Random Satisfiability Logic-Driven Approach in the Hopfield Neural Networks with Application to COVID-19 Datasets
This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RAN k SAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relat...
Saved in:
Published in | International journal of applied and computational mathematics Vol. 11; no. 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2349-5103 2199-5796 |
DOI | 10.1007/s40819-025-01941-7 |
Cover
Loading…
Abstract | This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RAN
k
SAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relationships and identify critical features for COVID-19 dataset classification. Evaluated against Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), the model’s performance was assessed using Accuracy, Hamming Loss, Cross-Entropy Loss, CPU Time, and Bayesian Information Criterion (BIC). HNN-RAN
k
SAT achieves the highest accuracy of 95.0% at sample size = 500, outperforming RF with 95.0%, SVM with 94.0%, and LR with 93.0% accuracy. It also exhibits the lowest Hamming Loss of 0.04 and Cross-Entropy Loss of 0.16, demonstrating superior classification performance and probabilistic calibration. The model’s logical constraints refine the search space, reducing misclassification errors and improving confidence estimation. However, this comes at the cost of higher computational complexity, with CPU Time increasing to 60 s at 1000 sample size, compared to LR with 20 s, RF with 40 s, and SVM with 50 s. The BIC values for HNN-RAN
k
SAT at 170 sample size is 1000 reflect its greater model complexity, justified by its robustness in structured problem domains. Statistical tests, including McNemar’s test and Wilcoxon Rank test, confirm the model’s significant improvements (p-values < 0.05), with a large Cohen’s d effect size of 1.21. The hybrid architecture, integrating logic-based reasoning with neural network learning, enables HNN-RANkSAT to handle noisy, incomplete, and high-dimensional data effectively, making it ideal for medical classification tasks. While Random Forest offers a balanced alternative for large-scale problems, HNN-RAN
k
SAT excels in high-precision tasks like pandemic surveillance. |
---|---|
AbstractList | This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RAN
k
SAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relationships and identify critical features for COVID-19 dataset classification. Evaluated against Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), the model’s performance was assessed using Accuracy, Hamming Loss, Cross-Entropy Loss, CPU Time, and Bayesian Information Criterion (BIC). HNN-RAN
k
SAT achieves the highest accuracy of 95.0% at sample size = 500, outperforming RF with 95.0%, SVM with 94.0%, and LR with 93.0% accuracy. It also exhibits the lowest Hamming Loss of 0.04 and Cross-Entropy Loss of 0.16, demonstrating superior classification performance and probabilistic calibration. The model’s logical constraints refine the search space, reducing misclassification errors and improving confidence estimation. However, this comes at the cost of higher computational complexity, with CPU Time increasing to 60 s at 1000 sample size, compared to LR with 20 s, RF with 40 s, and SVM with 50 s. The BIC values for HNN-RAN
k
SAT at 170 sample size is 1000 reflect its greater model complexity, justified by its robustness in structured problem domains. Statistical tests, including McNemar’s test and Wilcoxon Rank test, confirm the model’s significant improvements (p-values < 0.05), with a large Cohen’s d effect size of 1.21. The hybrid architecture, integrating logic-based reasoning with neural network learning, enables HNN-RANkSAT to handle noisy, incomplete, and high-dimensional data effectively, making it ideal for medical classification tasks. While Random Forest offers a balanced alternative for large-scale problems, HNN-RAN
k
SAT excels in high-precision tasks like pandemic surveillance. This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RANkSAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relationships and identify critical features for COVID-19 dataset classification. Evaluated against Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), the model’s performance was assessed using Accuracy, Hamming Loss, Cross-Entropy Loss, CPU Time, and Bayesian Information Criterion (BIC). HNN-RANkSAT achieves the highest accuracy of 95.0% at sample size = 500, outperforming RF with 95.0%, SVM with 94.0%, and LR with 93.0% accuracy. It also exhibits the lowest Hamming Loss of 0.04 and Cross-Entropy Loss of 0.16, demonstrating superior classification performance and probabilistic calibration. The model’s logical constraints refine the search space, reducing misclassification errors and improving confidence estimation. However, this comes at the cost of higher computational complexity, with CPU Time increasing to 60 s at 1000 sample size, compared to LR with 20 s, RF with 40 s, and SVM with 50 s. The BIC values for HNN-RANkSAT at 170 sample size is 1000 reflect its greater model complexity, justified by its robustness in structured problem domains. Statistical tests, including McNemar’s test and Wilcoxon Rank test, confirm the model’s significant improvements (p-values < 0.05), with a large Cohen’s d effect size of 1.21. The hybrid architecture, integrating logic-based reasoning with neural network learning, enables HNN-RANkSAT to handle noisy, incomplete, and high-dimensional data effectively, making it ideal for medical classification tasks. While Random Forest offers a balanced alternative for large-scale problems, HNN-RANkSAT excels in high-precision tasks like pandemic surveillance. |
ArticleNumber | 117 |
Author | Abubakar, Hamza |
Author_xml | – sequence: 1 givenname: Hamza surname: Abubakar fullname: Abubakar, Hamza email: zeeham4u2c@yahoo.com organization: School of Quantitative Sciences, University Utara Malaysia, Department of Mathematics, Isa Kaita College of Education |
BookMark | eNp9kEtPAjEUhRuDiYj8AVdNXFf7mmm7JKBCQjTxtW06QweKw3RoBwn_3iIm7lzds_jOufeeS9BrfGMBuCb4lmAs7iLHkiiEaYYwUZwgcQb6lCiFMqHyXtKMJ00wuwDDGNcYY0q4wFT2wfbFNAu_ga-mc7FypnC16w5w7peuRJPgvmwDR20bvClX0DWwW1k49W3lbL2AT3YXTJ1Gt_fhM8K961ZHunZlivOJ9nD8_DGbIKLgxHQm2i5egfPK1NEOf-cAvD_cv42naP78OBuP5qgkUgikOKusUsxWWLC8ZBlRmVpQZrnEgqa_OZE8l1yVMseVMoTJgokqE0VR5oUo2ADcnHLT8dudjZ1e-11o0krNKMkyLkWmEkVPVBl8jMFWug1uY8JBE6yP7epTuzq1q3_a1SKZ2MkUE9wsbfiL_sf1DeUEfO8 |
Cites_doi | 10.3390/math11061369 10.1016/j.mlwa.2021.100138 10.1145/3627673.3679813 10.1016/j.chaos.2020.110122 10.13052/jrss1550-4646.13110 10.1142/S0218127419300106 10.1016/j.compmedimag.2010.07.003 10.1007/s10916-018-1088-1 10.1007/s00500-019-04066-4 10.1371/journal.pone.0212356 10.1109/TNNLS.2019.2940920 10.1016/j.bspc.2021.102920 10.4081/jphr.2020.1786 10.1109/ICMI60790.2024.10586137 10.5753/ladc.2021.18531 10.1016/j.neunet.2009.07.019 10.1016/j.jal.2004.03.006 10.1155/2020/9121429 10.1007/s00521-022-06953-8 10.1016/j.bea.2021.100003 10.1007/s10441-013-9169-5 10.1007/s11760-020-01820-2 10.1109/ACCESS.2020.2985839 10.1137/07070440X 10.1016/j.foodchem.2020.128586 10.1080/14484846.2020.1769803 10.46481/jnsps.2021.217 10.1016/j.health.2023.100216 10.1016/j.irbm.2020.05.003 10.1145/3491210 10.1016/j.bspc.2022.104268 10.1155/2021/7804540 10.1142/S0219691320500599 10.1145/3411764.3445681 10.1016/j.compbiomed.2022.105244 10.52866/ijcsm.2022.01.01.004 10.1088/2632-2153/ac0496 10.1007/978-3-031-04028-3_5 10.1007/s10664-022-10217-3 10.1007/s00521-022-07052-4 10.54216/jisiot.040103 10.12785/ijcds/100163 10.1109/access.2021.3054816 10.3390/pr8050568 10.1007/s12065-020-00540-3 10.1007/s11063-021-10495-w 10.3389/fonc.2021.622827 10.1007/978-3-030-06167-8_5 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature India Private Limited 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40819-025-01941-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 2199-5796 |
ExternalDocumentID | 10_1007_s40819_025_01941_7 |
GroupedDBID | 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI FEDTE FERAY FIGPU FNLPD GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR 4.4 AARHV AAYXX AEBTG AHSBF AJBLW CITATION EJD FINBP FSGXE ABRTQ |
ID | FETCH-LOGICAL-c1877-943fe993ef0736c351959d23e4807210041846849c860f9a138b37f57bbc6b7b3 |
ISSN | 2349-5103 |
IngestDate | Sat Jul 12 03:04:22 EDT 2025 Thu Jul 10 09:58:23 EDT 2025 Fri Jul 04 01:19:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Logic Mining Hopfield Neural Network Satisfiability Boolean Logic Integration COVID-19 Surveillance Data Set |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1877-943fe993ef0736c351959d23e4807210041846849c860f9a138b37f57bbc6b7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3215548759 |
PQPubID | 2044256 |
ParticipantIDs | proquest_journals_3215548759 crossref_primary_10_1007_s40819_025_01941_7 springer_journals_10_1007_s40819_025_01941_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
PublicationTitle | International journal of applied and computational mathematics |
PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
PublicationYear | 2025 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | 1941_CR32 1941_CR33 1941_CR34 1941_CR35 1941_CR36 1941_CR37 1941_CR38 1941_CR39 1941_CR30 1941_CR31 1941_CR29 1941_CR21 1941_CR22 1941_CR23 1941_CR24 1941_CR25 1941_CR26 1941_CR27 1941_CR28 1941_CR20 1941_CR18 1941_CR19 1941_CR10 1941_CR11 1941_CR12 1941_CR13 1941_CR14 1941_CR15 1941_CR16 1941_CR17 1941_CR50 1941_CR51 1941_CR52 1941_CR53 1941_CR9 1941_CR43 1941_CR44 1941_CR45 1941_CR46 1941_CR47 1941_CR48 1941_CR49 1941_CR8 1941_CR7 1941_CR6 1941_CR5 1941_CR4 1941_CR3 1941_CR40 1941_CR2 1941_CR41 1941_CR1 1941_CR42 |
References_xml | – ident: 1941_CR43 doi: 10.3390/math11061369 – ident: 1941_CR24 doi: 10.1016/j.mlwa.2021.100138 – ident: 1941_CR19 doi: 10.1145/3627673.3679813 – ident: 1941_CR41 – ident: 1941_CR6 doi: 10.1016/j.chaos.2020.110122 – ident: 1941_CR38 doi: 10.13052/jrss1550-4646.13110 – ident: 1941_CR42 doi: 10.1142/S0218127419300106 – ident: 1941_CR15 doi: 10.1016/j.compmedimag.2010.07.003 – ident: 1941_CR20 doi: 10.1007/s10916-018-1088-1 – ident: 1941_CR33 doi: 10.1007/s00500-019-04066-4 – ident: 1941_CR32 doi: 10.1371/journal.pone.0212356 – ident: 1941_CR51 doi: 10.1109/TNNLS.2019.2940920 – ident: 1941_CR8 doi: 10.1016/j.bspc.2021.102920 – ident: 1941_CR2 doi: 10.4081/jphr.2020.1786 – ident: 1941_CR12 doi: 10.1109/ICMI60790.2024.10586137 – ident: 1941_CR49 doi: 10.5753/ladc.2021.18531 – ident: 1941_CR16 doi: 10.1016/j.neunet.2009.07.019 – ident: 1941_CR29 – ident: 1941_CR50 doi: 10.1016/j.jal.2004.03.006 – ident: 1941_CR3 doi: 10.1155/2020/9121429 – ident: 1941_CR22 doi: 10.1007/s00521-022-06953-8 – ident: 1941_CR7 doi: 10.1016/j.bea.2021.100003 – ident: 1941_CR14 doi: 10.1007/s10441-013-9169-5 – ident: 1941_CR11 doi: 10.1007/s11760-020-01820-2 – ident: 1941_CR44 doi: 10.1109/ACCESS.2020.2985839 – ident: 1941_CR52 – ident: 1941_CR28 doi: 10.1137/07070440X – ident: 1941_CR34 doi: 10.1016/j.foodchem.2020.128586 – ident: 1941_CR37 doi: 10.1080/14484846.2020.1769803 – ident: 1941_CR47 doi: 10.46481/jnsps.2021.217 – ident: 1941_CR21 doi: 10.1016/j.health.2023.100216 – ident: 1941_CR10 doi: 10.1016/j.irbm.2020.05.003 – ident: 1941_CR27 doi: 10.1145/3491210 – ident: 1941_CR9 doi: 10.1016/j.bspc.2022.104268 – ident: 1941_CR26 doi: 10.1155/2021/7804540 – ident: 1941_CR13 doi: 10.1142/S0219691320500599 – ident: 1941_CR18 doi: 10.1145/3411764.3445681 – ident: 1941_CR4 doi: 10.1016/j.compbiomed.2022.105244 – ident: 1941_CR40 doi: 10.52866/ijcsm.2022.01.01.004 – ident: 1941_CR31 doi: 10.1088/2632-2153/ac0496 – ident: 1941_CR53 – ident: 1941_CR30 doi: 10.1007/978-3-031-04028-3_5 – ident: 1941_CR17 doi: 10.1007/s10664-022-10217-3 – ident: 1941_CR5 doi: 10.1007/s00521-022-07052-4 – ident: 1941_CR35 doi: 10.54216/jisiot.040103 – ident: 1941_CR1 – ident: 1941_CR39 doi: 10.12785/ijcds/100163 – ident: 1941_CR45 doi: 10.1109/access.2021.3054816 – ident: 1941_CR48 doi: 10.3390/pr8050568 – ident: 1941_CR23 doi: 10.1007/s12065-020-00540-3 – ident: 1941_CR25 doi: 10.1007/s11063-021-10495-w – ident: 1941_CR36 doi: 10.3389/fonc.2021.622827 – ident: 1941_CR46 doi: 10.1007/978-3-030-06167-8_5 |
SSID | ssj0002147028 |
Score | 2.2934136 |
Snippet | This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Accuracy Applications of Mathematics Classification Complexity Computational Science and Engineering COVID-19 Datasets Entropy Error reduction Health surveillance Logic Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neural networks Nuclear Energy Operations Research/Decision Theory Original Paper Rank tests Statistical analysis Statistical tests Support vector machines Surveillance Theoretical |
Title | Random Satisfiability Logic-Driven Approach in the Hopfield Neural Networks with Application to COVID-19 Datasets |
URI | https://link.springer.com/article/10.1007/s40819-025-01941-7 https://www.proquest.com/docview/3215548759 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLagu8BhjAGiYyAfuBWjJnaT-th9VAVtnQQt6s2KPUeqUNOuTQ_br-f1V5JuAwFSFVVO6kR5nr5-bL8fCH2UeQYynmkSSU4JgxEZ_nMyIamijMNHalu073KcjKbs66w3uxddUsrP6u7RuJL_QRXaAFcTJfsPyFadQgN8B3zhCAjD8a8w_pYV18tF57uNUJi7jNu3pgrvXJGztbFjRmW6mCnvzzharqzTWsdk5QB4xs4N3Ae5DertbCNKT69-fDkjEQdulDDauaRPQcruriU2MlBkXtj6iLnVtgwXLaocsZva8i3u3NKu3MrsZ7ZuLkPEvdpdamcZ0vhYm52PKkzGWLIYQCcmdZ8bdFxbxKEtdeVsK1McNShHH7Xwzqljw4yUIfY5Is4iktbjWdjDH1-J4fTiQkzOZ5OnaC-GeUS3hfYGw5OTcbUMZ8o0dW0F3uohfWiVDbB8cJtd-VLPSe5to1t1MjlA-35agQeOIy_RE10cohd-ioG9Ad8coueXNQSv0I0jEN4lEG4SCAcC4XmB4ac4EAg7AuFAIGwIhBsEwuUSBwLhQKDXaDo8n5yOiK_BQVTUN7v7jOYaNKzOYSxIlC3nyK9jqk0qgtikG4xAwfYZV_2km_Mson1J07yXSqkSmUr6BrWKZaHfIgyXcCq7Ks2kZmAeuIxlLwYLwpNMwW3aqBNerVi5VCuiSqptgRAAhLBAiLSNjsPbF57iG0FjI49hCs7b6FNApD79-96O_tzbO_Ss5vwxapXrrX4PYrSUHzyhfgFwIIig |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Satisfiability+Logic-Driven+Approach+in+the+Hopfield+Neural+Networks+with+Application+to+COVID-19+Datasets&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Hamza%2C+Abubakar&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=3&rft_id=info:doi/10.1007%2Fs40819-025-01941-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |