Jpeg stereo image lossy recompression with mutual information enhancement

Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize t...

Full description

Saved in:
Bibliographic Details
Published inMultimedia systems Vol. 31; no. 5
Main Authors Zhou, Junwei, Zhang, Benyi, Wu, Shengping, Zhou, Lei, Yang, Yanchao, Xiang, Jianwen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize these JPEG file sizes. Unfortunately, the prevalent techniques, especially lossy recompression, frequently fail to fully utilize the correlation of coefficients, resulting in less-than-optimal compression. Moreover, they do not tap into the similarities among JPEG stereo images to boost compression. This paper proposes a novel approach, Distributed Coding for JPEG Lossy Recompression (DCLRC), to enhance the efficiency of JPEG recompression. DCLRC employs an encoding network to eliminate redundant data within the Discrete Cosine Transform (DCT) domain. This is followed by preprocessing via DCT coefficient reconstruction and alignment networks allocated for dimensionality reduction and channel alignment. More significantly, DCLRC capitalizes on the visually similar images in the DCT domain by incorporating a mutual information enhancement module. This pioneering module combines feature extraction, multi-head cross-attention, and information fusion. The experimental results show that DCLRC outperforms existing JPEG lossy recompression techniques, including ULIC, Balle2018, BPG, VCC-Intra, HEVC-Intra, JPEG2000, EILC2022, DSIN, and NDIC2022. DCLRC has achieved an average Peak Signal-to-Noise Ratio (PSNR) improvement of 2.0 dB as well as an average Multi-Scale Structural SIMilarity (MS-SSIM) improvement of 2.3 dB on the KITTI dataset at low bitrates. Such results unequivocally verify the effectiveness of DCLRC in augmenting JPEG recompression performance. Our code is available at https://github.com/wsp11/DCLRC.
AbstractList Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize these JPEG file sizes. Unfortunately, the prevalent techniques, especially lossy recompression, frequently fail to fully utilize the correlation of coefficients, resulting in less-than-optimal compression. Moreover, they do not tap into the similarities among JPEG stereo images to boost compression. This paper proposes a novel approach, Distributed Coding for JPEG Lossy Recompression (DCLRC), to enhance the efficiency of JPEG recompression. DCLRC employs an encoding network to eliminate redundant data within the Discrete Cosine Transform (DCT) domain. This is followed by preprocessing via DCT coefficient reconstruction and alignment networks allocated for dimensionality reduction and channel alignment. More significantly, DCLRC capitalizes on the visually similar images in the DCT domain by incorporating a mutual information enhancement module. This pioneering module combines feature extraction, multi-head cross-attention, and information fusion. The experimental results show that DCLRC outperforms existing JPEG lossy recompression techniques, including ULIC, Balle2018, BPG, VCC-Intra, HEVC-Intra, JPEG2000, EILC2022, DSIN, and NDIC2022. DCLRC has achieved an average Peak Signal-to-Noise Ratio (PSNR) improvement of 2.0 dB as well as an average Multi-Scale Structural SIMilarity (MS-SSIM) improvement of 2.3 dB on the KITTI dataset at low bitrates. Such results unequivocally verify the effectiveness of DCLRC in augmenting JPEG recompression performance. Our code is available at https://github.com/wsp11/DCLRC.
Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby overlooking the substantial quantity of existing compressed JPEG images. The recent strides in JPEG recompression strive to further minimize these JPEG file sizes. Unfortunately, the prevalent techniques, especially lossy recompression, frequently fail to fully utilize the correlation of coefficients, resulting in less-than-optimal compression. Moreover, they do not tap into the similarities among JPEG stereo images to boost compression. This paper proposes a novel approach, Distributed Coding for JPEG Lossy Recompression (DCLRC), to enhance the efficiency of JPEG recompression. DCLRC employs an encoding network to eliminate redundant data within the Discrete Cosine Transform (DCT) domain. This is followed by preprocessing via DCT coefficient reconstruction and alignment networks allocated for dimensionality reduction and channel alignment. More significantly, DCLRC capitalizes on the visually similar images in the DCT domain by incorporating a mutual information enhancement module. This pioneering module combines feature extraction, multi-head cross-attention, and information fusion. The experimental results show that DCLRC outperforms existing JPEG lossy recompression techniques, including ULIC, Balle2018, BPG, VCC-Intra, HEVC-Intra, JPEG2000, EILC2022, DSIN, and NDIC2022. DCLRC has achieved an average Peak Signal-to-Noise Ratio (PSNR) improvement of 2.0 dB as well as an average Multi-Scale Structural SIMilarity (MS-SSIM) improvement of 2.3 dB on the KITTI dataset at low bitrates. Such results unequivocally verify the effectiveness of DCLRC in augmenting JPEG recompression performance. Our code is available at https://github.com/wsp11/DCLRC.
ArticleNumber 373
Author Wu, Shengping
Yang, Yanchao
Zhou, Junwei
Zhang, Benyi
Xiang, Jianwen
Zhou, Lei
Author_xml – sequence: 1
  givenname: Junwei
  surname: Zhou
  fullname: Zhou, Junwei
  email: junweizhou@msn.com
  organization: School of Computers and Artificial Intelligence, Wuhan University of Technology
– sequence: 2
  givenname: Benyi
  surname: Zhang
  fullname: Zhang, Benyi
  organization: School of Computers and Artificial Intelligence, Wuhan University of Technology
– sequence: 3
  givenname: Shengping
  surname: Wu
  fullname: Wu, Shengping
  organization: School of Computers and Artificial Intelligence, Wuhan University of Technology
– sequence: 4
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: School of Computers and Artificial Intelligence, Wuhan University of Technology
– sequence: 5
  givenname: Yanchao
  surname: Yang
  fullname: Yang, Yanchao
  organization: School of Computers and Artificial Intelligence, Wuhan University of Technology
– sequence: 6
  givenname: Jianwen
  surname: Xiang
  fullname: Xiang, Jianwen
  organization: School of Computers and Artificial Intelligence, Wuhan University of Technology
BookMark eNp9kEtPwzAQhC0EEm3hD3CKxNmwfiSxj6jiUVSJC5wtJ9m0qRo72KlQ_z0uQeLGaaXZmV3NNyfnzjsk5IbBHQMo7yNALoACzykwLXOqz8iMScEpU4qfkxloyanUBb8k8xh3AKwsBMzI6nXATRZHDOizrrcbzPY-xmMWsPb9EDDGzrvsqxu3WX8YD3afda71obfjSUe3ta7GHt14RS5au494_TsX5OPp8X35Qtdvz6vlw5rWTJWattCibItWVaqVZW5loytmZZUnqVBl2QjZ8FxzxWwlaoUNR6bzqlRFw9ISxILcTneH4D8PGEez84fg0ksjuOQAolQiufjkqkOqE7A1Q0j1wtEwMCdkZkJmEjLzg8zoFBJTKCaz22D4O_1P6hsIbHDb
Cites_doi 10.1109/TBME.2019.2894123
10.1117/12.2556264
10.1109/TIP.2018.2874285
10.1007/978-3-030-58598-3_18
10.1109/TNNLS.2021.3104974
