The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects

We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical fluid mechanics Vol. 27; no. 4
Main Author Kim, Tujin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.
AbstractList We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.
ArticleNumber 63
Author Kim, Tujin
Author_xml – sequence: 1
  givenname: Tujin
  surname: Kim
  fullname: Kim, Tujin
  email: math.tujin@star-co.net.kp
  organization: Institute of Mathematics, State Academy of Sciences
BookMark eNp9kLFOwzAQhi1UJNrCCzBZYg6cncSJR6gKBRWB1MJqufGlTZXExU4EeXsCQbAx3Q3f_5_um5BRbWsk5JzBJQNIrjwAcBYAjwMAKdJAHJExizgPhIz56Hfn6QmZeL8HYEks-ZiY9Q7pY_GBht7YtjbadfRVly3SZ2c3JVae5tbRpqdWDWrT0Ue9rbGxu844a7paV0XmgwXqhq4632BF34tmRx9sWyKd5zlmjT8lx7kuPZ79zCl5uZ2vZ4tg-XR3P7teBhlLExHoVJoNZ5pnHFKGoMNQxkxCijLLTCIglyJLNMs3GPcgCkw1CC0Bo1CAicMpuRh6D86-tegbtbetq_uTKuQRCyFKItlTfKAyZ713mKuDK6r-ccVAfdlUg03V21TfNpXoQ-EQ8j1cb9H9Vf-T-gQ2Tnmk
Cites_doi 10.1007/3-7643-7385-7_21
10.1134/S102833581410005X
10.1016/S0362-546X(01)00445-X
10.1142/S0218202504003210
10.1090/S0033-569X-05-00972-5
10.1007/978-3-642-61623-5
10.1016/j.jmaa.2010.03.046
10.1016/j.nonrwa.2011.11.018
10.1134/S199047890801002X
10.1134/S0012266116060045
10.1134/S0965542516080029
10.1515/9783112717899
10.1002/num.1690110403
10.1093/acprof:oso/9780198566656.001.0001
10.1016/j.aej.2016.03.001
10.1007/978-1-4419-5542-5
10.1090/S0033-569X-06-01015-8
10.1016/j.aml.2014.02.006
10.1016/j.na.2014.09.017
10.1007/978-3-030-78659-5
10.1002/mma.8297
10.4310/MAA.2016.v23.n4.a3
10.1007/s00021-016-0253-x
10.4310/MAA.2020.v27.n2.a1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00021-025-00968-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1422-6952
ExternalDocumentID 10_1007_s00021_025_00968_6
GroupedDBID -~C
.86
.VR
06D
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9T
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
-Y2
1SB
2P1
2VQ
AAIAL
AARHV
AAYXX
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEKMD
AFGCZ
AGGDS
AGQPQ
AHSBF
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
HZ~
IHE
N2Q
O9-
RNI
RZK
ID FETCH-LOGICAL-c1876-a89db21a2c2081e0a33951908e9ccd760f96c7a1fbe5db2e6e8a06a90e4360d53
IEDL.DBID U2A
ISSN 1422-6928
IngestDate Wed Aug 20 14:42:45 EDT 2025
Thu Aug 21 00:32:08 EDT 2025
Wed Aug 20 01:11:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 35J87
Mixed boundary conditions
Variational inequality
Existence of solution
49J40
Joule heating
MHD-heat system
76D03
76W05
35Q60
85A30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1876-a89db21a2c2081e0a33951908e9ccd760f96c7a1fbe5db2e6e8a06a90e4360d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3241304749
PQPubID 2043894
ParticipantIDs proquest_journals_3241304749
crossref_primary_10_1007_s00021_025_00968_6
springer_journals_10_1007_s00021_025_00968_6
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of mathematical fluid mechanics
PublicationTitleAbbrev J. Math. Fluid Mech
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References V Girault (968_CR16) 1986
G Auchmuty (968_CR8) 2004; 14
968_CR13
968_CR12
968_CR15
968_CR14
G Alekseev (968_CR2) 2016; 18
GV Alekseev (968_CR4) 2016; 56
968_CR10
T Kim (968_CR17) 2022
G Alekseev (968_CR6) 2014; 59
G Alekseev (968_CR1) 2008; 2
J Naumann (968_CR25) 2012; 13
T Kim (968_CR19) 2020; 27
968_CR24
T Kim (968_CR18) 2015; 113
968_CR20
T Kim (968_CR21) 2016; 23
G Auchmuty (968_CR9) 2005; 63
GV Alekseev (968_CR5) 2014; 32
A Bermúdez (968_CR11) 2010; 368
GV Alekseev (968_CR3) 2016; 52
AJ Meir (968_CR22) 1995; 11
AJ Meier (968_CR23) 2001; 47
OM Al-Habahbeh (968_CR7) 2016; 55
References_xml – ident: 968_CR24
  doi: 10.1007/3-7643-7385-7_21
– volume: 59
  start-page: 467
  year: 2014
  ident: 968_CR6
  publication-title: Dokl. Phys.
  doi: 10.1134/S102833581410005X
– volume: 47
  start-page: 3281
  year: 2001
  ident: 968_CR23
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(01)00445-X
– volume: 14
  start-page: 79
  issue: 1
  year: 2004
  ident: 968_CR8
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202504003210
– volume: 63
  start-page: 479
  issue: 3
  year: 2005
  ident: 968_CR9
  publication-title: Quart. Appl. Math.
  doi: 10.1090/S0033-569X-05-00972-5
– ident: 968_CR13
– volume-title: Finite element methods for Navier-Stokes equations
  year: 1986
  ident: 968_CR16
  doi: 10.1007/978-3-642-61623-5
– volume: 368
  start-page: 444
  year: 2010
  ident: 968_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.03.046
– volume: 13
  start-page: 1600
  year: 2012
  ident: 968_CR25
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2011.11.018
– volume: 2
  start-page: 10
  year: 2008
  ident: 968_CR1
  publication-title: J. Appl. Indust. Math.
  doi: 10.1134/S199047890801002X
– volume: 52
  start-page: 739
  issue: 6
  year: 2016
  ident: 968_CR3
  publication-title: Differ. Equ.
  doi: 10.1134/S0012266116060045
– volume: 56
  start-page: 1426
  issue: 8
  year: 2016
  ident: 968_CR4
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542516080029
– ident: 968_CR14
  doi: 10.1515/9783112717899
– volume: 11
  start-page: 311
  year: 1995
  ident: 968_CR22
  publication-title: Numer. Methods Partial Diff. Equ.
  doi: 10.1002/num.1690110403
– ident: 968_CR15
  doi: 10.1093/acprof:oso/9780198566656.001.0001
– volume: 55
  start-page: 1347
  year: 2016
  ident: 968_CR7
  publication-title: Alexandria Engin J.
  doi: 10.1016/j.aej.2016.03.001
– ident: 968_CR12
  doi: 10.1007/978-1-4419-5542-5
– ident: 968_CR10
  doi: 10.1090/S0033-569X-06-01015-8
– volume: 32
  start-page: 13
  year: 2014
  ident: 968_CR5
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2014.02.006
– volume: 113
  start-page: 94
  year: 2015
  ident: 968_CR18
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2014.09.017
– ident: 968_CR20
  doi: 10.1007/978-3-030-78659-5
– year: 2022
  ident: 968_CR17
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8297
– volume: 23
  start-page: 329
  issue: 4
  year: 2016
  ident: 968_CR21
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.2016.v23.n4.a3
– volume: 18
  start-page: 591
  year: 2016
  ident: 968_CR2
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-016-0253-x
– volume: 27
  start-page: 87
  issue: 2
  year: 2020
  ident: 968_CR19
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.2020.v27.n2.a1
SSID ssj0017592
Score 2.359157
Snippet We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Boundary conditions
Boundary value problems
Buoyancy
Classical and Continuum Physics
Electrical resistivity
Electromagnetic fields
Fields (mathematics)
Fluid- and Aerodynamics
Heat
Magnetic fields
Magnetic permeability
Magnetohydrodynamics
Mathematical Methods in Physics
Parameters
Physics
Physics and Astronomy
Quadratic forms
Static pressure
Thermal conductivity
Vorticity
Title The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects
URI https://link.springer.com/article/10.1007/s00021-025-00968-6
https://www.proquest.com/docview/3241304749
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7UInjxLdZHycGbBrKv2eTYSmtRWjxY0dOS3c2qIFXcCvbfO8nuVhQ9eNpDQgiTeXw7T4ATiakugjDlFu3yMBYZT0WOvMiV0mGhPWOsa2A0xuEkvLyL7uqisLLJdm9Ckk5TL4rdhEsnsONXLe6WHJehFdl_d-Liid9dxA7iyI1Cts4NjsqXdanM72d8N0dfGPNHWNRZm8EmrNcwkXWrd92CJTPdho0aMrJaIMttWHUZnFm5Azk9OBs9fdByz41KepuzW_38bth1NTOmZIRPGeE9ZnN48zkb6Yepmb08znNSotVg-pIPSTezqo05sz5aRld5NqxqclzuwmTQvzkf8nqEAs880nNcS5Wnvqf9zCfbb4QOAoJUSkijsiyPURQKs1h7RWoi2mjQSC1QK2HCAEUeBXuwMn2Zmn1gcaBRoySBJ4sWGJRKZsqj-yKGEgvThtOGkslr1SkjWfREdnRPiO6Jo3uCbThqiJ3UUlMmgQvyhXGo2nDWPMDX8t-nHfxv-yGs-ZYHXEnhEazM3t7NMWGLWdqBVnfQ643t9-L-qt9xrPUJC-7Hkw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InrxURWrVXPwpoHso7PJUUWpj4qHVnpbsrtZFUoVtwX7751kdyuKHjwnhDDJzHzM6wM4lpjoPAgTbtEuDyOR8kRkyPNMKR3m2jPGhgZ699gdhDfDzrBqCivqavc6Jeks9bzZTbhyAku_anG35LgISwQGpC3kGvhn89xB1HFUyDa4wVH5smqV-f2M7-7oC2P-SIs6b3O1AWsVTGRn5btuwoIZN2G9goysUsiiCcuugjMttiCjB2e9lw9aPndUSe8z9qhHU8MeSs6YghE-ZYT3mK3hzWasp5_GZvL6PMvIiJbE9AXvkm1m5RhzZmO0jK4yMqwcclxsw-Dqsn_R5RWFAk89snNcS5Ulvqf91Cffb4QOAoJUSkij0jSLUOQK00h7eWI6tNGgkVqgVsKEAYqsE-xAY_w6NrvAokCjRkkKTx4tMCiVTJVH90UMJeamBSe1JOO3clJGPJ-J7OQek9xjJ_cYW9CuhR1XWlPEgUvyhVGoWnBaP8DX8t-n7f1v-xGsdPu9u_ju-v52H1Z9-x9ce2EbGpP3qTkgnDFJDt23-gQW9cd2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CItAuDNjQCh3zgduwcD76Yh8LW1W2tephRdwiJ3ZgEgqIBGn973l20hbQduBsy7Le50_vE-BYYqaLKM64Q7s8TkTOM2GQF0YpHRc6sNaFBsYTHM3iH1f9q2dd_L7afZGSbHoa3JSmsj69N8XpsvFN-NICt4rVYXDJcR02yBwHTq5n4WCZR0j6fi2yC3RwVKFs22b-_cZL17TCm69SpN7zDHdgu4WMbNDweBfWbLkH71v4yFrlrPZg01dz5tUHMMR8Nv7zl47P_Nqkhzm71LePlk2b_TEVI6zKCPsxV89r5mysr0tb393MDRnUZkl9xUdkp1kz0py5eC2jr9xa1gw8rj7CbPj99_mIt-sUeB6QzeNaKpOFgQ7zkHCAFTqKCF4pIa3Kc5OgKBTmiQ6KzPbpokUrtUCthI0jFKYf7UOnvCvtJ2BJpFGjJOUn7xZZlErmKqD_IsYSC9uFrwtKpvfN1Ix0OR_Z0z0luqee7il2obcgdtpqUJVGPuEXJ7HqwsmCAavj_7928LbrX2Br-m2Y_rqY_DyEd6ETB99p2INO_fBoPxPkqLMjL1VP8CPLsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mixed+Boundary+Value+Problems+for+the+Steady+Magnetohydrodynamics-Heat+System+with+Joule+Effects&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Kim+Tujin&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1007%2Fs00021-025-00968-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon