoACzykwLXOqz8iMScEpU4qfkxloyanUBb8k8xh3AKwsBMzI6nXATRZHDOizrrcbzPY-xmMWsPb9EDDGzrvsqxu3WX8YD3afda71obfjSUe3ta7GHt14RS5au494_TsX5OPp8X35Qtdvz6vlw5rWTJWattCibItWVaqVZW5loytmZZUnqVBl2QjZ8FxzxWwlaoUNR6bzqlRFw9ISxILcTneH4D8PGEez84fg0ksjuOQAolQiufjkqkOqE7A1Q0j1wtEwMCdkZkJmEjLzg8zoFBJTKCaz22D4O_1P6hsIbHDb |
Cites_doi | 10.1109/TBME.2019.2894123 10.1117/12.2556264 10.1109/TIP.2018.2874285 10.1007/978-3-030-58598-3_18 10.1109/TNNLS.2021.3104974 10.1109/DCC52660.2022.00026 10.1109/TCSVT.2012.2221191 10.1007/978-3-030-58520-4_41 10.1109/TCSVT.2021.3119660 10.1109/TPAMI.2020.2983926 10.1016/S0923-5965(01)00028-5 10.1109/TCSVT.2021.3101953 10.1117/12.2529237 10.1007/s00371-023-03062-y 10.1007/s11263-021-01491-7 10.1109/TCSVT.2021.3089491 10.1109/ICIP40778.2020.9190935 10.1109/TPAMI.2020.3026003 10.1007/s00034-017-0720-5 10.1109/ICIP49359.2023.10222354 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00530-025-01945-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-1882 |
ExternalDocumentID | 10_1007_s00530_025_01945_9 |
GrantInformation_xml | – fundername: the National Key Research and Development Program of China grantid: 2022YFB3104001; 2022YFB3104001 – fundername: the Key Research and Development Program of Hubei Province grantid: 2022BAA050; 2022BAA050 |
GroupedDBID | --Z -ET -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QM1 QN7 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~EX -Y2 1SB 28- 2P1 2VQ 5QI AAOBN AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG ADMLS AEBTG AEFIE AEKMD AETEA AFEXP AFFNX AFGCZ AGGDS AGJBK AGQPQ AJBLW ARCSS BBWZM BDATZ CAG CITATION COF EDO EJD FINBP FSGXE H13 HZ~ H~9 I-F ITG ITH KOW N2Q NDZJH O9- QF4 QO4 R4E RNI RZK S26 S28 SCJ SCLPG T16 TUS UZXMN VFIZW |
ID | FETCH-LOGICAL-c1879-f0fe4f6f8b8f475a4d9b1a4b56f86877d34d259281ab3c8ed2e195b786d17d303 |
IEDL.DBID | U2A |
ISSN | 0942-4962 |
IngestDate | Fri Aug 22 20:08:34 EDT 2025 Wed Aug 27 16:25:17 EDT 2025 Fri Aug 22 01:12:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Distributed coding Mutual information enhancement JPEG image lossy recompression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1879-f0fe4f6f8b8f475a4d9b1a4b56f86877d34d259281ab3c8ed2e195b786d17d303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3242003783 |
PQPubID | 2043725 |
ParticipantIDs | proquest_journals_3242003783 crossref_primary_10_1007_s00530_025_01945_9 springer_journals_10_1007_s00530_025_01945_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Multimedia systems |
PublicationTitleAbbrev | Multimedia Systems |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | B Bondžulić (1945_CR27) 2024; 40 H Ma (1945_CR17) 2020; 44 X Zhu (1945_CR23) 2022; 24 Z Wang (1945_CR32) 2004; 13 1945_CR20 GJ Sullivan (1945_CR34) 2012; 22 C Reich (1945_CR1) 2024; 2 Z Guo (1945_CR8) 2021; 32 Z Cheng (1945_CR11) 2020; 12 D Taubman (1945_CR33) 2002; 17 1945_CR22 1945_CR21 Z Shen (1945_CR30) 2021; 31 R Shin (1945_CR12) 2017; 1 D He (1945_CR19) 2022; 20 MN Cheema (1945_CR29) 2019; 66 E Agustsson (1945_CR26) 2019; 27 Y Hu (1945_CR16) 2021; 44 M Irannejad (1945_CR38) 2017; 37 1945_CR3 1945_CR2 1945_CR37 1945_CR14 1945_CR36 R Yang (1945_CR10) 2024; 36 Z Duan (1945_CR6) 2023; 7 Y Liu (1945_CR4) 2021; 5 1945_CR31 M Li (1945_CR18) 2020; 43 1945_CR13 G Gao (1945_CR7) 2021; 8 K Liu (1945_CR24) 2021; 129 T Chen (1945_CR5) 2021; 30 L Guo (1945_CR15) 2022; 16 Y Wu (1945_CR9) 2021; 32 M Li (1945_CR25) 2021; 34 Y Wen (1945_CR28) 2018; 28 B Bross (1945_CR35) 2021; 31 |
References_xml | – volume: 2 start-page: 4126 year: 2024 ident: 1945_CR1 publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vision – volume: 66 start-page: 2641 issue: 9 year: 2019 ident: 1945_CR29 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2894123 – volume: 44 start-page: 4194 issue: 8 year: 2021 ident: 1945_CR16 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 17612 year: 2022 ident: 1945_CR23 publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn – ident: 1945_CR14 doi: 10.1117/12.2556264 – ident: 1945_CR20 – ident: 1945_CR2 – volume: 28 start-page: 994 issue: 2 year: 2018 ident: 1945_CR28 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2874285 – ident: 1945_CR31 doi: 10.1007/978-3-030-58598-3_18 – volume: 34 start-page: 1132 issue: 3 year: 2021 ident: 1945_CR25 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3104974 – ident: 1945_CR36 doi: 10.1109/DCC52660.2022.00026 – volume: 36 start-page: 11 year: 2024 ident: 1945_CR10 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 22 start-page: 1649 issue: 12 year: 2012 ident: 1945_CR34 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2221191 – ident: 1945_CR37 doi: 10.1007/978-3-030-58520-4_41 – volume: 32 start-page: 3978 issue: 6 year: 2021 ident: 1945_CR9 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3119660 – volume: 43 start-page: 3446 issue: 10 year: 2020 ident: 1945_CR18 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983926 – volume: 17 start-page: 3 issue: 1 year: 2002 ident: 1945_CR33 publication-title: Signal Process Image Commun doi: 10.1016/S0923-5965(01)00028-5 – volume: 7 start-page: 198 year: 2023 ident: 1945_CR6 publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vision – volume: 8 start-page: 14677 year: 2021 ident: 1945_CR7 publication-title: Proc IEEE/CVF Int Conf Comput Vision – volume: 27 start-page: 221 year: 2019 ident: 1945_CR26 publication-title: Proc IEEE/CVF Int Conf Comput Vision – volume: 31 start-page: 3736 issue: 10 year: 2021 ident: 1945_CR35 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3101953 – volume: 13 start-page: 33 issue: 600–612 year: 2004 ident: 1945_CR32 publication-title: IEEE Trans. Image Process. – ident: 1945_CR13 doi: 10.1117/12.2529237 – volume: 1 start-page: 8 year: 2017 ident: 1945_CR12 publication-title: NIPS 2017 Workshop on Machine Learning and Computer Security – volume: 40 start-page: 3747 issue: 5 year: 2024 ident: 1945_CR27 publication-title: Vis. Comput. doi: 10.1007/s00371-023-03062-y – volume: 129 start-page: 2605 issue: 9 year: 2021 ident: 1945_CR24 publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-021-01491-7 – volume: 12 start-page: 7939 year: 2020 ident: 1945_CR11 publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn – ident: 1945_CR21 – volume: 20 start-page: 5718 year: 2022 ident: 1945_CR19 publication-title: Proceedings IEEE/CVF Conf Comput Vision Pattern Recogn – volume: 32 start-page: 2329 issue: 4 year: 2021 ident: 1945_CR8 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3089491 – volume: 5 start-page: 12156 year: 2021 ident: 1945_CR4 publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn – volume: 16 start-page: 5862 year: 2022 ident: 1945_CR15 publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn – ident: 1945_CR22 doi: 10.1109/ICIP40778.2020.9190935 – volume: 30 start-page: 6 issue: 3179–3191 year: 2021 ident: 1945_CR5 publication-title: IEEE Trans. Image Process. – volume: 44 start-page: 1247 issue: 3 year: 2020 ident: 1945_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3026003 – volume: 31 start-page: 3531 year: 2021 ident: 1945_CR30 publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vision – volume: 37 start-page: 3537 year: 2017 ident: 1945_CR38 publication-title: Circuits Syst Signal Process. doi: 10.1007/s00034-017-0720-5 – ident: 1945_CR3 doi: 10.1109/ICIP49359.2023.10222354 |
SSID | ssj0017630 |
Score | 2.404145 |
Snippet | Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Alignment Compressing Computer Communication Networks Computer Graphics Computer Science Cryptology Data integration Data Storage Representation Discrete cosine transform Image compression Modules Multimedia Information Systems Operating Systems Regular Paper Signal to noise ratio |
Title | Jpeg stereo image lossy recompression with mutual information enhancement |
URI | https://link.springer.com/article/10.1007/s00530-025-01945-9 https://www.proquest.com/docview/3242003783 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7DwRhRK5YENLOVhJ86YopZSpE5UKlMUJzYg0bSi7cC_x-c6rUAwMEWKY0f6zo-78913ANex0bpL7mkqBJJq-6GiQgpOldQeF74OhLbRFqNoMGbDCZ-4pLBFHe1eX0nanXqT7IbzxaNYftWoJYzTZBeaHG13M4vHQbq5OzArxnpWEhZQlkSBS5X5fYzvx9FWx_xxLWpPm_4h7Ds1kaRruR7BjqqO4aAuwUDcijyBh-FcvRAkO1Az8jY1mwN5N__5JGjoTl2Qa0XQ20qmK8wVIY4qFQVCVPWKUkcP4SmM-72nuwF11RFogRXCqfa0YjrSBlrNYp6zMpF-ziQ3ryIRx2XISmPbBMLPZVgIVQbKT7iMRVT6ptELz6BRzSp1DiQ3_T3L4igK0ylMCsZlro1xU0bSl7oFNzVI2XxNgpFt6I4tpJmBNLOQZkkL2jWOmVsQiwz1NuS6EWELbmtst81_j3bxv88vYS9A8dpwuzY0lh8rdWXUhqXsQDPtd7sjfN4_P_Y6dtZ8AW77u0M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHvTi24ii9uBNm-yj3e0eiZEAIidIuDVbtlUTWYjAwX9vp3QhGj143W7b5Js-vrYz3wDcppZ1FzwwVAgU1Q5jTYUSnGplAi5CEwnjvC36SXvIuiM-8kFh88rbvXqSdCv1OtgNx0tAMf2qpSWM02wbdiwZEOjINYya67cDO2PczUrGIsqyJPKhMr-38X072nDMH8-ibrdpHcK-p4mkubLrEWzp8hgOqhQMxM_IE-h0Z_qFoNiBnpK3iV0cyLvt55PgQXfinVxLgretZLLEWBHipVLRIESXr2h1vCE8hWHrcfDQpj47Ah1jhnBqAqOZSYyF1rCU56zIVJgzxe2nRKRpEbPCnm0iEeYqHgtdRDrMuEpFUoS2MIjPoFZOS30OJLf1A6fiKMa2UpyNGVe5sYebIlGhMnW4q0CSs5UIhlzLHTtIpYVUOkhlVodGhaP0E2Iukbeh1o2I63BfYbsp_ru1i__9fgO77cFzT_Y6_adL2IvQ1M71rgG1xcdSX1kKsVDXbsR8AaoBuyY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAL34hCAQ9sYBEnduKMFVC1BVUMVOoWxbUNSDStoB349_jcpAUEA2sc29LznX1n370DOE-c1a1FYKmUSKrNIkOlkoIaZQMhmQ2l9dEWvbjd592BGHzJ4vfR7tWT5DynAVmaiunVRNurReIbyk5AsRSrM1G4oOkqrLmJGMp1P2wu3hGc9vhblpSHlKdxWKbN_D7G96NpaW_-eCL1J09rGzZLk5E052u8Ayum2IWtqhwDKbVzDzrdiXkiSHxgxuRl5DYK8urm-SDo9I7KgNeC4M0rGc0wb4SUtKm4OMQUzygBeFu4D_3W7eN1m5aVEugQq4VTG1jDbWwdzJYnIuc6VSznSrhPsUwSHXHt_JxQslxFQ2l0aFgqVCJjzVxjEB1ArRgX5hBI7voHntFRDl2nKB1yoXLrHB0dK6ZsHS4qkLLJnBAjW1Afe0gzB2nmIc3SOjQqHLNSOd4ztOGQ90ZGdbissF02_z3a0f9-P4P1h5tWdt_p3R3DRogr7aPwGlCbvs3MibMmpurUC8wn21q_Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jpeg+stereo+image+lossy+recompression+with+mutual+information+enhancement&rft.jtitle=Multimedia+systems&rft.au=Zhou%2C+Junwei&rft.au=Zhang%2C+Benyi&rft.au=Wu%2C+Shengping&rft.au=Zhou%2C+Lei&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1007%2Fs00530-025-01945-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon |