Random Satisfiability Logic-Driven Approach in the Hopfield Neural Networks with Application to COVID-19 Datasets

This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RAN k SAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied and computational mathematics Vol. 11; no. 3
Main Author Abubakar, Hamza
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2349-5103
2199-5796
DOI10.1007/s40819-025-01941-7

Cover

Loading…
Abstract This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RAN k SAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relationships and identify critical features for COVID-19 dataset classification. Evaluated against Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), the model’s performance was assessed using Accuracy, Hamming Loss, Cross-Entropy Loss, CPU Time, and Bayesian Information Criterion (BIC). HNN-RAN k SAT achieves the highest accuracy of 95.0% at sample size = 500, outperforming RF with 95.0%, SVM with 94.0%, and LR with 93.0% accuracy. It also exhibits the lowest Hamming Loss of 0.04 and Cross-Entropy Loss of 0.16, demonstrating superior classification performance and probabilistic calibration. The model’s logical constraints refine the search space, reducing misclassification errors and improving confidence estimation. However, this comes at the cost of higher computational complexity, with CPU Time increasing to 60 s at 1000 sample size, compared to LR with 20 s, RF with 40 s, and SVM with 50 s. The BIC values for HNN-RAN k SAT at 170 sample size is 1000 reflect its greater model complexity, justified by its robustness in structured problem domains. Statistical tests, including McNemar’s test and Wilcoxon Rank test, confirm the model’s significant improvements (p-values < 0.05), with a large Cohen’s d effect size of 1.21. The hybrid architecture, integrating logic-based reasoning with neural network learning, enables HNN-RANkSAT to handle noisy, incomplete, and high-dimensional data effectively, making it ideal for medical classification tasks. While Random Forest offers a balanced alternative for large-scale problems, HNN-RAN k SAT excels in high-precision tasks like pandemic surveillance.
AbstractList This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RAN k SAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relationships and identify critical features for COVID-19 dataset classification. Evaluated against Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), the model’s performance was assessed using Accuracy, Hamming Loss, Cross-Entropy Loss, CPU Time, and Bayesian Information Criterion (BIC). HNN-RAN k SAT achieves the highest accuracy of 95.0% at sample size = 500, outperforming RF with 95.0%, SVM with 94.0%, and LR with 93.0% accuracy. It also exhibits the lowest Hamming Loss of 0.04 and Cross-Entropy Loss of 0.16, demonstrating superior classification performance and probabilistic calibration. The model’s logical constraints refine the search space, reducing misclassification errors and improving confidence estimation. However, this comes at the cost of higher computational complexity, with CPU Time increasing to 60 s at 1000 sample size, compared to LR with 20 s, RF with 40 s, and SVM with 50 s. The BIC values for HNN-RAN k SAT at 170 sample size is 1000 reflect its greater model complexity, justified by its robustness in structured problem domains. Statistical tests, including McNemar’s test and Wilcoxon Rank test, confirm the model’s significant improvements (p-values < 0.05), with a large Cohen’s d effect size of 1.21. The hybrid architecture, integrating logic-based reasoning with neural network learning, enables HNN-RANkSAT to handle noisy, incomplete, and high-dimensional data effectively, making it ideal for medical classification tasks. While Random Forest offers a balanced alternative for large-scale problems, HNN-RAN k SAT excels in high-precision tasks like pandemic surveillance.
This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set (CSDS). The HNN-RANkSAT model combines Boolean logic-based satisfiability with the Lyapunov energy function of HNNs to extract logical relationships and identify critical features for COVID-19 dataset classification. Evaluated against Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), the model’s performance was assessed using Accuracy, Hamming Loss, Cross-Entropy Loss, CPU Time, and Bayesian Information Criterion (BIC). HNN-RANkSAT achieves the highest accuracy of 95.0% at sample size = 500, outperforming RF with 95.0%, SVM with 94.0%, and LR with 93.0% accuracy. It also exhibits the lowest Hamming Loss of 0.04 and Cross-Entropy Loss of 0.16, demonstrating superior classification performance and probabilistic calibration. The model’s logical constraints refine the search space, reducing misclassification errors and improving confidence estimation. However, this comes at the cost of higher computational complexity, with CPU Time increasing to 60 s at 1000 sample size, compared to LR with 20 s, RF with 40 s, and SVM with 50 s. The BIC values for HNN-RANkSAT at 170 sample size is 1000 reflect its greater model complexity, justified by its robustness in structured problem domains. Statistical tests, including McNemar’s test and Wilcoxon Rank test, confirm the model’s significant improvements (p-values < 0.05), with a large Cohen’s d effect size of 1.21. The hybrid architecture, integrating logic-based reasoning with neural network learning, enables HNN-RANkSAT to handle noisy, incomplete, and high-dimensional data effectively, making it ideal for medical classification tasks. While Random Forest offers a balanced alternative for large-scale problems, HNN-RANkSAT excels in high-precision tasks like pandemic surveillance.
ArticleNumber 117
Author Abubakar, Hamza
Author_xml – sequence: 1
  givenname: Hamza
  surname: Abubakar
  fullname: Abubakar, Hamza
  email: zeeham4u2c@yahoo.com
  organization: School of Quantitative Sciences, University Utara Malaysia, Department of Mathematics, Isa Kaita College of Education
BookMark eNp9kEtPAjEUhRuDiYj8AVdNXFf7mmm7JKBCQjTxtW06QweKw3RoBwn_3iIm7lzds_jOufeeS9BrfGMBuCb4lmAs7iLHkiiEaYYwUZwgcQb6lCiFMqHyXtKMJ00wuwDDGNcYY0q4wFT2wfbFNAu_ga-mc7FypnC16w5w7peuRJPgvmwDR20bvClX0DWwW1k49W3lbL2AT3YXTJ1Gt_fhM8K961ZHunZlivOJ9nD8_DGbIKLgxHQm2i5egfPK1NEOf-cAvD_cv42naP78OBuP5qgkUgikOKusUsxWWLC8ZBlRmVpQZrnEgqa_OZE8l1yVMseVMoTJgokqE0VR5oUo2ADcnHLT8dudjZ1e-11o0krNKMkyLkWmEkVPVBl8jMFWug1uY8JBE6yP7epTuzq1q3_a1SKZ2MkUE9wsbfiL_sf1DeUEfO8
Cites_doi 10.3390/math11061369
10.1016/j.mlwa.2021.100138
10.1145/3627673.3679813
10.1016/j.chaos.2020.110122
10.13052/jrss1550-4646.13110
10.1142/S0218127419300106
10.1016/j.compmedimag.2010.07.003
10.1007/s10916-018-1088-1
10.1007/s00500-019-04066-4
10.1371/journal.pone.0212356
10.1109/TNNLS.2019.2940920
10.1016/j.bspc.2021.102920
10.4081/jphr.2020.1786
10.1109/ICMI60790.2024.10586137
10.5753/ladc.2021.18531
10.1016/j.neunet.2009.07.019
10.1016/j.jal.2004.03.006
10.1155/2020/9121429
10.1007/s00521-022-06953-8
10.1016/j.bea.2021.100003
10.1007/s10441-013-9169-5
10.1007/s11760-020-01820-2
10.1109/ACCESS.2020.2985839
10.1137/07070440X
10.1016/j.foodchem.2020.128586
10.1080/14484846.2020.1769803
10.46481/jnsps.2021.217
10.1016/j.health.2023.100216
10.1016/j.irbm.2020.05.003
10.1145/3491210
10.1016/j.bspc.2022.104268
10.1155/2021/7804540
10.1142/S0219691320500599
10.1145/3411764.3445681
10.1016/j.compbiomed.2022.105244
10.52866/ijcsm.2022.01.01.004
10.1088/2632-2153/ac0496
10.1007/978-3-031-04028-3_5
10.1007/s10664-022-10217-3
10.1007/s00521-022-07052-4
10.54216/jisiot.040103
10.12785/ijcds/100163
10.1109/access.2021.3054816
10.3390/pr8050568
10.1007/s12065-020-00540-3
10.1007/s11063-021-10495-w
10.3389/fonc.2021.622827
10.1007/978-3-030-06167-8_5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.
DBID AAYXX
CITATION
DOI 10.1007/s40819-025-01941-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID 10_1007_s40819_025_01941_7
GroupedDBID 0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
FEDTE
FERAY
FIGPU
FNLPD
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
4.4
AARHV
AAYXX
AEBTG
AHSBF
AJBLW
CITATION
EJD
FINBP
FSGXE
ABRTQ
ID FETCH-LOGICAL-c1877-943fe993ef0736c351959d23e4807210041846849c860f9a138b37f57bbc6b7b3
ISSN 2349-5103
IngestDate Sat Jul 12 03:04:22 EDT 2025
Thu Jul 10 09:58:23 EDT 2025
Fri Jul 04 01:19:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Logic Mining
Hopfield Neural Network
Satisfiability
Boolean Logic Integration
COVID-19 Surveillance Data Set
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1877-943fe993ef0736c351959d23e4807210041846849c860f9a138b37f57bbc6b7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3215548759
PQPubID 2044256
ParticipantIDs proquest_journals_3215548759
crossref_primary_10_1007_s40819_025_01941_7
springer_journals_10_1007_s40819_025_01941_7
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationYear 2025
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References 1941_CR32
1941_CR33
1941_CR34
1941_CR35
1941_CR36
1941_CR37
1941_CR38
1941_CR39
1941_CR30
1941_CR31
1941_CR29
1941_CR21
1941_CR22
1941_CR23
1941_CR24
1941_CR25
1941_CR26
1941_CR27
1941_CR28
1941_CR20
1941_CR18
1941_CR19
1941_CR10
1941_CR11
1941_CR12
1941_CR13
1941_CR14
1941_CR15
1941_CR16
1941_CR17
1941_CR50
1941_CR51
1941_CR52
1941_CR53
1941_CR9
1941_CR43
1941_CR44
1941_CR45
1941_CR46
1941_CR47
1941_CR48
1941_CR49
1941_CR8
1941_CR7
1941_CR6
1941_CR5
1941_CR4
1941_CR3
1941_CR40
1941_CR2
1941_CR41
1941_CR1
1941_CR42
References_xml – ident: 1941_CR43
  doi: 10.3390/math11061369
– ident: 1941_CR24
  doi: 10.1016/j.mlwa.2021.100138
– ident: 1941_CR19
  doi: 10.1145/3627673.3679813
– ident: 1941_CR41
– ident: 1941_CR6
  doi: 10.1016/j.chaos.2020.110122
– ident: 1941_CR38
  doi: 10.13052/jrss1550-4646.13110
– ident: 1941_CR42
  doi: 10.1142/S0218127419300106
– ident: 1941_CR15
  doi: 10.1016/j.compmedimag.2010.07.003
– ident: 1941_CR20
  doi: 10.1007/s10916-018-1088-1
– ident: 1941_CR33
  doi: 10.1007/s00500-019-04066-4
– ident: 1941_CR32
  doi: 10.1371/journal.pone.0212356
– ident: 1941_CR51
  doi: 10.1109/TNNLS.2019.2940920
– ident: 1941_CR8
  doi: 10.1016/j.bspc.2021.102920
– ident: 1941_CR2
  doi: 10.4081/jphr.2020.1786
– ident: 1941_CR12
  doi: 10.1109/ICMI60790.2024.10586137
– ident: 1941_CR49
  doi: 10.5753/ladc.2021.18531
– ident: 1941_CR16
  doi: 10.1016/j.neunet.2009.07.019
– ident: 1941_CR29
– ident: 1941_CR50
  doi: 10.1016/j.jal.2004.03.006
– ident: 1941_CR3
  doi: 10.1155/2020/9121429
– ident: 1941_CR22
  doi: 10.1007/s00521-022-06953-8
– ident: 1941_CR7
  doi: 10.1016/j.bea.2021.100003
– ident: 1941_CR14
  doi: 10.1007/s10441-013-9169-5
– ident: 1941_CR11
  doi: 10.1007/s11760-020-01820-2
– ident: 1941_CR44
  doi: 10.1109/ACCESS.2020.2985839
– ident: 1941_CR52
– ident: 1941_CR28
  doi: 10.1137/07070440X
– ident: 1941_CR34
  doi: 10.1016/j.foodchem.2020.128586
– ident: 1941_CR37
  doi: 10.1080/14484846.2020.1769803
– ident: 1941_CR47
  doi: 10.46481/jnsps.2021.217
– ident: 1941_CR21
  doi: 10.1016/j.health.2023.100216
– ident: 1941_CR10
  doi: 10.1016/j.irbm.2020.05.003
– ident: 1941_CR27
  doi: 10.1145/3491210
– ident: 1941_CR9
  doi: 10.1016/j.bspc.2022.104268
– ident: 1941_CR26
  doi: 10.1155/2021/7804540
– ident: 1941_CR13
  doi: 10.1142/S0219691320500599
– ident: 1941_CR18
  doi: 10.1145/3411764.3445681
– ident: 1941_CR4
  doi: 10.1016/j.compbiomed.2022.105244
– ident: 1941_CR40
  doi: 10.52866/ijcsm.2022.01.01.004
– ident: 1941_CR31
  doi: 10.1088/2632-2153/ac0496
– ident: 1941_CR53
– ident: 1941_CR30
  doi: 10.1007/978-3-031-04028-3_5
– ident: 1941_CR17
  doi: 10.1007/s10664-022-10217-3
– ident: 1941_CR5
  doi: 10.1007/s00521-022-07052-4
– ident: 1941_CR35
  doi: 10.54216/jisiot.040103
– ident: 1941_CR1
– ident: 1941_CR39
  doi: 10.12785/ijcds/100163
– ident: 1941_CR45
  doi: 10.1109/access.2021.3054816
– ident: 1941_CR48
  doi: 10.3390/pr8050568
– ident: 1941_CR23
  doi: 10.1007/s12065-020-00540-3
– ident: 1941_CR25
  doi: 10.1007/s11063-021-10495-w
– ident: 1941_CR36
  doi: 10.3389/fonc.2021.622827
– ident: 1941_CR46
  doi: 10.1007/978-3-030-06167-8_5
SSID ssj0002147028
Score 2.2934136
Snippet This study proposes a logic-driven satisfiability approach integrated with Hopfield Neural Networks (HNNs) for classifying the COVID-19 Surveillance Data Set...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Applications of Mathematics
Classification
Complexity
Computational Science and Engineering
COVID-19
Datasets
Entropy
Error reduction
Health surveillance
Logic
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neural networks
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Rank tests
Statistical analysis
Statistical tests
Support vector machines
Surveillance
Theoretical
Title Random Satisfiability Logic-Driven Approach in the Hopfield Neural Networks with Application to COVID-19 Datasets
URI https://link.springer.com/article/10.1007/s40819-025-01941-7
https://www.proquest.com/docview/3215548759
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLagu8BhjAGiYyAfuBWjJnaT-th9VAVtnQQt6s2KPUeqUNOuTQ_br-f1V5JuAwFSFVVO6kR5nr5-bL8fCH2UeQYynmkSSU4JgxEZ_nMyIamijMNHalu073KcjKbs66w3uxddUsrP6u7RuJL_QRXaAFcTJfsPyFadQgN8B3zhCAjD8a8w_pYV18tF57uNUJi7jNu3pgrvXJGztbFjRmW6mCnvzzharqzTWsdk5QB4xs4N3Ae5DertbCNKT69-fDkjEQdulDDauaRPQcruriU2MlBkXtj6iLnVtgwXLaocsZva8i3u3NKu3MrsZ7ZuLkPEvdpdamcZ0vhYm52PKkzGWLIYQCcmdZ8bdFxbxKEtdeVsK1McNShHH7Xwzqljw4yUIfY5Is4iktbjWdjDH1-J4fTiQkzOZ5OnaC-GeUS3hfYGw5OTcbUMZ8o0dW0F3uohfWiVDbB8cJtd-VLPSe5to1t1MjlA-35agQeOIy_RE10cohd-ioG9Ad8coueXNQSv0I0jEN4lEG4SCAcC4XmB4ac4EAg7AuFAIGwIhBsEwuUSBwLhQKDXaDo8n5yOiK_BQVTUN7v7jOYaNKzOYSxIlC3nyK9jqk0qgtikG4xAwfYZV_2km_Mson1J07yXSqkSmUr6BrWKZaHfIgyXcCq7Ks2kZmAeuIxlLwYLwpNMwW3aqBNerVi5VCuiSqptgRAAhLBAiLSNjsPbF57iG0FjI49hCs7b6FNApD79-96O_tzbO_Ss5vwxapXrrX4PYrSUHzyhfgFwIIig
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Satisfiability+Logic-Driven+Approach+in+the+Hopfield+Neural+Networks+with+Application+to+COVID-19+Datasets&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Hamza%2C+Abubakar&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=3&rft_id=info:doi/10.1007%2Fs40819-025-01941-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon