Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes

To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory...

Full description

Saved in:
Bibliographic Details
Published inPeerJ physical chemistry Vol. 2; p. e8
Main Authors Sirirak, Jitnapa, Lawan, Narin, Van der Kamp, Marc W., Harvey, Jeremy N., Mulholland, Adrian J.
Format Journal Article
LanguageEnglish
Published PeerJ Inc 20.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol −1 , respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol −1 ), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol −1 ). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions.
AbstractList To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol−1, respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol−1), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol−1). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions.
To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol −1 , respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol −1 ), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol −1 ). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions.
ArticleNumber e8
Author Van der Kamp, Marc W.
Mulholland, Adrian J.
Lawan, Narin
Harvey, Jeremy N.
Sirirak, Jitnapa
Author_xml – sequence: 1
  givenname: Jitnapa
  surname: Sirirak
  fullname: Sirirak, Jitnapa
  organization: Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
– sequence: 2
  givenname: Narin
  surname: Lawan
  fullname: Lawan, Narin
  organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
– sequence: 3
  givenname: Marc W.
  surname: Van der Kamp
  fullname: Van der Kamp, Marc W.
  organization: School of Biochemistry, University of Bristol, Bristol, United Kingdom
– sequence: 4
  givenname: Jeremy N.
  surname: Harvey
  fullname: Harvey, Jeremy N.
  organization: Department of Chemistry, KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: Adrian J.
  surname: Mulholland
  fullname: Mulholland, Adrian J.
  organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
BookMark eNp1kEtPwzAQhC0EElB65J4_kOIkTuwcoeIlIXGBs7VZb1q3SVzs9FB-PW5BFULitA99M9LMJTsd3ECMXWd8JmUmbzZEfpVucEn9TJ2wi7xSdSplUZz-2s_ZNIQV5zxXUpSCX7D1HQ247MGv7bBIPrYwjNs-6QmXMFiELq7j0pmQtM4n8cZtB-Me9QQ4WjckNJBfWAqJa4_PENERut0nmaTZReRz11O4YmctdIGmP3PC3h_u3-ZP6cvr4_P89iXFTEmVZkBcSlRQmEqUHJuaipakISMElRlIpUwj2woKjplpRAxXQo55FFe8IllM2PO3r3Gw0htvY7yddmD14eH8QoMfLXakqaQaKgFNXYNAgapVIhdl08rCiCrD6JV-e6F3IXhqj34Z1_vi9aF4fSheq8gXf3i0I-w7GT3Y7h_VF8H4kGA
CitedBy_id crossref_primary_10_1002_anie_202213610
crossref_primary_10_1016_j_checat_2021_04_009
crossref_primary_10_1016_j_csbj_2021_08_008
crossref_primary_10_1039_D0OB02566F
crossref_primary_10_1021_acs_jctc_3c00558
crossref_primary_10_1021_acs_jpcb_3c04138
crossref_primary_10_3390_molecules28093649
crossref_primary_10_1007_s00214_021_02770_9
crossref_primary_10_1021_acs_jpclett_1c02135
crossref_primary_10_1002_ange_202213610
crossref_primary_10_1002_jcc_26380
crossref_primary_10_1021_acschembio_0c00784
Cites_doi 10.1021/cr400388t
10.1007/s00214-009-0545-9
10.1002/anie.200602711
10.1038/s41570-018-0148
10.1002/jcc.20570
10.1002/wcms.82
10.1021/jp5052276
10.1021/acs.jctc.8b00348
10.1039/c0ob00691b
10.1021/cb500067z
10.1021/jp0700130
10.1007/s00894-011-0981-z
10.1002/prot.1114
10.1021/cr020436s
10.1021/acs.jctc.6b00285
10.1002/9781119356059.ch3
10.1063/1.472352
10.1021/ct4008074
10.1063/1.3280164
10.1088/0034-4885/60/12/001
10.1021/acs.jpclett.8b00242
10.1186/1752-153X-1-19
10.1098/rstb.2006.1867
10.1002/jcc.20078
10.1103/physrevb.51.12947
10.1021/jp104069t
10.1063/1.473634
10.1039/C8OB00066B
10.1080/00268970802676057
10.1039/b800496j
10.1002/cphc.201601113
10.1021/acs.jctc.7b01206
10.1063/1.3382344
10.1016/S0022-2836(03)00658-2
10.1021/ja992874v
10.1039/9781847559906
10.1021/ar700208h
10.1039/b503887a
10.1002/jcc.20495
10.1074/jbc.M700677200
10.1021/acs.jpca.9b05088
10.1016/j.jmgm.2020.107536
10.1021/acs.jcim.8b00940
10.1021/jp064544k
10.1021/ct100264j
10.1080/00268970802258591
10.1021/ja051592u
10.1016/j.jmgm.2007.04.002
10.1098/rsif.2008.0068.focus
10.1021/jp0734474
10.1021/jz101279n
10.1103/PhysRevB.58.7260
10.1021/jp510148h
10.1021/acs.jctc.5b00246
10.1039/c7cp00757d
10.1021/bi400215w
10.1021/ct100684s
10.1016/j.jmgm.2018.12.011
10.1021/ja016219a
10.1007/bf01134863
10.1039/B925647D
10.1021/jp201039
10.1039/b810099
10.1039/b714136j
10.1073/pnas.0408036102
10.7717/peerj.1994
10.1039/c4cc06495j
10.1021/jp067898k
10.1002/3527603107.ch16
10.1021/ja034434g
10.1063/1.1424928
10.1103/PhysRevB.39.12520
10.1002/1096-987X(200012)21:16<1494::AID-JCC6>3.0.CO;2-4
10.1016/j.cplett.2014.06.010
10.1021/ct5005033
10.1021/ct300649f
10.1021/ct300329h
10.1080/0026897031000121271
10.1063/1.1569242
10.1021/jp952148o
10.1021/ct800568m
10.1002/anie.200802019
10.1039/c003107k
10.1002/prot.21482
10.1002/cphc.200700143
10.1039/C0CC04937A
10.1021/ct3005547
10.1021/bk-1996-0629.ch024
10.1021/ct401015e
10.1063/1.2823055
10.1021/ja044210
10.1002/prot.20171
10.1002/qua.560100802
10.1021/acs.jpcb.7b06892
10.1002/jcc.540161206
10.1007/s00214-005-0066-0
10.1039/c3cp55433c
10.1039/b600027d
10.1021/jp9037254
10.1063/1.1871913
10.1002/jcc.10201
10.1021/ja065863s
10.1021/ct900126q
10.1021/acscatal.7b04114
10.1002/wcms.1393
10.1016/j.jmgm.2014.06.002
10.1039/B512969A
10.1021/jp9034375
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.7717/peerj-pchem.8
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2689-7733
ExternalDocumentID oai_doaj_org_article_e5e9a64ab99a4c4c8f84245bf73d461c
10_7717_peerj_pchem_8
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c1878-1ae077c8a3d6450cb9e3fe7ded44e51a788db7f6a30c1db46895a2c2187606e73
IEDL.DBID DOA
ISSN 2689-7733
IngestDate Wed Aug 27 01:06:23 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Tue Jul 01 02:43:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1878-1ae077c8a3d6450cb9e3fe7ded44e51a788db7f6a30c1db46895a2c2187606e73
OpenAccessLink https://doaj.org/article/e5e9a64ab99a4c4c8f84245bf73d461c
ParticipantIDs doaj_primary_oai_doaj_org_article_e5e9a64ab99a4c4c8f84245bf73d461c
crossref_primary_10_7717_peerj_pchem_8
crossref_citationtrail_10_7717_peerj_pchem_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-20
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-20
  day: 20
PublicationDecade 2020
PublicationTitle PeerJ physical chemistry
PublicationYear 2020
Publisher PeerJ Inc
Publisher_xml – name: PeerJ Inc
References Lawan (10.7717/peerj-pchem.8/ref-55) 2019; 87
Mata (10.7717/peerj-pchem.8/ref-68) 2008; 128
Margraf (10.7717/peerj-pchem.8/ref-66) 2017; 19
Bowman (10.7717/peerj-pchem.8/ref-8) 2008; 37
Chudyk (10.7717/peerj-pchem.8/ref-10) 2014; 50
Pang (10.7717/peerj-pchem.8/ref-78) 2010; 46
Hermann (10.7717/peerj-pchem.8/ref-38) 2009; 113
Sattelmeyer (10.7717/peerj-pchem.8/ref-87) 2006; 110
Grimme (10.7717/peerj-pchem.8/ref-30) 2003; 118
Lawan (10.7717/peerj-pchem.8/ref-56) 2014; 608
Wu (10.7717/peerj-pchem.8/ref-108) 2002; 116
Nunez (10.7717/peerj-pchem.8/ref-74) 2006; 361
Hou (10.7717/peerj-pchem.8/ref-43) 2012; 8
Goerigk (10.7717/peerj-pchem.8/ref-27) 2014; 118
Frisch (10.7717/peerj-pchem.8/ref-25) 2004
Smith (10.7717/peerj-pchem.8/ref-93) 2011; 115
Zhang (10.7717/peerj-pchem.8/ref-111) 2012; 8
Amaro (10.7717/peerj-pchem.8/ref-1) 2018; 2
Lodola (10.7717/peerj-pchem.8/ref-61) 2008; 2
Wappett (10.7717/peerj-pchem.8/ref-106) 2019; 123
Hermann (10.7717/peerj-pchem.8/ref-37) 2005; 127
Schwabe (10.7717/peerj-pchem.8/ref-89) 2008; 41
Gräfenstein (10.7717/peerj-pchem.8/ref-29) 2009; 123
Jurečka (10.7717/peerj-pchem.8/ref-47) 2007; 28
Pople (10.7717/peerj-pchem.8/ref-80) 1976; 10
Capoferri (10.7717/peerj-pchem.8/ref-9) 2011; 17
Van der Kamp (10.7717/peerj-pchem.8/ref-104) 2010; 114
Zelleke (10.7717/peerj-pchem.8/ref-109) 2017; 18
Grimme (10.7717/peerj-pchem.8/ref-33) 2010; 132
Frisch (10.7717/peerj-pchem.8/ref-24) 2009; 107
Kaiyawet (10.7717/peerj-pchem.8/ref-49) 2015; 11
Johannissen (10.7717/peerj-pchem.8/ref-46) 2008; 5
Lodola (10.7717/peerj-pchem.8/ref-62) 2010; 6
Mulholland (10.7717/peerj-pchem.8/ref-72) 2000; 122
Thiel (10.7717/peerj-pchem.8/ref-96) 1992; 81
Kruger (10.7717/peerj-pchem.8/ref-53) 2005; 122
Hermann (10.7717/peerj-pchem.8/ref-40) 2003; 125
Elstner (10.7717/peerj-pchem.8/ref-19) 1998; 58
Sousa (10.7717/peerj-pchem.8/ref-94) 2007; 111
Elstner (10.7717/peerj-pchem.8/ref-18) 2000; 217
Otte (10.7717/peerj-pchem.8/ref-76) 2007; 111
Sherrill (10.7717/peerj-pchem.8/ref-92) 2009; 38
Claeyssens (10.7717/peerj-pchem.8/ref-12) 2011; 9
Zhang (10.7717/peerj-pchem.8/ref-110) 2015; 11
Rydberg (10.7717/peerj-pchem.8/ref-86) 2014; 52
Masgrau (10.7717/peerj-pchem.8/ref-67) 2007; 111
Roujeinikova (10.7717/peerj-pchem.8/ref-85) 2007; 282
Jurecka (10.7717/peerj-pchem.8/ref-48) 2006; 8
Pitoňak (10.7717/peerj-pchem.8/ref-79) 2009; 5
Friedrich (10.7717/peerj-pchem.8/ref-22) 2013; 9
Helgaker (10.7717/peerj-pchem.8/ref-35) 1997; 106
Tubert-Brohman (10.7717/peerj-pchem.8/ref-99) 2006; 128
Ranaghan (10.7717/peerj-pchem.8/ref-83) 2017; 121
Seifert (10.7717/peerj-pchem.8/ref-90) 1986; 267
Senn (10.7717/peerj-pchem.8/ref-91) 2009; 48
Elstner (10.7717/peerj-pchem.8/ref-17) 2003; 24
Goringe (10.7717/peerj-pchem.8/ref-28) 1997; 60
Khandogin (10.7717/peerj-pchem.8/ref-50) 2003; 330
Faulder (10.7717/peerj-pchem.8/ref-20) 2001; 123
Lonsdale (10.7717/peerj-pchem.8/ref-65) 2010; 46
Tresadern (10.7717/peerj-pchem.8/ref-98) 2003; 101
Bao (10.7717/peerj-pchem.8/ref-3) 2018; 9
Van der Kamp (10.7717/peerj-pchem.8/ref-100) 2013; 52
Van der Kamp (10.7717/peerj-pchem.8/ref-102) 2007; 26
Grimme (10.7717/peerj-pchem.8/ref-31) 2004; 25
Langan (10.7717/peerj-pchem.8/ref-54) 2018; 8
Blomberg (10.7717/peerj-pchem.8/ref-6) 2014; 114
Dieterich (10.7717/peerj-pchem.8/ref-15) 2010; 132
Werner (10.7717/peerj-pchem.8/ref-107) 2012; 2
Liu (10.7717/peerj-pchem.8/ref-58) 2001; 44
Gaus (10.7717/peerj-pchem.8/ref-26) 2011; 7
Lonsdale (10.7717/peerj-pchem.8/ref-63) 2010; 1
Meroueh (10.7717/peerj-pchem.8/ref-69) 2005; 127
Friesner (10.7717/peerj-pchem.8/ref-23) 2005; 102
Himo (10.7717/peerj-pchem.8/ref-41) 2003; 103
Bistoni (10.7717/peerj-pchem.8/ref-5) 2018; 14
Ranaghan (10.7717/peerj-pchem.8/ref-82) 2007; 8
Palermo (10.7717/peerj-pchem.8/ref-77) 2014; 119
Bennie (10.7717/peerj-pchem.8/ref-4) 2016; 12
Claeyssens (10.7717/peerj-pchem.8/ref-11) 2006; 45
Elstner (10.7717/peerj-pchem.8/ref-16) 2006; 116
Hermann (10.7717/peerj-pchem.8/ref-39) 2006; 4
Hobza (10.7717/peerj-pchem.8/ref-42) 2009
Thiel (10.7717/peerj-pchem.8/ref-97) 1996; 100
Ranaghan (10.7717/peerj-pchem.8/ref-84) 2019; 59
Lonsdale (10.7717/peerj-pchem.8/ref-64) 2012; 8
Cramer (10.7717/peerj-pchem.8/ref-13) 2004
Hehre (10.7717/peerj-pchem.8/ref-34) 1995
Lence (10.7717/peerj-pchem.8/ref-57) 2018; 16
Kromann (10.7717/peerj-pchem.8/ref-52) 2016; 4
Mulholland (10.7717/peerj-pchem.8/ref-71) 2007; 1
Zheng (10.7717/peerj-pchem.8/ref-112) 2009; 5
Daniels (10.7717/peerj-pchem.8/ref-14) 2014; 9
Van der Kamp (10.7717/peerj-pchem.8/ref-103) 2008; 16
St.-Amant (10.7717/peerj-pchem.8/ref-95) 1995; 16
Jász (10.7717/peerj-pchem.8/ref-45) 2020; 96
Lodola (10.7717/peerj-pchem.8/ref-59) 2011; 47
Lodola (10.7717/peerj-pchem.8/ref-60) 2005; 35
Van der Kamp (10.7717/peerj-pchem.8/ref-101) 2007; 69
Mlýnský (10.7717/peerj-pchem.8/ref-70) 2014; 10
Huggins (10.7717/peerj-pchem.8/ref-44) 2019; 9
Helgaker (10.7717/peerj-pchem.8/ref-36) 2008; 106
Foulkes (10.7717/peerj-pchem.8/ref-21) 1989; 39
Baker (10.7717/peerj-pchem.8/ref-2) 1996; 629
Grimme (10.7717/peerj-pchem.8/ref-32) 2006; 27
Nagy (10.7717/peerj-pchem.8/ref-73) 2017; 30
Boereboom (10.7717/peerj-pchem.8/ref-7) 2018; 14
Olsen (10.7717/peerj-pchem.8/ref-75) 1996; 105
Porezag (10.7717/peerj-pchem.8/ref-81) 1995; 51
Khandogin (10.7717/peerj-pchem.8/ref-51) 2004; 56
Schmidt (10.7717/peerj-pchem.8/ref-88) 2014; 16
Van der Vaart (10.7717/peerj-pchem.8/ref-105) 2000; 21
References_xml – volume: 114
  start-page: 3601
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-6
  article-title: Quantum chemical studies of mechanisms for metalloenzymes
  publication-title: Chemical Reviews
  doi: 10.1021/cr400388t
– volume: 123
  start-page: 171
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-29
  article-title: The self-interaction error and the description of non-dynamic electron correlation in density functional theory
  publication-title: Theoretical Chemistry Accounts
  doi: 10.1007/s00214-009-0545-9
– volume: 45
  start-page: 6856
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-11
  article-title: High-Accuracy computation of reaction barriers in enzymes
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200602711
– volume: 2
  start-page: 0148
  year: 2018
  ident: 10.7717/peerj-pchem.8/ref-1
  article-title: Multiscale methods in drug design bridge chemical and biological complexity in the search for cures
  publication-title: Nature Reviews Chemistry
  doi: 10.1038/s41570-018-0148
– volume: 28
  start-page: 555
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-47
  article-title: Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.20570
– volume: 2
  start-page: 242
  year: 2012
  ident: 10.7717/peerj-pchem.8/ref-107
  article-title: Molpro: a general-purpose quantum chemistry program package
  publication-title: WIREs Computational Molecular Science
  doi: 10.1002/wcms.82
– volume: 119
  start-page: 789
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-77
  article-title: Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp5052276
– volume: 14
  start-page: 3524
  year: 2018
  ident: 10.7717/peerj-pchem.8/ref-5
  article-title: Toward accurate QM/MM reaction barriers with large QM regions using domain based pair natural orbital coupled cluster theory
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.8b00348
– volume: 9
  start-page: 1578
  year: 2011
  ident: 10.7717/peerj-pchem.8/ref-12
  article-title: Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions
  publication-title: Organic & Biomolecular Chemistry
  doi: 10.1039/c0ob00691b
– volume: 9
  start-page: 1025
  issue: 4
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-14
  article-title: Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM Simulation, and mutagenesis
  publication-title: ACS Chemical Biology
  doi: 10.1021/cb500067z
– volume: 111
  start-page: 5751
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-76
  article-title: Looking at self-consistent-charge density functional tight binding from a semiempirical perspective
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp0700130
– volume: 17
  start-page: 2375
  year: 2011
  ident: 10.7717/peerj-pchem.8/ref-9
  article-title: Application of a SCC-DFTB QM/MM approach to the investigation of the catalytic mechanism of fatty acid amide hydrolase
  publication-title: Journal of Molecular Modeling
  doi: 10.1007/s00894-011-0981-z
– volume: 44
  start-page: 484
  year: 2001
  ident: 10.7717/peerj-pchem.8/ref-58
  article-title: Quantum mechanics simulation of protein dynamics on long timescale
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.1114
– volume: 103
  start-page: 2421
  year: 2003
  ident: 10.7717/peerj-pchem.8/ref-41
  article-title: Quantum chemical studies of radical-containing enzymes
  publication-title: Chemical Reviews
  doi: 10.1021/cr020436s
– volume: 12
  start-page: 2689
  year: 2016
  ident: 10.7717/peerj-pchem.8/ref-4
  article-title: A projector-embedding approach for multiscale coupled-cluster calculations applied to citrate synthase
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.6b00285
– volume: 30
  start-page: 93
  year: 2017
  ident: 10.7717/peerj-pchem.8/ref-73
  article-title: Basis sets in quantum chemistry. (eds A.L. Parrill and K.B. Lipkowitz)
  publication-title: Reviews in Computational Chemistry
  doi: 10.1002/9781119356059.ch3
– volume: 105
  start-page: 5082
  year: 1996
  ident: 10.7717/peerj-pchem.8/ref-75
  article-title: Surprising cases of divergent behavior in Møller–Plesset perturbation theory
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.472352
– volume: 9
  start-page: 5381
  year: 2013
  ident: 10.7717/peerj-pchem.8/ref-22
  article-title: Incremental CCSD(T)(F12*)—MP2: A black box method to obtain highly accurate reaction energies
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct4008074
– volume: 132
  start-page: 035101
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-15
  article-title: Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.3280164
– volume: 60
  start-page: 1447
  year: 1997
  ident: 10.7717/peerj-pchem.8/ref-28
  article-title: Tight-binding modelling of materials
  publication-title: Reports on Progress in Physics
  doi: 10.1088/0034-4885/60/12/001
– volume: 9
  start-page: 2353
  year: 2018
  ident: 10.7717/peerj-pchem.8/ref-3
  article-title: Self-interaction error in density functional theory: an appraisal
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/acs.jpclett.8b00242
– volume: 1
  start-page: 1
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-71
  article-title: Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions
  publication-title: Chemistry Central Journal
  doi: 10.1186/1752-153X-1-19
– volume: 361
  start-page: 1387
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-74
  article-title: An analysis of reaction pathways for proton tunnelling in methylamine dehydrogenase
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2006.1867
– volume: 25
  start-page: 1463
  year: 2004
  ident: 10.7717/peerj-pchem.8/ref-31
  article-title: Accurate description of van der Waals complexes by density functional theory including empirical corrections
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.20078
– volume: 51
  start-page: 12947
  year: 1995
  ident: 10.7717/peerj-pchem.8/ref-81
  article-title: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon
  publication-title: Physical Review B
  doi: 10.1103/physrevb.51.12947
– volume: 114
  start-page: 11303
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-104
  article-title: Testing high-level QM/MM methods for modeling enzyme reactions: Acetyl-CoA deprotonation in citrate synthase
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp104069t
– volume: 106
  start-page: 6430
  year: 1997
  ident: 10.7717/peerj-pchem.8/ref-35
  article-title: The prediction of molecular equilibrium structures by the standard electronic wave functions
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.473634
– volume: 16
  start-page: 4443
  year: 2018
  ident: 10.7717/peerj-pchem.8/ref-57
  article-title: QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes
  publication-title: Organic & Biomolecular Chemistry
  doi: 10.1039/C8OB00066B
– volume: 107
  start-page: 881
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-24
  article-title: Analytic second derivatives for semiempirical models based on MNDO
  publication-title: Molecular Physics
  doi: 10.1080/00268970802676057
– volume: 16
  start-page: 1874
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-103
  article-title: High-level QM/MM modelling predicts an arginine as the acid in the condensation reaction catalysed by citrate synthase
  publication-title: Chemical Communications
  doi: 10.1039/b800496j
– volume: 18
  start-page: 208
  year: 2017
  ident: 10.7717/peerj-pchem.8/ref-109
  article-title: Free-energy landscape and proton transfer pathways in oxidative deamination by methylamine dehydrogenase
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201601113
– volume: 14
  start-page: 1841
  year: 2018
  ident: 10.7717/peerj-pchem.8/ref-7
  article-title: Explicit solvation matters: performance of QM/MM solvation models in nucleophilic addition
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.7b01206
– volume: 132
  start-page: 154104
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-33
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.3382344
– volume: 330
  start-page: 993
  year: 2003
  ident: 10.7717/peerj-pchem.8/ref-50
  article-title: Insights into the regioselectivity and RNA-binding affinity of HIV-1 nucleocapsid protein from linear-scaling quantum methods
  publication-title: Journal of Molecular Biology
  doi: 10.1016/S0022-2836(03)00658-2
– volume: 122
  start-page: 534
  year: 2000
  ident: 10.7717/peerj-pchem.8/ref-72
  article-title: Ab Initio QM/MM study of the citrate synthase mechanism. A low-barrier hydrogen bond is not involved
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja992874v
– volume-title: Practical strategies for electronic structure calculations
  year: 1995
  ident: 10.7717/peerj-pchem.8/ref-34
– volume-title: Non-covalent interactions: theory and experiment
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-42
  doi: 10.1039/9781847559906
– volume: 41
  start-page: 569
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-89
  article-title: Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost
  publication-title: Accounts of Chemical Research
  doi: 10.1021/ar700208h
– volume: 35
  start-page: 4399
  year: 2005
  ident: 10.7717/peerj-pchem.8/ref-60
  article-title: QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation
  publication-title: Chemical Communications
  doi: 10.1039/b503887a
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-32
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.20495
– volume: 282
  start-page: 23766
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-85
  article-title: New insights into the reductive half-reaction mechanism of aromatic amine dehydrogenase revealed by reaction with carbinolamine substrates
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M700677200
– volume: 123
  start-page: 7057
  year: 2019
  ident: 10.7717/peerj-pchem.8/ref-106
  article-title: Toward a quantum-chemical benchmark set for enzymatically catalyzed reactions: important steps and insights
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/acs.jpca.9b05088
– volume: 96
  start-page: 107536
  year: 2020
  ident: 10.7717/peerj-pchem.8/ref-45
  article-title: Towards chemically accurate QM/MM simulations on GPUs
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2020.107536
– volume: 59
  start-page: 2063
  year: 2019
  ident: 10.7717/peerj-pchem.8/ref-84
  article-title: Projector-based embedding eliminates density functional dependence for QM/MM calculations of reactions in enzymes and solution
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.8b00940
– volume: 110
  start-page: 13551
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-87
  article-title: Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp064544k
– volume: 6
  start-page: 2948
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-62
  article-title: Structural fluctuations in enzyme-catalyzed reactions: determinants of reactivity in fatty acid amide hydrolase from multivariate statistical analysis of quantum mechanics/molecular mechanics paths
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct100264j
– volume: 106
  start-page: 2107
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-36
  article-title: Quantitative quantum chemistry
  publication-title: Molecular Physics
  doi: 10.1080/00268970802258591
– volume: 267
  start-page: 529
  year: 1986
  ident: 10.7717/peerj-pchem.8/ref-90
  article-title: An approximation variant of LCAO-X-ALPHA methods
  publication-title: Zeitschrift für Physikalische Chemie
– volume: 127
  start-page: 15397
  year: 2005
  ident: 10.7717/peerj-pchem.8/ref-69
  article-title: Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja051592u
– volume: 26
  start-page: 596
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-102
  article-title: Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2007.04.002
– volume: 5
  start-page: 225
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-46
  article-title: The enzyme aromatic amine dehydrogenase induces a substrate conformation crucial for promoting vibration that significantly reduces the effective potential energy barrier to proton transfer
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2008.0068.focus
– volume: 111
  start-page: 10439
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-94
  article-title: General performance of density functionals
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp0734474
– volume: 1
  start-page: 3232
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-63
  article-title: Inclusion of dispersion effects significantly improves accuracy of calculated reaction barriers for cytochrome P450 catalyzed reactions
  publication-title: Journal of Physical Chemistry Letters
  doi: 10.1021/jz101279n
– volume: 58
  start-page: 7260
  year: 1998
  ident: 10.7717/peerj-pchem.8/ref-19
  article-title: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.58.7260
– volume: 118
  start-page: 14612
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-27
  article-title: Recommending Hartree–Fock theory with London-dispersion and basis-set-superposition corrections for the optimization or quantum refinement of protein structures
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp510148h
– volume: 11
  start-page: 2525
  year: 2015
  ident: 10.7717/peerj-pchem.8/ref-110
  article-title: Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.5b00246
– volume: 19
  start-page: 9798
  year: 2017
  ident: 10.7717/peerj-pchem.8/ref-66
  article-title: Automatic generation of reaction energy databases from highly accurate atomization energy benchmark sets
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/c7cp00757d
– volume: 52
  start-page: 2708
  year: 2013
  ident: 10.7717/peerj-pchem.8/ref-100
  article-title: Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology
  publication-title: Biochemistry
  doi: 10.1021/bi400215w
– volume: 7
  start-page: 931
  year: 2011
  ident: 10.7717/peerj-pchem.8/ref-26
  article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct100684s
– volume: 87
  start-page: 250
  year: 2019
  ident: 10.7717/peerj-pchem.8/ref-55
  article-title: QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2018.12.011
– volume: 123
  start-page: 8604
  year: 2001
  ident: 10.7717/peerj-pchem.8/ref-20
  article-title: QM/MM studies show substantial tunneling for the hydrogen-transfer reaction in methylamine dehydrogenase
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja016219a
– volume-title: Essentials of computational chemistry: theories and models
  year: 2004
  ident: 10.7717/peerj-pchem.8/ref-13
– volume: 81
  start-page: 391
  year: 1992
  ident: 10.7717/peerj-pchem.8/ref-96
  article-title: Extension of the MNDO formalism to d orbitals: integral approximations and preliminary numerical results
  publication-title: Theoretica Chimica Acta
  doi: 10.1007/bf01134863
– volume: 46
  start-page: 2354
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-65
  article-title: Computational enzymology
  publication-title: Chemical Communications
  doi: 10.1039/B925647D
– volume: 115
  start-page: 4598
  year: 2011
  ident: 10.7717/peerj-pchem.8/ref-93
  article-title: Benzene-pyridine interactions predicted by the effective fragment potential method
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp201039
– volume: 37
  start-page: 4425
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-8
  article-title: QM/MM simulations predict a covalent intermediate in the hen egg white lysozyme reaction with its natural substrate
  publication-title: Chemical Communications
  doi: 10.1039/b810099
– volume: 2
  start-page: 214
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-61
  article-title: Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling
  publication-title: Chemical Communications
  doi: 10.1039/b714136j
– volume: 102
  start-page: 6648
  year: 2005
  ident: 10.7717/peerj-pchem.8/ref-23
  article-title: Chemical theory and computation special feature: Ab initio quantum chemistry: Methodology and applications
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0408036102
– volume: 4
  start-page: e1994
  year: 2016
  ident: 10.7717/peerj-pchem.8/ref-52
  article-title: Towards a barrier height benchmark set for biologically relevant systems
  publication-title: PeerJ
  doi: 10.7717/peerj.1994
– volume: 50
  start-page: 14736
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-10
  article-title: QM/MM simulations as an assay for carbapenemase activity in class A β-lactamases
  publication-title: Chemical Communications
  doi: 10.1039/c4cc06495j
– volume: 111
  start-page: 3032
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-67
  article-title: Tunneling and classical paths for proton transfer in an enzyme reaction dominated by tunneling: Oxidation of tryptamine by aromatic amine dehydrogenase
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp067898k
– volume: 217
  start-page: 357
  year: 2000
  ident: 10.7717/peerj-pchem.8/ref-18
  article-title: A self-consistent charge density-functional based tight-binding scheme for large biomolecules
  publication-title: Physica Status Solidi B
  doi: 10.1002/3527603107.ch16
– volume: 125
  start-page: 9590
  year: 2003
  ident: 10.7717/peerj-pchem.8/ref-40
  article-title: Identification of Glu166 as the general base in the acylation reaction of class A β-Lactamases through QM/MM Modeling
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja034434g
– volume: 116
  start-page: 515
  year: 2002
  ident: 10.7717/peerj-pchem.8/ref-108
  article-title: Empirical correction to density functional theory for van der Waals interactions
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1424928
– volume: 39
  start-page: 12520
  year: 1989
  ident: 10.7717/peerj-pchem.8/ref-21
  article-title: Tight-binding models and density-functional theory
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.39.12520
– volume: 21
  start-page: 1494
  year: 2000
  ident: 10.7717/peerj-pchem.8/ref-105
  article-title: Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/1096-987X(200012)21:16<1494::AID-JCC6>3.0.CO;2-4
– volume: 608
  start-page: 380
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-56
  article-title: Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase
  publication-title: Chemical Physics Letters
  doi: 10.1016/j.cplett.2014.06.010
– volume: 11
  start-page: 713
  year: 2015
  ident: 10.7717/peerj-pchem.8/ref-49
  article-title: High-level QM/MM calculations support the concerted mechanism for Michael addition and covalent complex formation in thymidylate synthase
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct5005033
– volume: 8
  start-page: 4293
  year: 2012
  ident: 10.7717/peerj-pchem.8/ref-43
  article-title: A modified QM/MM hamiltonian with the self-consistent-charge density-functional-tight-binding theory for highly charged QM regions
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct300649f
– volume: 8
  start-page: 4637
  year: 2012
  ident: 10.7717/peerj-pchem.8/ref-64
  article-title: Effects of dispersion in density functional based quantum mechanical/molecular mechanical calculations on cytochrome P450 catalyzed reactions
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct300329h
– volume: 101
  start-page: 2775
  year: 2003
  ident: 10.7717/peerj-pchem.8/ref-98
  article-title: Extreme tunnelling in methylamine dehydrogenase revealed by hybrid QM/MM calculations: potential energy surface profile for methylamine and ethanolamine substrates and kinetic isotope effect values
  publication-title: Molecular Physics
  doi: 10.1080/0026897031000121271
– volume: 118
  start-page: 9095
  year: 2003
  ident: 10.7717/peerj-pchem.8/ref-30
  article-title: Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1569242
– volume: 100
  start-page: 616
  year: 1996
  ident: 10.7717/peerj-pchem.8/ref-97
  article-title: Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group
  publication-title: Journal of Physical Chemistry
  doi: 10.1021/jp952148o
– volume: 5
  start-page: 808
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-112
  article-title: The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct800568m
– volume: 48
  start-page: 1198
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-91
  article-title: QM/MM methods for biomolecular systems
  publication-title: Angewandte Chemie International Edition in English
  doi: 10.1002/anie.200802019
– volume: 46
  start-page: 3104
  year: 2010
  ident: 10.7717/peerj-pchem.8/ref-78
  article-title: New insights into the multi-step reaction pathway of the reductive half-reaction catalysed by aromatic amine dehydrogenase: a QM/MM study
  publication-title: Chemical Communications
  doi: 10.1039/c003107k
– volume: 69
  start-page: 521
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-101
  article-title: Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21482
– volume: 8
  start-page: 1816
  year: 2007
  ident: 10.7717/peerj-pchem.8/ref-82
  article-title: Analysis of classical and quantum paths for deprotonation of methylamine by methylamine dehydrogenase
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200700143
– volume: 47
  start-page: 2517
  year: 2011
  ident: 10.7717/peerj-pchem.8/ref-59
  article-title: Understanding the role of carbamate reactivity in fatty acid amide hydrolase inhibition by QM/MM mechanistic modelling
  publication-title: Chemical Communications
  doi: 10.1039/C0CC04937A
– volume: 8
  start-page: 3175
  year: 2012
  ident: 10.7717/peerj-pchem.8/ref-111
  article-title: Prediction of reaction barriers and thermochemical properties with explicitly correlated coupled-cluster methods: a basis set assessment
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct3005547
– volume: 629
  start-page: 342
  year: 1996
  ident: 10.7717/peerj-pchem.8/ref-2
  article-title: Hybrid Hartree-Fock density-functional theory functionals: the adiabatic connection method
  publication-title: Chemical Applications of Density-Functional Theory
  doi: 10.1021/bk-1996-0629.ch024
– volume: 10
  start-page: 1608
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-70
  article-title: Comparison of ab initio, DFT, and semiempirical QM/MM approaches for description of catalytic mechanism of hairpin ribozyme
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct401015e
– volume: 128
  start-page: 025104
  year: 2008
  ident: 10.7717/peerj-pchem.8/ref-68
  article-title: Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.2823055
– volume: 127
  start-page: 4454
  year: 2005
  ident: 10.7717/peerj-pchem.8/ref-37
  article-title: Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class a β-Lactamase with benzylpenicillin
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja044210
– volume: 56
  start-page: 724
  year: 2004
  ident: 10.7717/peerj-pchem.8/ref-51
  article-title: Quantum descriptors for biological macromolecules from linear-scaling electronic structure methods
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.20171
– volume: 10
  start-page: 1
  year: 1976
  ident: 10.7717/peerj-pchem.8/ref-80
  article-title: Theoretical models incorporating electron correlation
  publication-title: International Journal of Quantum Chemistry
  doi: 10.1002/qua.560100802
– volume: 121
  start-page: 9785
  year: 2017
  ident: 10.7717/peerj-pchem.8/ref-83
  article-title: Ab Initio QM/MM modeling of the rate-limiting proton transfer step in the deamination of tryptamine by aromatic amine dehydrogenase
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/acs.jpcb.7b06892
– volume: 16
  start-page: 1483
  year: 1995
  ident: 10.7717/peerj-pchem.8/ref-95
  article-title: Calculation of molecular geometries, relative conformational energies, dipole moments, and molecular electrostatic potential fitted charges of small organic molecules of biochemical interest by density functional theory
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.540161206
– volume: 116
  start-page: 316
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-16
  article-title: The SCC-DFTB method and its application to biological systems
  publication-title: Theoretical Chemistry Accounts
  doi: 10.1007/s00214-005-0066-0
– volume: 16
  start-page: 14357
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-88
  article-title: One-electron self-interaction and the asymptotics of the Kohn–Sham potential: an impaired relation
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/c3cp55433c
– volume: 8
  start-page: 1985
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-48
  article-title: Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/b600027d
– volume: 113
  start-page: 11984
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-38
  article-title: High level QM/MM modeling of the formation of the tetrahedral intermediate in the acylation of wild type and K73A mutant TEM-1 class A β-Lactamase
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp9037254
– volume: 122
  start-page: 114110
  year: 2005
  ident: 10.7717/peerj-pchem.8/ref-53
  article-title: Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1871913
– volume: 24
  start-page: 565
  year: 2003
  ident: 10.7717/peerj-pchem.8/ref-17
  article-title: Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.10201
– volume: 128
  start-page: 16904
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-99
  article-title: Elucidation of hydrolysis mechanisms for fatty acid amide hydrolase and its Lys142Ala variant via QM/MM simulations
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja065863s
– volume: 5
  start-page: 1761
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-79
  article-title: Convergence of the CCSD(T) Correction term for the stacked complex methyl adenine-methyl thymine: comparison with lower-cost alternatives
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/ct900126q
– year: 2004
  ident: 10.7717/peerj-pchem.8/ref-25
  article-title: Gaussian 03, Revision C.02
– volume: 8
  start-page: 2428
  year: 2018
  ident: 10.7717/peerj-pchem.8/ref-54
  article-title: Substrate binding induces conformational changes in a class A β-lactamase that prime it for catalysis
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.7b04114
– volume: 9
  start-page: e1393
  year: 2019
  ident: 10.7717/peerj-pchem.8/ref-44
  article-title: Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
  doi: 10.1002/wcms.1393
– volume: 52
  start-page: 30
  year: 2014
  ident: 10.7717/peerj-pchem.8/ref-86
  article-title: Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2014.06.002
– volume: 4
  start-page: 206
  year: 2006
  ident: 10.7717/peerj-pchem.8/ref-39
  article-title: Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A β-lactamase
  publication-title: Organic & Biomolecular Chemistry
  doi: 10.1039/B512969A
– volume: 38
  start-page: 10146
  year: 2009
  ident: 10.7717/peerj-pchem.8/ref-92
  article-title: An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene–methane, and benzene–H2S
  publication-title: Journal of Physical Chemistry A 113
  doi: 10.1021/jp9034375
SSID ssj0002874540
Score 2.107144
Snippet To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage e8
SubjectTerms Biochemical Modeling
Enzyme-Catalyzed Reactions
Quantum Chemical Methods
Reaction energy calculation
Title Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
URI https://doaj.org/article/e5e9a64ab99a4c4c8f84245bf73d461c
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyIT1G-5AExEUhiJ3ZGQCCEBBNI3aKzfRYC0paWDmXgt3N22qoMiIUlUqxTFD1dfPcuvneMHVNUUGkZnRdEIr2AxHiUSeZSLa0XysemsPuH8vZJ3nWL7sKor3AmrJUHboE7xwIrKCWYqgJppdVeh591xivhZJnZsPtSzFsgUy-xZKSCtFwrqqmIspwPEIcvyYCQaM70jyC0oNUfg8rNOlubZoP8on2LDbaEvU22cjUbwrbFXi_Ji54biBVt_j4mHMYNbzD06wZ4eTsBesQp9-R0b-M0LjKlXDB2LPAgKx2kIHjfzxdHPFZtJp_ouJmQyeekwdE2e7q5fry6TabzERKb6UD-AFOlrAbhSlmk1lQoPCqHTkosMiB264zyJYjUZs7IUlcF5JaCuiLagkrssOVev4e7jFcCclDSEtqFzCE1oJR20mmgL9xC3mGnM8BqOxUPDzMs3moiEQHfOuJbR3xr3WEnc_NBq5rxm-FlQH9uFMSu4wK5QD11gfovF9j7j4fss9U8UOm0oI3jgC1_DMd4SPnGhzmKrkXX-6_rb9tX28Y
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+quantum+mechanical+methods+for+calculating+reaction+energies+of+reactions+catalyzed+by+enzymes&rft.jtitle=PeerJ+physical+chemistry&rft.au=Jitnapa+Sirirak&rft.au=Narin+Lawan&rft.au=Marc+W.+Van+der+Kamp&rft.au=Jeremy+N.+Harvey&rft.date=2020-05-20&rft.pub=PeerJ+Inc&rft.eissn=2689-7733&rft.volume=2&rft.spage=e8&rft_id=info:doi/10.7717%2Fpeerj-pchem.8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5e9a64ab99a4c4c8f84245bf73d461c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-7733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-7733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-7733&client=summon