10.1109/DCC52660.2022.00026
10.1109/TCSVT.2012.2221191
10.1007/978-3-030-58520-4_41
10.1109/TCSVT.2021.3119660
10.1109/TPAMI.2020.2983926
10.1016/S0923-5965(01)00028-5
10.1109/TCSVT.2021.3101953
10.1117/12.2529237
10.1007/s00371-023-03062-y
10.1007/s11263-021-01491-7
10.1109/TCSVT.2021.3089491
10.1109/ICIP40778.2020.9190935
10.1109/TPAMI.2020.3026003
10.1007/s00034-017-0720-5
10.1109/ICIP49359.2023.10222354
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00530-025-01945-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
ExternalDocumentID 10_1007_s00530_025_01945_9
GrantInformation_xml – fundername: the National Key Research and Development Program of China
  grantid: 2022YFB3104001; 2022YFB3104001
– fundername: the Key Research and Development Program of Hubei Province
  grantid: 2022BAA050; 2022BAA050
GroupedDBID --Z
-ET
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QM1
QN7
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAOBN
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AETEA
AFEXP
AFFNX
AFGCZ
AGGDS
AGJBK
AGQPQ
AJBLW
ARCSS
BBWZM
BDATZ
CAG
CITATION
COF
EDO
EJD
FINBP
FSGXE
H13
HZ~
H~9
I-F
ITG
ITH
KOW
N2Q
NDZJH
O9-
QF4
QO4
R4E
RNI
RZK
S26
S28
SCJ
SCLPG
T16
TUS
UZXMN
VFIZW
ID FETCH-LOGICAL-c1879-f0fe4f6f8b8f475a4d9b1a4b56f86877d34d259281ab3c8ed2e195b786d17d303
IEDL.DBID U2A
ISSN 0942-4962
IngestDate Fri Aug 22 20:08:34 EDT 2025
Wed Aug 27 16:25:17 EDT 2025
Fri Aug 22 01:12:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Distributed coding
Mutual information enhancement
JPEG image lossy recompression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1879-f0fe4f6f8b8f475a4d9b1a4b56f86877d34d259281ab3c8ed2e195b786d17d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3242003783
PQPubID 2043725
ParticipantIDs proquest_journals_3242003783
crossref_primary_10_1007_s00530_025_01945_9
springer_journals_10_1007_s00530_025_01945_9
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References B Bondžulić (1945_CR27) 2024; 40
H Ma (1945_CR17) 2020; 44
X Zhu (1945_CR23) 2022; 24
Z Wang (1945_CR32) 2004; 13
1945_CR20
GJ Sullivan (1945_CR34) 2012; 22
C Reich (1945_CR1) 2024; 2
Z Guo (1945_CR8) 2021; 32
Z Cheng (1945_CR11) 2020; 12
D Taubman (1945_CR33) 2002; 17
1945_CR22
1945_CR21
Z Shen (1945_CR30) 2021; 31
R Shin (1945_CR12) 2017; 1
D He (1945_CR19) 2022; 20
MN Cheema (1945_CR29) 2019; 66
E Agustsson (1945_CR26) 2019; 27
Y Hu (1945_CR16) 2021; 44
M Irannejad (1945_CR38) 2017; 37
1945_CR3
1945_CR2
1945_CR37
1945_CR14
1945_CR36
R Yang (1945_CR10) 2024; 36
Z Duan (1945_CR6) 2023; 7
Y Liu (1945_CR4) 2021; 5
1945_CR31
M Li (1945_CR18) 2020; 43
1945_CR13
G Gao (1945_CR7) 2021; 8
K Liu (1945_CR24) 2021; 129
T Chen (1945_CR5) 2021; 30
L Guo (1945_CR15) 2022; 16
Y Wu (1945_CR9) 2021; 32
M Li (1945_CR25) 2021; 34
Y Wen (1945_CR28) 2018; 28
B Bross (1945_CR35) 2021; 31
References_xml – volume: 2
  start-page: 4126
  year: 2024
  ident: 1945_CR1
  publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vision
– volume: 66
  start-page: 2641
  issue: 9
  year: 2019
  ident: 1945_CR29
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2894123
– volume: 44
  start-page: 4194
  issue: 8
  year: 2021
  ident: 1945_CR16
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 17612
  year: 2022
  ident: 1945_CR23
  publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn
– ident: 1945_CR14
  doi: 10.1117/12.2556264
– ident: 1945_CR20
– ident: 1945_CR2
– volume: 28
  start-page: 994
  issue: 2
  year: 2018
  ident: 1945_CR28
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2874285
– ident: 1945_CR31
  doi: 10.1007/978-3-030-58598-3_18
– volume: 34
  start-page: 1132
  issue: 3
  year: 2021
  ident: 1945_CR25
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3104974
– ident: 1945_CR36
  doi: 10.1109/DCC52660.2022.00026
– volume: 36
  start-page: 11
  year: 2024
  ident: 1945_CR10
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  ident: 1945_CR34
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2221191
– ident: 1945_CR37
  doi: 10.1007/978-3-030-58520-4_41
– volume: 32
  start-page: 3978
  issue: 6
  year: 2021
  ident: 1945_CR9
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3119660
– volume: 43
  start-page: 3446
  issue: 10
  year: 2020
  ident: 1945_CR18
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983926
– volume: 17
  start-page: 3
  issue: 1
  year: 2002
  ident: 1945_CR33
  publication-title: Signal Process Image Commun
  doi: 10.1016/S0923-5965(01)00028-5
– volume: 7
  start-page: 198
  year: 2023
  ident: 1945_CR6
  publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vision
– volume: 8
  start-page: 14677
  year: 2021
  ident: 1945_CR7
  publication-title: Proc IEEE/CVF Int Conf Comput Vision
– volume: 27
  start-page: 221
  year: 2019
  ident: 1945_CR26
  publication-title: Proc IEEE/CVF Int Conf Comput Vision
– volume: 31
  start-page: 3736
  issue: 10
  year: 2021
  ident: 1945_CR35
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3101953
– volume: 13
  start-page: 33
  issue: 600–612
  year: 2004
  ident: 1945_CR32
  publication-title: IEEE Trans. Image Process.
– ident: 1945_CR13
  doi: 10.1117/12.2529237
– volume: 1
  start-page: 8
  year: 2017
  ident: 1945_CR12
  publication-title: NIPS 2017 Workshop on Machine Learning and Computer Security
– volume: 40
  start-page: 3747
  issue: 5
  year: 2024
  ident: 1945_CR27
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-023-03062-y
– volume: 129
  start-page: 2605
  issue: 9
  year: 2021
  ident: 1945_CR24
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-021-01491-7
– volume: 12
  start-page: 7939
  year: 2020
  ident: 1945_CR11
  publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn
– ident: 1945_CR21
– volume: 20
  start-page: 5718
  year: 2022
  ident: 1945_CR19
  publication-title: Proceedings IEEE/CVF Conf Comput Vision Pattern Recogn
– volume: 32
  start-page: 2329
  issue: 4
  year: 2021
  ident: 1945_CR8
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3089491
– volume: 5
  start-page: 12156
  year: 2021
  ident: 1945_CR4
  publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn
– volume: 16
  start-page: 5862
  year: 2022
  ident: 1945_CR15
  publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn
– ident: 1945_CR22
  doi: 10.1109/ICIP40778.2020.9190935
– volume: 30
  start-page: 6
  issue: 3179–3191
  year: 2021
  ident: 1945_CR5
  publication-title: IEEE Trans. Image Process.
– volume: 44
  start-page: 1247
  issue: 3
  year: 2020
  ident: 1945_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3026003
– volume: 31
  start-page: 3531
  year: 2021
  ident: 1945_CR30
  publication-title: Proc IEEE/CVF Winter Conf Appl Comput Vision
– volume: 37
  start-page: 3537
  year: 2017
  ident: 1945_CR38
  publication-title: Circuits Syst Signal Process.
  doi: 10.1007/s00034-017-0720-5
– ident: 1945_CR3
  doi: 10.1109/ICIP49359.2023.10222354
SSID ssj0017630
Score 2.404145
Snippet Despite JPEG remaining the most prevalent image compression algorithm, the majority of these algorithms primarily concentrate on uncompressed images, thereby...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Alignment
Compressing
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data integration
Data Storage Representation
Discrete cosine transform
Image compression
Modules
Multimedia Information Systems
Operating Systems
Regular Paper
Signal to noise ratio
Title Jpeg stereo image lossy recompression with mutual information enhancement
URI https://link.springer.com/article/10.1007/s00530-025-01945-9
https://www.proquest.com/docview/3242003783
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7DwRhRK5YENLOVhJ86YopZSpE5UKlMUJzYg0bSi7cC_x-c6rUAwMEWKY0f6zo-78913ANex0bpL7mkqBJJq-6GiQgpOldQeF74OhLbRFqNoMGbDCZ-4pLBFHe1eX0nanXqT7IbzxaNYftWoJYzTZBeaHG13M4vHQbq5OzArxnpWEhZQlkSBS5X5fYzvx9FWx_xxLWpPm_4h7Ds1kaRruR7BjqqO4aAuwUDcijyBh-FcvRAkO1Az8jY1mwN5N__5JGjoTl2Qa0XQ20qmK8wVIY4qFQVCVPWKUkcP4SmM-72nuwF11RFogRXCqfa0YjrSBlrNYp6zMpF-ziQ3ryIRx2XISmPbBMLPZVgIVQbKT7iMRVT6ptELz6BRzSp1DiQ3_T3L4igK0ylMCsZlro1xU0bSl7oFNzVI2XxNgpFt6I4tpJmBNLOQZkkL2jWOmVsQiwz1NuS6EWELbmtst81_j3bxv88vYS9A8dpwuzY0lh8rdWXUhqXsQDPtd7sjfN4_P_Y6dtZ8AW77u0M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHvTi24ii9uBNm-yj3e0eiZEAIidIuDVbtlUTWYjAwX9vp3QhGj143W7b5Js-vrYz3wDcppZ1FzwwVAgU1Q5jTYUSnGplAi5CEwnjvC36SXvIuiM-8kFh88rbvXqSdCv1OtgNx0tAMf2qpSWM02wbdiwZEOjINYya67cDO2PczUrGIsqyJPKhMr-38X072nDMH8-ibrdpHcK-p4mkubLrEWzp8hgOqhQMxM_IE-h0Z_qFoNiBnpK3iV0cyLvt55PgQXfinVxLgretZLLEWBHipVLRIESXr2h1vCE8hWHrcfDQpj47Ah1jhnBqAqOZSYyF1rCU56zIVJgzxe2nRKRpEbPCnm0iEeYqHgtdRDrMuEpFUoS2MIjPoFZOS30OJLf1A6fiKMa2UpyNGVe5sYebIlGhMnW4q0CSs5UIhlzLHTtIpYVUOkhlVodGhaP0E2Iukbeh1o2I63BfYbsp_ru1i__9fgO77cFzT_Y6_adL2IvQ1M71rgG1xcdSX1kKsVDXbsR8AaoBuyY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAL34hCAQ9sYBEnduKMFVC1BVUMVOoWxbUNSDStoB349_jcpAUEA2sc29LznX1n370DOE-c1a1FYKmUSKrNIkOlkoIaZQMhmQ2l9dEWvbjd592BGHzJ4vfR7tWT5DynAVmaiunVRNurReIbyk5AsRSrM1G4oOkqrLmJGMp1P2wu3hGc9vhblpSHlKdxWKbN_D7G96NpaW_-eCL1J09rGzZLk5E052u8Ayum2IWtqhwDKbVzDzrdiXkiSHxgxuRl5DYK8urm-SDo9I7KgNeC4M0rGc0wb4SUtKm4OMQUzygBeFu4D_3W7eN1m5aVEugQq4VTG1jDbWwdzJYnIuc6VSznSrhPsUwSHXHt_JxQslxFQ2l0aFgqVCJjzVxjEB1ArRgX5hBI7voHntFRDl2nKB1yoXLrHB0dK6ZsHS4qkLLJnBAjW1Afe0gzB2nmIc3SOjQqHLNSOd4ztOGQ90ZGdbissF02_z3a0f9-P4P1h5tWdt_p3R3DRogr7aPwGlCbvs3MibMmpurUC8wn21q_Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jpeg+stereo+image+lossy+recompression+with+mutual+information+enhancement&rft.jtitle=Multimedia+systems&rft.au=Zhou%2C+Junwei&rft.au=Zhang%2C+Benyi&rft.au=Wu%2C+Shengping&rft.au=Zhou%2C+Lei&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=31&rft.issue=5&rft_id=info:doi/10.1007%2Fs00530-025-01945-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon