Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes
To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory...
Saved in:
Published in | PeerJ physical chemistry Vol. 2; p. e8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
PeerJ Inc
20.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol
−1
, respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol
−1
), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol
−1
). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions. |
---|---|
AbstractList | To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol−1, respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol−1), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol−1). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions. To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol −1 , respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol −1 ), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol −1 ). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions. |
ArticleNumber | e8 |
Author | Van der Kamp, Marc W. Mulholland, Adrian J. Lawan, Narin Harvey, Jeremy N. Sirirak, Jitnapa |
Author_xml | – sequence: 1 givenname: Jitnapa surname: Sirirak fullname: Sirirak, Jitnapa organization: Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand – sequence: 2 givenname: Narin surname: Lawan fullname: Lawan, Narin organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand – sequence: 3 givenname: Marc W. surname: Van der Kamp fullname: Van der Kamp, Marc W. organization: School of Biochemistry, University of Bristol, Bristol, United Kingdom – sequence: 4 givenname: Jeremy N. surname: Harvey fullname: Harvey, Jeremy N. organization: Department of Chemistry, KU Leuven, Leuven, Belgium – sequence: 5 givenname: Adrian J. surname: Mulholland fullname: Mulholland, Adrian J. organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom |
BookMark | eNp1kEtPwzAQhC0EElB65J4_kOIkTuwcoeIlIXGBs7VZb1q3SVzs9FB-PW5BFULitA99M9LMJTsd3ECMXWd8JmUmbzZEfpVucEn9TJ2wi7xSdSplUZz-2s_ZNIQV5zxXUpSCX7D1HQ247MGv7bBIPrYwjNs-6QmXMFiELq7j0pmQtM4n8cZtB-Me9QQ4WjckNJBfWAqJa4_PENERut0nmaTZReRz11O4YmctdIGmP3PC3h_u3-ZP6cvr4_P89iXFTEmVZkBcSlRQmEqUHJuaipakISMElRlIpUwj2woKjplpRAxXQo55FFe8IllM2PO3r3Gw0htvY7yddmD14eH8QoMfLXakqaQaKgFNXYNAgapVIhdl08rCiCrD6JV-e6F3IXhqj34Z1_vi9aF4fSheq8gXf3i0I-w7GT3Y7h_VF8H4kGA |
CitedBy_id | crossref_primary_10_1002_anie_202213610 crossref_primary_10_1016_j_checat_2021_04_009 crossref_primary_10_1016_j_csbj_2021_08_008 crossref_primary_10_1039_D0OB02566F crossref_primary_10_1021_acs_jctc_3c00558 crossref_primary_10_1021_acs_jpcb_3c04138 crossref_primary_10_3390_molecules28093649 crossref_primary_10_1007_s00214_021_02770_9 crossref_primary_10_1021_acs_jpclett_1c02135 crossref_primary_10_1002_ange_202213610 crossref_primary_10_1002_jcc_26380 crossref_primary_10_1021_acschembio_0c00784 |
Cites_doi | 10.1021/cr400388t 10.1007/s00214-009-0545-9 10.1002/anie.200602711 10.1038/s41570-018-0148 10.1002/jcc.20570 10.1002/wcms.82 10.1021/jp5052276 10.1021/acs.jctc.8b00348 10.1039/c0ob00691b 10.1021/cb500067z 10.1021/jp0700130 10.1007/s00894-011-0981-z 10.1002/prot.1114 10.1021/cr020436s 10.1021/acs.jctc.6b00285 10.1002/9781119356059.ch3 10.1063/1.472352 10.1021/ct4008074 10.1063/1.3280164 10.1088/0034-4885/60/12/001 10.1021/acs.jpclett.8b00242 10.1186/1752-153X-1-19 10.1098/rstb.2006.1867 10.1002/jcc.20078 10.1103/physrevb.51.12947 10.1021/jp104069t 10.1063/1.473634 10.1039/C8OB00066B 10.1080/00268970802676057 10.1039/b800496j 10.1002/cphc.201601113 10.1021/acs.jctc.7b01206 10.1063/1.3382344 10.1016/S0022-2836(03)00658-2 10.1021/ja992874v 10.1039/9781847559906 10.1021/ar700208h 10.1039/b503887a 10.1002/jcc.20495 10.1074/jbc.M700677200 10.1021/acs.jpca.9b05088 10.1016/j.jmgm.2020.107536 10.1021/acs.jcim.8b00940 10.1021/jp064544k 10.1021/ct100264j 10.1080/00268970802258591 10.1021/ja051592u 10.1016/j.jmgm.2007.04.002 10.1098/rsif.2008.0068.focus 10.1021/jp0734474 10.1021/jz101279n 10.1103/PhysRevB.58.7260 10.1021/jp510148h 10.1021/acs.jctc.5b00246 10.1039/c7cp00757d 10.1021/bi400215w 10.1021/ct100684s 10.1016/j.jmgm.2018.12.011 10.1021/ja016219a 10.1007/bf01134863 10.1039/B925647D 10.1021/jp201039 10.1039/b810099 10.1039/b714136j 10.1073/pnas.0408036102 10.7717/peerj.1994 10.1039/c4cc06495j 10.1021/jp067898k 10.1002/3527603107.ch16 10.1021/ja034434g 10.1063/1.1424928 10.1103/PhysRevB.39.12520 10.1002/1096-987X(200012)21:16<1494::AID-JCC6>3.0.CO;2-4 10.1016/j.cplett.2014.06.010 10.1021/ct5005033 10.1021/ct300649f 10.1021/ct300329h 10.1080/0026897031000121271 10.1063/1.1569242 10.1021/jp952148o 10.1021/ct800568m 10.1002/anie.200802019 10.1039/c003107k 10.1002/prot.21482 10.1002/cphc.200700143 10.1039/C0CC04937A 10.1021/ct3005547 10.1021/bk-1996-0629.ch024 10.1021/ct401015e 10.1063/1.2823055 10.1021/ja044210 10.1002/prot.20171 10.1002/qua.560100802 10.1021/acs.jpcb.7b06892 10.1002/jcc.540161206 10.1007/s00214-005-0066-0 10.1039/c3cp55433c 10.1039/b600027d 10.1021/jp9037254 10.1063/1.1871913 10.1002/jcc.10201 10.1021/ja065863s 10.1021/ct900126q 10.1021/acscatal.7b04114 10.1002/wcms.1393 10.1016/j.jmgm.2014.06.002 10.1039/B512969A 10.1021/jp9034375 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.7717/peerj-pchem.8 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2689-7733 |
ExternalDocumentID | oai_doaj_org_article_e5e9a64ab99a4c4c8f84245bf73d461c 10_7717_peerj_pchem_8 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c1878-1ae077c8a3d6450cb9e3fe7ded44e51a788db7f6a30c1db46895a2c2187606e73 |
IEDL.DBID | DOA |
ISSN | 2689-7733 |
IngestDate | Wed Aug 27 01:06:23 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 Tue Jul 01 02:43:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1878-1ae077c8a3d6450cb9e3fe7ded44e51a788db7f6a30c1db46895a2c2187606e73 |
OpenAccessLink | https://doaj.org/article/e5e9a64ab99a4c4c8f84245bf73d461c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e5e9a64ab99a4c4c8f84245bf73d461c crossref_primary_10_7717_peerj_pchem_8 crossref_citationtrail_10_7717_peerj_pchem_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-20 |
PublicationDateYYYYMMDD | 2020-05-20 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | PeerJ physical chemistry |
PublicationYear | 2020 |
Publisher | PeerJ Inc |
Publisher_xml | – name: PeerJ Inc |
References | Lawan (10.7717/peerj-pchem.8/ref-55) 2019; 87 Mata (10.7717/peerj-pchem.8/ref-68) 2008; 128 Margraf (10.7717/peerj-pchem.8/ref-66) 2017; 19 Bowman (10.7717/peerj-pchem.8/ref-8) 2008; 37 Chudyk (10.7717/peerj-pchem.8/ref-10) 2014; 50 Pang (10.7717/peerj-pchem.8/ref-78) 2010; 46 Hermann (10.7717/peerj-pchem.8/ref-38) 2009; 113 Sattelmeyer (10.7717/peerj-pchem.8/ref-87) 2006; 110 Grimme (10.7717/peerj-pchem.8/ref-30) 2003; 118 Lawan (10.7717/peerj-pchem.8/ref-56) 2014; 608 Wu (10.7717/peerj-pchem.8/ref-108) 2002; 116 Nunez (10.7717/peerj-pchem.8/ref-74) 2006; 361 Hou (10.7717/peerj-pchem.8/ref-43) 2012; 8 Goerigk (10.7717/peerj-pchem.8/ref-27) 2014; 118 Frisch (10.7717/peerj-pchem.8/ref-25) 2004 Smith (10.7717/peerj-pchem.8/ref-93) 2011; 115 Zhang (10.7717/peerj-pchem.8/ref-111) 2012; 8 Amaro (10.7717/peerj-pchem.8/ref-1) 2018; 2 Lodola (10.7717/peerj-pchem.8/ref-61) 2008; 2 Wappett (10.7717/peerj-pchem.8/ref-106) 2019; 123 Hermann (10.7717/peerj-pchem.8/ref-37) 2005; 127 Schwabe (10.7717/peerj-pchem.8/ref-89) 2008; 41 Gräfenstein (10.7717/peerj-pchem.8/ref-29) 2009; 123 Jurečka (10.7717/peerj-pchem.8/ref-47) 2007; 28 Pople (10.7717/peerj-pchem.8/ref-80) 1976; 10 Capoferri (10.7717/peerj-pchem.8/ref-9) 2011; 17 Van der Kamp (10.7717/peerj-pchem.8/ref-104) 2010; 114 Zelleke (10.7717/peerj-pchem.8/ref-109) 2017; 18 Grimme (10.7717/peerj-pchem.8/ref-33) 2010; 132 Frisch (10.7717/peerj-pchem.8/ref-24) 2009; 107 Kaiyawet (10.7717/peerj-pchem.8/ref-49) 2015; 11 Johannissen (10.7717/peerj-pchem.8/ref-46) 2008; 5 Lodola (10.7717/peerj-pchem.8/ref-62) 2010; 6 Mulholland (10.7717/peerj-pchem.8/ref-72) 2000; 122 Thiel (10.7717/peerj-pchem.8/ref-96) 1992; 81 Kruger (10.7717/peerj-pchem.8/ref-53) 2005; 122 Hermann (10.7717/peerj-pchem.8/ref-40) 2003; 125 Elstner (10.7717/peerj-pchem.8/ref-19) 1998; 58 Sousa (10.7717/peerj-pchem.8/ref-94) 2007; 111 Elstner (10.7717/peerj-pchem.8/ref-18) 2000; 217 Otte (10.7717/peerj-pchem.8/ref-76) 2007; 111 Sherrill (10.7717/peerj-pchem.8/ref-92) 2009; 38 Claeyssens (10.7717/peerj-pchem.8/ref-12) 2011; 9 Zhang (10.7717/peerj-pchem.8/ref-110) 2015; 11 Rydberg (10.7717/peerj-pchem.8/ref-86) 2014; 52 Masgrau (10.7717/peerj-pchem.8/ref-67) 2007; 111 Roujeinikova (10.7717/peerj-pchem.8/ref-85) 2007; 282 Jurecka (10.7717/peerj-pchem.8/ref-48) 2006; 8 Pitoňak (10.7717/peerj-pchem.8/ref-79) 2009; 5 Friedrich (10.7717/peerj-pchem.8/ref-22) 2013; 9 Helgaker (10.7717/peerj-pchem.8/ref-35) 1997; 106 Tubert-Brohman (10.7717/peerj-pchem.8/ref-99) 2006; 128 Ranaghan (10.7717/peerj-pchem.8/ref-83) 2017; 121 Seifert (10.7717/peerj-pchem.8/ref-90) 1986; 267 Senn (10.7717/peerj-pchem.8/ref-91) 2009; 48 Elstner (10.7717/peerj-pchem.8/ref-17) 2003; 24 Goringe (10.7717/peerj-pchem.8/ref-28) 1997; 60 Khandogin (10.7717/peerj-pchem.8/ref-50) 2003; 330 Faulder (10.7717/peerj-pchem.8/ref-20) 2001; 123 Lonsdale (10.7717/peerj-pchem.8/ref-65) 2010; 46 Tresadern (10.7717/peerj-pchem.8/ref-98) 2003; 101 Bao (10.7717/peerj-pchem.8/ref-3) 2018; 9 Van der Kamp (10.7717/peerj-pchem.8/ref-100) 2013; 52 Van der Kamp (10.7717/peerj-pchem.8/ref-102) 2007; 26 Grimme (10.7717/peerj-pchem.8/ref-31) 2004; 25 Langan (10.7717/peerj-pchem.8/ref-54) 2018; 8 Blomberg (10.7717/peerj-pchem.8/ref-6) 2014; 114 Dieterich (10.7717/peerj-pchem.8/ref-15) 2010; 132 Werner (10.7717/peerj-pchem.8/ref-107) 2012; 2 Liu (10.7717/peerj-pchem.8/ref-58) 2001; 44 Gaus (10.7717/peerj-pchem.8/ref-26) 2011; 7 Lonsdale (10.7717/peerj-pchem.8/ref-63) 2010; 1 Meroueh (10.7717/peerj-pchem.8/ref-69) 2005; 127 Friesner (10.7717/peerj-pchem.8/ref-23) 2005; 102 Himo (10.7717/peerj-pchem.8/ref-41) 2003; 103 Bistoni (10.7717/peerj-pchem.8/ref-5) 2018; 14 Ranaghan (10.7717/peerj-pchem.8/ref-82) 2007; 8 Palermo (10.7717/peerj-pchem.8/ref-77) 2014; 119 Bennie (10.7717/peerj-pchem.8/ref-4) 2016; 12 Claeyssens (10.7717/peerj-pchem.8/ref-11) 2006; 45 Elstner (10.7717/peerj-pchem.8/ref-16) 2006; 116 Hermann (10.7717/peerj-pchem.8/ref-39) 2006; 4 Hobza (10.7717/peerj-pchem.8/ref-42) 2009 Thiel (10.7717/peerj-pchem.8/ref-97) 1996; 100 Ranaghan (10.7717/peerj-pchem.8/ref-84) 2019; 59 Lonsdale (10.7717/peerj-pchem.8/ref-64) 2012; 8 Cramer (10.7717/peerj-pchem.8/ref-13) 2004 Hehre (10.7717/peerj-pchem.8/ref-34) 1995 Lence (10.7717/peerj-pchem.8/ref-57) 2018; 16 Kromann (10.7717/peerj-pchem.8/ref-52) 2016; 4 Mulholland (10.7717/peerj-pchem.8/ref-71) 2007; 1 Zheng (10.7717/peerj-pchem.8/ref-112) 2009; 5 Daniels (10.7717/peerj-pchem.8/ref-14) 2014; 9 Van der Kamp (10.7717/peerj-pchem.8/ref-103) 2008; 16 St.-Amant (10.7717/peerj-pchem.8/ref-95) 1995; 16 Jász (10.7717/peerj-pchem.8/ref-45) 2020; 96 Lodola (10.7717/peerj-pchem.8/ref-59) 2011; 47 Lodola (10.7717/peerj-pchem.8/ref-60) 2005; 35 Van der Kamp (10.7717/peerj-pchem.8/ref-101) 2007; 69 Mlýnský (10.7717/peerj-pchem.8/ref-70) 2014; 10 Huggins (10.7717/peerj-pchem.8/ref-44) 2019; 9 Helgaker (10.7717/peerj-pchem.8/ref-36) 2008; 106 Foulkes (10.7717/peerj-pchem.8/ref-21) 1989; 39 Baker (10.7717/peerj-pchem.8/ref-2) 1996; 629 Grimme (10.7717/peerj-pchem.8/ref-32) 2006; 27 Nagy (10.7717/peerj-pchem.8/ref-73) 2017; 30 Boereboom (10.7717/peerj-pchem.8/ref-7) 2018; 14 Olsen (10.7717/peerj-pchem.8/ref-75) 1996; 105 Porezag (10.7717/peerj-pchem.8/ref-81) 1995; 51 Khandogin (10.7717/peerj-pchem.8/ref-51) 2004; 56 Schmidt (10.7717/peerj-pchem.8/ref-88) 2014; 16 Van der Vaart (10.7717/peerj-pchem.8/ref-105) 2000; 21 |
References_xml | – volume: 114 start-page: 3601 year: 2014 ident: 10.7717/peerj-pchem.8/ref-6 article-title: Quantum chemical studies of mechanisms for metalloenzymes publication-title: Chemical Reviews doi: 10.1021/cr400388t – volume: 123 start-page: 171 year: 2009 ident: 10.7717/peerj-pchem.8/ref-29 article-title: The self-interaction error and the description of non-dynamic electron correlation in density functional theory publication-title: Theoretical Chemistry Accounts doi: 10.1007/s00214-009-0545-9 – volume: 45 start-page: 6856 year: 2006 ident: 10.7717/peerj-pchem.8/ref-11 article-title: High-Accuracy computation of reaction barriers in enzymes publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200602711 – volume: 2 start-page: 0148 year: 2018 ident: 10.7717/peerj-pchem.8/ref-1 article-title: Multiscale methods in drug design bridge chemical and biological complexity in the search for cures publication-title: Nature Reviews Chemistry doi: 10.1038/s41570-018-0148 – volume: 28 start-page: 555 year: 2007 ident: 10.7717/peerj-pchem.8/ref-47 article-title: Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.20570 – volume: 2 start-page: 242 year: 2012 ident: 10.7717/peerj-pchem.8/ref-107 article-title: Molpro: a general-purpose quantum chemistry program package publication-title: WIREs Computational Molecular Science doi: 10.1002/wcms.82 – volume: 119 start-page: 789 year: 2014 ident: 10.7717/peerj-pchem.8/ref-77 article-title: Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion publication-title: Journal of Physical Chemistry B doi: 10.1021/jp5052276 – volume: 14 start-page: 3524 year: 2018 ident: 10.7717/peerj-pchem.8/ref-5 article-title: Toward accurate QM/MM reaction barriers with large QM regions using domain based pair natural orbital coupled cluster theory publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.8b00348 – volume: 9 start-page: 1578 year: 2011 ident: 10.7717/peerj-pchem.8/ref-12 article-title: Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions publication-title: Organic & Biomolecular Chemistry doi: 10.1039/c0ob00691b – volume: 9 start-page: 1025 issue: 4 year: 2014 ident: 10.7717/peerj-pchem.8/ref-14 article-title: Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM Simulation, and mutagenesis publication-title: ACS Chemical Biology doi: 10.1021/cb500067z – volume: 111 start-page: 5751 year: 2007 ident: 10.7717/peerj-pchem.8/ref-76 article-title: Looking at self-consistent-charge density functional tight binding from a semiempirical perspective publication-title: Journal of Physical Chemistry A doi: 10.1021/jp0700130 – volume: 17 start-page: 2375 year: 2011 ident: 10.7717/peerj-pchem.8/ref-9 article-title: Application of a SCC-DFTB QM/MM approach to the investigation of the catalytic mechanism of fatty acid amide hydrolase publication-title: Journal of Molecular Modeling doi: 10.1007/s00894-011-0981-z – volume: 44 start-page: 484 year: 2001 ident: 10.7717/peerj-pchem.8/ref-58 article-title: Quantum mechanics simulation of protein dynamics on long timescale publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.1114 – volume: 103 start-page: 2421 year: 2003 ident: 10.7717/peerj-pchem.8/ref-41 article-title: Quantum chemical studies of radical-containing enzymes publication-title: Chemical Reviews doi: 10.1021/cr020436s – volume: 12 start-page: 2689 year: 2016 ident: 10.7717/peerj-pchem.8/ref-4 article-title: A projector-embedding approach for multiscale coupled-cluster calculations applied to citrate synthase publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.6b00285 – volume: 30 start-page: 93 year: 2017 ident: 10.7717/peerj-pchem.8/ref-73 article-title: Basis sets in quantum chemistry. (eds A.L. Parrill and K.B. Lipkowitz) publication-title: Reviews in Computational Chemistry doi: 10.1002/9781119356059.ch3 – volume: 105 start-page: 5082 year: 1996 ident: 10.7717/peerj-pchem.8/ref-75 article-title: Surprising cases of divergent behavior in Møller–Plesset perturbation theory publication-title: Journal of Chemical Physics doi: 10.1063/1.472352 – volume: 9 start-page: 5381 year: 2013 ident: 10.7717/peerj-pchem.8/ref-22 article-title: Incremental CCSD(T)(F12*)—MP2: A black box method to obtain highly accurate reaction energies publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct4008074 – volume: 132 start-page: 035101 year: 2010 ident: 10.7717/peerj-pchem.8/ref-15 article-title: Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations publication-title: Journal of Chemical Physics doi: 10.1063/1.3280164 – volume: 60 start-page: 1447 year: 1997 ident: 10.7717/peerj-pchem.8/ref-28 article-title: Tight-binding modelling of materials publication-title: Reports on Progress in Physics doi: 10.1088/0034-4885/60/12/001 – volume: 9 start-page: 2353 year: 2018 ident: 10.7717/peerj-pchem.8/ref-3 article-title: Self-interaction error in density functional theory: an appraisal publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/acs.jpclett.8b00242 – volume: 1 start-page: 1 year: 2007 ident: 10.7717/peerj-pchem.8/ref-71 article-title: Chemical accuracy in QM/MM calculations on enzyme-catalysed reactions publication-title: Chemistry Central Journal doi: 10.1186/1752-153X-1-19 – volume: 361 start-page: 1387 year: 2006 ident: 10.7717/peerj-pchem.8/ref-74 article-title: An analysis of reaction pathways for proton tunnelling in methylamine dehydrogenase publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2006.1867 – volume: 25 start-page: 1463 year: 2004 ident: 10.7717/peerj-pchem.8/ref-31 article-title: Accurate description of van der Waals complexes by density functional theory including empirical corrections publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.20078 – volume: 51 start-page: 12947 year: 1995 ident: 10.7717/peerj-pchem.8/ref-81 article-title: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon publication-title: Physical Review B doi: 10.1103/physrevb.51.12947 – volume: 114 start-page: 11303 year: 2010 ident: 10.7717/peerj-pchem.8/ref-104 article-title: Testing high-level QM/MM methods for modeling enzyme reactions: Acetyl-CoA deprotonation in citrate synthase publication-title: Journal of Physical Chemistry B doi: 10.1021/jp104069t – volume: 106 start-page: 6430 year: 1997 ident: 10.7717/peerj-pchem.8/ref-35 article-title: The prediction of molecular equilibrium structures by the standard electronic wave functions publication-title: Journal of Chemical Physics doi: 10.1063/1.473634 – volume: 16 start-page: 4443 year: 2018 ident: 10.7717/peerj-pchem.8/ref-57 article-title: QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes publication-title: Organic & Biomolecular Chemistry doi: 10.1039/C8OB00066B – volume: 107 start-page: 881 year: 2009 ident: 10.7717/peerj-pchem.8/ref-24 article-title: Analytic second derivatives for semiempirical models based on MNDO publication-title: Molecular Physics doi: 10.1080/00268970802676057 – volume: 16 start-page: 1874 year: 2008 ident: 10.7717/peerj-pchem.8/ref-103 article-title: High-level QM/MM modelling predicts an arginine as the acid in the condensation reaction catalysed by citrate synthase publication-title: Chemical Communications doi: 10.1039/b800496j – volume: 18 start-page: 208 year: 2017 ident: 10.7717/peerj-pchem.8/ref-109 article-title: Free-energy landscape and proton transfer pathways in oxidative deamination by methylamine dehydrogenase publication-title: ChemPhysChem doi: 10.1002/cphc.201601113 – volume: 14 start-page: 1841 year: 2018 ident: 10.7717/peerj-pchem.8/ref-7 article-title: Explicit solvation matters: performance of QM/MM solvation models in nucleophilic addition publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.7b01206 – volume: 132 start-page: 154104 year: 2010 ident: 10.7717/peerj-pchem.8/ref-33 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: Journal of Chemical Physics doi: 10.1063/1.3382344 – volume: 330 start-page: 993 year: 2003 ident: 10.7717/peerj-pchem.8/ref-50 article-title: Insights into the regioselectivity and RNA-binding affinity of HIV-1 nucleocapsid protein from linear-scaling quantum methods publication-title: Journal of Molecular Biology doi: 10.1016/S0022-2836(03)00658-2 – volume: 122 start-page: 534 year: 2000 ident: 10.7717/peerj-pchem.8/ref-72 article-title: Ab Initio QM/MM study of the citrate synthase mechanism. A low-barrier hydrogen bond is not involved publication-title: Journal of the American Chemical Society doi: 10.1021/ja992874v – volume-title: Practical strategies for electronic structure calculations year: 1995 ident: 10.7717/peerj-pchem.8/ref-34 – volume-title: Non-covalent interactions: theory and experiment year: 2009 ident: 10.7717/peerj-pchem.8/ref-42 doi: 10.1039/9781847559906 – volume: 41 start-page: 569 year: 2008 ident: 10.7717/peerj-pchem.8/ref-89 article-title: Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost publication-title: Accounts of Chemical Research doi: 10.1021/ar700208h – volume: 35 start-page: 4399 year: 2005 ident: 10.7717/peerj-pchem.8/ref-60 article-title: QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation publication-title: Chemical Communications doi: 10.1039/b503887a – volume: 27 start-page: 1787 year: 2006 ident: 10.7717/peerj-pchem.8/ref-32 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.20495 – volume: 282 start-page: 23766 year: 2007 ident: 10.7717/peerj-pchem.8/ref-85 article-title: New insights into the reductive half-reaction mechanism of aromatic amine dehydrogenase revealed by reaction with carbinolamine substrates publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M700677200 – volume: 123 start-page: 7057 year: 2019 ident: 10.7717/peerj-pchem.8/ref-106 article-title: Toward a quantum-chemical benchmark set for enzymatically catalyzed reactions: important steps and insights publication-title: Journal of Physical Chemistry A doi: 10.1021/acs.jpca.9b05088 – volume: 96 start-page: 107536 year: 2020 ident: 10.7717/peerj-pchem.8/ref-45 article-title: Towards chemically accurate QM/MM simulations on GPUs publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2020.107536 – volume: 59 start-page: 2063 year: 2019 ident: 10.7717/peerj-pchem.8/ref-84 article-title: Projector-based embedding eliminates density functional dependence for QM/MM calculations of reactions in enzymes and solution publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.8b00940 – volume: 110 start-page: 13551 year: 2006 ident: 10.7717/peerj-pchem.8/ref-87 article-title: Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules publication-title: Journal of Physical Chemistry A doi: 10.1021/jp064544k – volume: 6 start-page: 2948 year: 2010 ident: 10.7717/peerj-pchem.8/ref-62 article-title: Structural fluctuations in enzyme-catalyzed reactions: determinants of reactivity in fatty acid amide hydrolase from multivariate statistical analysis of quantum mechanics/molecular mechanics paths publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct100264j – volume: 106 start-page: 2107 year: 2008 ident: 10.7717/peerj-pchem.8/ref-36 article-title: Quantitative quantum chemistry publication-title: Molecular Physics doi: 10.1080/00268970802258591 – volume: 267 start-page: 529 year: 1986 ident: 10.7717/peerj-pchem.8/ref-90 article-title: An approximation variant of LCAO-X-ALPHA methods publication-title: Zeitschrift für Physikalische Chemie – volume: 127 start-page: 15397 year: 2005 ident: 10.7717/peerj-pchem.8/ref-69 article-title: Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70 publication-title: Journal of the American Chemical Society doi: 10.1021/ja051592u – volume: 26 start-page: 596 year: 2007 ident: 10.7717/peerj-pchem.8/ref-102 article-title: Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2007.04.002 – volume: 5 start-page: 225 year: 2008 ident: 10.7717/peerj-pchem.8/ref-46 article-title: The enzyme aromatic amine dehydrogenase induces a substrate conformation crucial for promoting vibration that significantly reduces the effective potential energy barrier to proton transfer publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2008.0068.focus – volume: 111 start-page: 10439 year: 2007 ident: 10.7717/peerj-pchem.8/ref-94 article-title: General performance of density functionals publication-title: Journal of Physical Chemistry A doi: 10.1021/jp0734474 – volume: 1 start-page: 3232 year: 2010 ident: 10.7717/peerj-pchem.8/ref-63 article-title: Inclusion of dispersion effects significantly improves accuracy of calculated reaction barriers for cytochrome P450 catalyzed reactions publication-title: Journal of Physical Chemistry Letters doi: 10.1021/jz101279n – volume: 58 start-page: 7260 year: 1998 ident: 10.7717/peerj-pchem.8/ref-19 article-title: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties publication-title: Physical Review B doi: 10.1103/PhysRevB.58.7260 – volume: 118 start-page: 14612 year: 2014 ident: 10.7717/peerj-pchem.8/ref-27 article-title: Recommending Hartree–Fock theory with London-dispersion and basis-set-superposition corrections for the optimization or quantum refinement of protein structures publication-title: Journal of Physical Chemistry B doi: 10.1021/jp510148h – volume: 11 start-page: 2525 year: 2015 ident: 10.7717/peerj-pchem.8/ref-110 article-title: Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.5b00246 – volume: 19 start-page: 9798 year: 2017 ident: 10.7717/peerj-pchem.8/ref-66 article-title: Automatic generation of reaction energy databases from highly accurate atomization energy benchmark sets publication-title: Physical Chemistry Chemical Physics doi: 10.1039/c7cp00757d – volume: 52 start-page: 2708 year: 2013 ident: 10.7717/peerj-pchem.8/ref-100 article-title: Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology publication-title: Biochemistry doi: 10.1021/bi400215w – volume: 7 start-page: 931 year: 2011 ident: 10.7717/peerj-pchem.8/ref-26 article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct100684s – volume: 87 start-page: 250 year: 2019 ident: 10.7717/peerj-pchem.8/ref-55 article-title: QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2018.12.011 – volume: 123 start-page: 8604 year: 2001 ident: 10.7717/peerj-pchem.8/ref-20 article-title: QM/MM studies show substantial tunneling for the hydrogen-transfer reaction in methylamine dehydrogenase publication-title: Journal of the American Chemical Society doi: 10.1021/ja016219a – volume-title: Essentials of computational chemistry: theories and models year: 2004 ident: 10.7717/peerj-pchem.8/ref-13 – volume: 81 start-page: 391 year: 1992 ident: 10.7717/peerj-pchem.8/ref-96 article-title: Extension of the MNDO formalism to d orbitals: integral approximations and preliminary numerical results publication-title: Theoretica Chimica Acta doi: 10.1007/bf01134863 – volume: 46 start-page: 2354 year: 2010 ident: 10.7717/peerj-pchem.8/ref-65 article-title: Computational enzymology publication-title: Chemical Communications doi: 10.1039/B925647D – volume: 115 start-page: 4598 year: 2011 ident: 10.7717/peerj-pchem.8/ref-93 article-title: Benzene-pyridine interactions predicted by the effective fragment potential method publication-title: Journal of Physical Chemistry A doi: 10.1021/jp201039 – volume: 37 start-page: 4425 year: 2008 ident: 10.7717/peerj-pchem.8/ref-8 article-title: QM/MM simulations predict a covalent intermediate in the hen egg white lysozyme reaction with its natural substrate publication-title: Chemical Communications doi: 10.1039/b810099 – volume: 2 start-page: 214 year: 2008 ident: 10.7717/peerj-pchem.8/ref-61 article-title: Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling publication-title: Chemical Communications doi: 10.1039/b714136j – volume: 102 start-page: 6648 year: 2005 ident: 10.7717/peerj-pchem.8/ref-23 article-title: Chemical theory and computation special feature: Ab initio quantum chemistry: Methodology and applications publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0408036102 – volume: 4 start-page: e1994 year: 2016 ident: 10.7717/peerj-pchem.8/ref-52 article-title: Towards a barrier height benchmark set for biologically relevant systems publication-title: PeerJ doi: 10.7717/peerj.1994 – volume: 50 start-page: 14736 year: 2014 ident: 10.7717/peerj-pchem.8/ref-10 article-title: QM/MM simulations as an assay for carbapenemase activity in class A β-lactamases publication-title: Chemical Communications doi: 10.1039/c4cc06495j – volume: 111 start-page: 3032 year: 2007 ident: 10.7717/peerj-pchem.8/ref-67 article-title: Tunneling and classical paths for proton transfer in an enzyme reaction dominated by tunneling: Oxidation of tryptamine by aromatic amine dehydrogenase publication-title: Journal of Physical Chemistry B doi: 10.1021/jp067898k – volume: 217 start-page: 357 year: 2000 ident: 10.7717/peerj-pchem.8/ref-18 article-title: A self-consistent charge density-functional based tight-binding scheme for large biomolecules publication-title: Physica Status Solidi B doi: 10.1002/3527603107.ch16 – volume: 125 start-page: 9590 year: 2003 ident: 10.7717/peerj-pchem.8/ref-40 article-title: Identification of Glu166 as the general base in the acylation reaction of class A β-Lactamases through QM/MM Modeling publication-title: Journal of the American Chemical Society doi: 10.1021/ja034434g – volume: 116 start-page: 515 year: 2002 ident: 10.7717/peerj-pchem.8/ref-108 article-title: Empirical correction to density functional theory for van der Waals interactions publication-title: Journal of Chemical Physics doi: 10.1063/1.1424928 – volume: 39 start-page: 12520 year: 1989 ident: 10.7717/peerj-pchem.8/ref-21 article-title: Tight-binding models and density-functional theory publication-title: Physical Review B doi: 10.1103/PhysRevB.39.12520 – volume: 21 start-page: 1494 year: 2000 ident: 10.7717/peerj-pchem.8/ref-105 article-title: Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method publication-title: Journal of Computational Chemistry doi: 10.1002/1096-987X(200012)21:16<1494::AID-JCC6>3.0.CO;2-4 – volume: 608 start-page: 380 year: 2014 ident: 10.7717/peerj-pchem.8/ref-56 article-title: Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase publication-title: Chemical Physics Letters doi: 10.1016/j.cplett.2014.06.010 – volume: 11 start-page: 713 year: 2015 ident: 10.7717/peerj-pchem.8/ref-49 article-title: High-level QM/MM calculations support the concerted mechanism for Michael addition and covalent complex formation in thymidylate synthase publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct5005033 – volume: 8 start-page: 4293 year: 2012 ident: 10.7717/peerj-pchem.8/ref-43 article-title: A modified QM/MM hamiltonian with the self-consistent-charge density-functional-tight-binding theory for highly charged QM regions publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct300649f – volume: 8 start-page: 4637 year: 2012 ident: 10.7717/peerj-pchem.8/ref-64 article-title: Effects of dispersion in density functional based quantum mechanical/molecular mechanical calculations on cytochrome P450 catalyzed reactions publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct300329h – volume: 101 start-page: 2775 year: 2003 ident: 10.7717/peerj-pchem.8/ref-98 article-title: Extreme tunnelling in methylamine dehydrogenase revealed by hybrid QM/MM calculations: potential energy surface profile for methylamine and ethanolamine substrates and kinetic isotope effect values publication-title: Molecular Physics doi: 10.1080/0026897031000121271 – volume: 118 start-page: 9095 year: 2003 ident: 10.7717/peerj-pchem.8/ref-30 article-title: Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies publication-title: Journal of Chemical Physics doi: 10.1063/1.1569242 – volume: 100 start-page: 616 year: 1996 ident: 10.7717/peerj-pchem.8/ref-97 article-title: Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group publication-title: Journal of Physical Chemistry doi: 10.1021/jp952148o – volume: 5 start-page: 808 year: 2009 ident: 10.7717/peerj-pchem.8/ref-112 article-title: The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct800568m – volume: 48 start-page: 1198 year: 2009 ident: 10.7717/peerj-pchem.8/ref-91 article-title: QM/MM methods for biomolecular systems publication-title: Angewandte Chemie International Edition in English doi: 10.1002/anie.200802019 – volume: 46 start-page: 3104 year: 2010 ident: 10.7717/peerj-pchem.8/ref-78 article-title: New insights into the multi-step reaction pathway of the reductive half-reaction catalysed by aromatic amine dehydrogenase: a QM/MM study publication-title: Chemical Communications doi: 10.1039/c003107k – volume: 69 start-page: 521 year: 2007 ident: 10.7717/peerj-pchem.8/ref-101 article-title: Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.21482 – volume: 8 start-page: 1816 year: 2007 ident: 10.7717/peerj-pchem.8/ref-82 article-title: Analysis of classical and quantum paths for deprotonation of methylamine by methylamine dehydrogenase publication-title: ChemPhysChem doi: 10.1002/cphc.200700143 – volume: 47 start-page: 2517 year: 2011 ident: 10.7717/peerj-pchem.8/ref-59 article-title: Understanding the role of carbamate reactivity in fatty acid amide hydrolase inhibition by QM/MM mechanistic modelling publication-title: Chemical Communications doi: 10.1039/C0CC04937A – volume: 8 start-page: 3175 year: 2012 ident: 10.7717/peerj-pchem.8/ref-111 article-title: Prediction of reaction barriers and thermochemical properties with explicitly correlated coupled-cluster methods: a basis set assessment publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct3005547 – volume: 629 start-page: 342 year: 1996 ident: 10.7717/peerj-pchem.8/ref-2 article-title: Hybrid Hartree-Fock density-functional theory functionals: the adiabatic connection method publication-title: Chemical Applications of Density-Functional Theory doi: 10.1021/bk-1996-0629.ch024 – volume: 10 start-page: 1608 year: 2014 ident: 10.7717/peerj-pchem.8/ref-70 article-title: Comparison of ab initio, DFT, and semiempirical QM/MM approaches for description of catalytic mechanism of hairpin ribozyme publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct401015e – volume: 128 start-page: 025104 year: 2008 ident: 10.7717/peerj-pchem.8/ref-68 article-title: Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase publication-title: Journal of Chemical Physics doi: 10.1063/1.2823055 – volume: 127 start-page: 4454 year: 2005 ident: 10.7717/peerj-pchem.8/ref-37 article-title: Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class a β-Lactamase with benzylpenicillin publication-title: Journal of the American Chemical Society doi: 10.1021/ja044210 – volume: 56 start-page: 724 year: 2004 ident: 10.7717/peerj-pchem.8/ref-51 article-title: Quantum descriptors for biological macromolecules from linear-scaling electronic structure methods publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.20171 – volume: 10 start-page: 1 year: 1976 ident: 10.7717/peerj-pchem.8/ref-80 article-title: Theoretical models incorporating electron correlation publication-title: International Journal of Quantum Chemistry doi: 10.1002/qua.560100802 – volume: 121 start-page: 9785 year: 2017 ident: 10.7717/peerj-pchem.8/ref-83 article-title: Ab Initio QM/MM modeling of the rate-limiting proton transfer step in the deamination of tryptamine by aromatic amine dehydrogenase publication-title: Journal of Physical Chemistry B doi: 10.1021/acs.jpcb.7b06892 – volume: 16 start-page: 1483 year: 1995 ident: 10.7717/peerj-pchem.8/ref-95 article-title: Calculation of molecular geometries, relative conformational energies, dipole moments, and molecular electrostatic potential fitted charges of small organic molecules of biochemical interest by density functional theory publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.540161206 – volume: 116 start-page: 316 year: 2006 ident: 10.7717/peerj-pchem.8/ref-16 article-title: The SCC-DFTB method and its application to biological systems publication-title: Theoretical Chemistry Accounts doi: 10.1007/s00214-005-0066-0 – volume: 16 start-page: 14357 year: 2014 ident: 10.7717/peerj-pchem.8/ref-88 article-title: One-electron self-interaction and the asymptotics of the Kohn–Sham potential: an impaired relation publication-title: Physical Chemistry Chemical Physics doi: 10.1039/c3cp55433c – volume: 8 start-page: 1985 year: 2006 ident: 10.7717/peerj-pchem.8/ref-48 article-title: Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs publication-title: Physical Chemistry Chemical Physics doi: 10.1039/b600027d – volume: 113 start-page: 11984 year: 2009 ident: 10.7717/peerj-pchem.8/ref-38 article-title: High level QM/MM modeling of the formation of the tetrahedral intermediate in the acylation of wild type and K73A mutant TEM-1 class A β-Lactamase publication-title: Journal of Physical Chemistry A doi: 10.1021/jp9037254 – volume: 122 start-page: 114110 year: 2005 ident: 10.7717/peerj-pchem.8/ref-53 article-title: Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data publication-title: Journal of Chemical Physics doi: 10.1063/1.1871913 – volume: 24 start-page: 565 year: 2003 ident: 10.7717/peerj-pchem.8/ref-17 article-title: Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.10201 – volume: 128 start-page: 16904 year: 2006 ident: 10.7717/peerj-pchem.8/ref-99 article-title: Elucidation of hydrolysis mechanisms for fatty acid amide hydrolase and its Lys142Ala variant via QM/MM simulations publication-title: Journal of the American Chemical Society doi: 10.1021/ja065863s – volume: 5 start-page: 1761 year: 2009 ident: 10.7717/peerj-pchem.8/ref-79 article-title: Convergence of the CCSD(T) Correction term for the stacked complex methyl adenine-methyl thymine: comparison with lower-cost alternatives publication-title: Journal of Chemical Theory and Computation doi: 10.1021/ct900126q – year: 2004 ident: 10.7717/peerj-pchem.8/ref-25 article-title: Gaussian 03, Revision C.02 – volume: 8 start-page: 2428 year: 2018 ident: 10.7717/peerj-pchem.8/ref-54 article-title: Substrate binding induces conformational changes in a class A β-lactamase that prime it for catalysis publication-title: ACS Catalysis doi: 10.1021/acscatal.7b04114 – volume: 9 start-page: e1393 year: 2019 ident: 10.7717/peerj-pchem.8/ref-44 article-title: Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science doi: 10.1002/wcms.1393 – volume: 52 start-page: 30 year: 2014 ident: 10.7717/peerj-pchem.8/ref-86 article-title: Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2014.06.002 – volume: 4 start-page: 206 year: 2006 ident: 10.7717/peerj-pchem.8/ref-39 article-title: Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A β-lactamase publication-title: Organic & Biomolecular Chemistry doi: 10.1039/B512969A – volume: 38 start-page: 10146 year: 2009 ident: 10.7717/peerj-pchem.8/ref-92 article-title: An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene–methane, and benzene–H2S publication-title: Journal of Physical Chemistry A 113 doi: 10.1021/jp9034375 |
SSID | ssj0002874540 |
Score | 2.107144 |
Snippet | To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | e8 |
SubjectTerms | Biochemical Modeling Enzyme-Catalyzed Reactions Quantum Chemical Methods Reaction energy calculation |
Title | Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes |
URI | https://doaj.org/article/e5e9a64ab99a4c4c8f84245bf73d461c |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyIT1G-5AExEUhiJ3ZGQCCEBBNI3aKzfRYC0paWDmXgt3N22qoMiIUlUqxTFD1dfPcuvneMHVNUUGkZnRdEIr2AxHiUSeZSLa0XysemsPuH8vZJ3nWL7sKor3AmrJUHboE7xwIrKCWYqgJppdVeh591xivhZJnZsPtSzFsgUy-xZKSCtFwrqqmIspwPEIcvyYCQaM70jyC0oNUfg8rNOlubZoP8on2LDbaEvU22cjUbwrbFXi_Ji54biBVt_j4mHMYNbzD06wZ4eTsBesQp9-R0b-M0LjKlXDB2LPAgKx2kIHjfzxdHPFZtJp_ouJmQyeekwdE2e7q5fry6TabzERKb6UD-AFOlrAbhSlmk1lQoPCqHTkosMiB264zyJYjUZs7IUlcF5JaCuiLagkrssOVev4e7jFcCclDSEtqFzCE1oJR20mmgL9xC3mGnM8BqOxUPDzMs3moiEQHfOuJbR3xr3WEnc_NBq5rxm-FlQH9uFMSu4wK5QD11gfovF9j7j4fss9U8UOm0oI3jgC1_DMd4SPnGhzmKrkXX-6_rb9tX28Y |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+quantum+mechanical+methods+for+calculating+reaction+energies+of+reactions+catalyzed+by+enzymes&rft.jtitle=PeerJ+physical+chemistry&rft.au=Jitnapa+Sirirak&rft.au=Narin+Lawan&rft.au=Marc+W.+Van+der+Kamp&rft.au=Jeremy+N.+Harvey&rft.date=2020-05-20&rft.pub=PeerJ+Inc&rft.eissn=2689-7733&rft.volume=2&rft.spage=e8&rft_id=info:doi/10.7717%2Fpeerj-pchem.8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5e9a64ab99a4c4c8f84245bf73d461c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-7733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-7733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-7733&client=summon |