The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects
We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks...
Saved in:
Published in | Journal of mathematical fluid mechanics Vol. 27; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given. |
---|---|
AbstractList | We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given. |
ArticleNumber | 63 |
Author | Kim, Tujin |
Author_xml | – sequence: 1 givenname: Tujin surname: Kim fullname: Kim, Tujin email: math.tujin@star-co.net.kp organization: Institute of Mathematics, State Academy of Sciences |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBZYg6cncSJR6gKBRWB1MJqufGlTZXExU4EeXsCQbAx3Q3f_5_um5BRbWsk5JzBJQNIrjwAcBYAjwMAKdJAHJExizgPhIz56Hfn6QmZeL8HYEks-ZiY9Q7pY_GBht7YtjbadfRVly3SZ2c3JVae5tbRpqdWDWrT0Ue9rbGxu844a7paV0XmgwXqhq4632BF34tmRx9sWyKd5zlmjT8lx7kuPZ79zCl5uZ2vZ4tg-XR3P7teBhlLExHoVJoNZ5pnHFKGoMNQxkxCijLLTCIglyJLNMs3GPcgCkw1CC0Bo1CAicMpuRh6D86-tegbtbetq_uTKuQRCyFKItlTfKAyZ713mKuDK6r-ccVAfdlUg03V21TfNpXoQ-EQ8j1cb9H9Vf-T-gQ2Tnmk |
Cites_doi | 10.1007/3-7643-7385-7_21 10.1134/S102833581410005X 10.1016/S0362-546X(01)00445-X 10.1142/S0218202504003210 10.1090/S0033-569X-05-00972-5 10.1007/978-3-642-61623-5 10.1016/j.jmaa.2010.03.046 10.1016/j.nonrwa.2011.11.018 10.1134/S199047890801002X 10.1134/S0012266116060045 10.1134/S0965542516080029 10.1515/9783112717899 10.1002/num.1690110403 10.1093/acprof:oso/9780198566656.001.0001 10.1016/j.aej.2016.03.001 10.1007/978-1-4419-5542-5 10.1090/S0033-569X-06-01015-8 10.1016/j.aml.2014.02.006 10.1016/j.na.2014.09.017 10.1007/978-3-030-78659-5 10.1002/mma.8297 10.4310/MAA.2016.v23.n4.a3 10.1007/s00021-016-0253-x 10.4310/MAA.2020.v27.n2.a1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00021-025-00968-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1422-6952 |
ExternalDocumentID | 10_1007_s00021_025_00968_6 |
GroupedDBID | -~C .86 .VR 06D 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9T PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR -Y2 1SB 2P1 2VQ AAIAL AARHV AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFGCZ AGGDS AGQPQ AHSBF AJBLW BDATZ CAG CITATION COF EJD FINBP FSGXE H13 HZ~ IHE N2Q O9- RNI RZK |
ID | FETCH-LOGICAL-c1876-a89db21a2c2081e0a33951908e9ccd760f96c7a1fbe5db2e6e8a06a90e4360d53 |
IEDL.DBID | U2A |
ISSN | 1422-6928 |
IngestDate | Wed Aug 20 14:42:45 EDT 2025 Thu Aug 21 00:32:08 EDT 2025 Wed Aug 20 01:11:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 35J87 Mixed boundary conditions Variational inequality Existence of solution 49J40 Joule heating MHD-heat system 76D03 76W05 35Q60 85A30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1876-a89db21a2c2081e0a33951908e9ccd760f96c7a1fbe5db2e6e8a06a90e4360d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3241304749 |
PQPubID | 2043894 |
ParticipantIDs | proquest_journals_3241304749 crossref_primary_10_1007_s00021_025_00968_6 springer_journals_10_1007_s00021_025_00968_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-01 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of mathematical fluid mechanics |
PublicationTitleAbbrev | J. Math. Fluid Mech |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | V Girault (968_CR16) 1986 G Auchmuty (968_CR8) 2004; 14 968_CR13 968_CR12 968_CR15 968_CR14 G Alekseev (968_CR2) 2016; 18 GV Alekseev (968_CR4) 2016; 56 968_CR10 T Kim (968_CR17) 2022 G Alekseev (968_CR6) 2014; 59 G Alekseev (968_CR1) 2008; 2 J Naumann (968_CR25) 2012; 13 T Kim (968_CR19) 2020; 27 968_CR24 T Kim (968_CR18) 2015; 113 968_CR20 T Kim (968_CR21) 2016; 23 G Auchmuty (968_CR9) 2005; 63 GV Alekseev (968_CR5) 2014; 32 A Bermúdez (968_CR11) 2010; 368 GV Alekseev (968_CR3) 2016; 52 AJ Meir (968_CR22) 1995; 11 AJ Meier (968_CR23) 2001; 47 OM Al-Habahbeh (968_CR7) 2016; 55 |
References_xml | – ident: 968_CR24 doi: 10.1007/3-7643-7385-7_21 – volume: 59 start-page: 467 year: 2014 ident: 968_CR6 publication-title: Dokl. Phys. doi: 10.1134/S102833581410005X – volume: 47 start-page: 3281 year: 2001 ident: 968_CR23 publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(01)00445-X – volume: 14 start-page: 79 issue: 1 year: 2004 ident: 968_CR8 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202504003210 – volume: 63 start-page: 479 issue: 3 year: 2005 ident: 968_CR9 publication-title: Quart. Appl. Math. doi: 10.1090/S0033-569X-05-00972-5 – ident: 968_CR13 – volume-title: Finite element methods for Navier-Stokes equations year: 1986 ident: 968_CR16 doi: 10.1007/978-3-642-61623-5 – volume: 368 start-page: 444 year: 2010 ident: 968_CR11 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.03.046 – volume: 13 start-page: 1600 year: 2012 ident: 968_CR25 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2011.11.018 – volume: 2 start-page: 10 year: 2008 ident: 968_CR1 publication-title: J. Appl. Indust. Math. doi: 10.1134/S199047890801002X – volume: 52 start-page: 739 issue: 6 year: 2016 ident: 968_CR3 publication-title: Differ. Equ. doi: 10.1134/S0012266116060045 – volume: 56 start-page: 1426 issue: 8 year: 2016 ident: 968_CR4 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542516080029 – ident: 968_CR14 doi: 10.1515/9783112717899 – volume: 11 start-page: 311 year: 1995 ident: 968_CR22 publication-title: Numer. Methods Partial Diff. Equ. doi: 10.1002/num.1690110403 – ident: 968_CR15 doi: 10.1093/acprof:oso/9780198566656.001.0001 – volume: 55 start-page: 1347 year: 2016 ident: 968_CR7 publication-title: Alexandria Engin J. doi: 10.1016/j.aej.2016.03.001 – ident: 968_CR12 doi: 10.1007/978-1-4419-5542-5 – ident: 968_CR10 doi: 10.1090/S0033-569X-06-01015-8 – volume: 32 start-page: 13 year: 2014 ident: 968_CR5 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.02.006 – volume: 113 start-page: 94 year: 2015 ident: 968_CR18 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2014.09.017 – ident: 968_CR20 doi: 10.1007/978-3-030-78659-5 – year: 2022 ident: 968_CR17 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.8297 – volume: 23 start-page: 329 issue: 4 year: 2016 ident: 968_CR21 publication-title: Methods Appl. Anal. doi: 10.4310/MAA.2016.v23.n4.a3 – volume: 18 start-page: 591 year: 2016 ident: 968_CR2 publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-016-0253-x – volume: 27 start-page: 87 issue: 2 year: 2020 ident: 968_CR19 publication-title: Methods Appl. Anal. doi: 10.4310/MAA.2020.v27.n2.a1 |
SSID | ssj0017592 |
Score | 2.359157 |
Snippet | We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Boundary conditions Boundary value problems Buoyancy Classical and Continuum Physics Electrical resistivity Electromagnetic fields Fields (mathematics) Fluid- and Aerodynamics Heat Magnetic fields Magnetic permeability Magnetohydrodynamics Mathematical Methods in Physics Parameters Physics Physics and Astronomy Quadratic forms Static pressure Thermal conductivity Vorticity |
Title | The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects |
URI | https://link.springer.com/article/10.1007/s00021-025-00968-6 https://www.proquest.com/docview/3241304749 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7UInjxLdZHycGbBrKv2eTYSmtRWjxY0dOS3c2qIFXcCvbfO8nuVhQ9eNpDQgiTeXw7T4ATiakugjDlFu3yMBYZT0WOvMiV0mGhPWOsa2A0xuEkvLyL7uqisLLJdm9Ckk5TL4rdhEsnsONXLe6WHJehFdl_d-Liid9dxA7iyI1Cts4NjsqXdanM72d8N0dfGPNHWNRZm8EmrNcwkXWrd92CJTPdho0aMrJaIMttWHUZnFm5Azk9OBs9fdByz41KepuzW_38bth1NTOmZIRPGeE9ZnN48zkb6Yepmb08znNSotVg-pIPSTezqo05sz5aRld5NqxqclzuwmTQvzkf8nqEAs880nNcS5Wnvqf9zCfbb4QOAoJUSkijsiyPURQKs1h7RWoi2mjQSC1QK2HCAEUeBXuwMn2Zmn1gcaBRoySBJ4sWGJRKZsqj-yKGEgvThtOGkslr1SkjWfREdnRPiO6Jo3uCbThqiJ3UUlMmgQvyhXGo2nDWPMDX8t-nHfxv-yGs-ZYHXEnhEazM3t7NMWGLWdqBVnfQ643t9-L-qt9xrPUJC-7Hkw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InrxURWrVXPwpoHso7PJUUWpj4qHVnpbsrtZFUoVtwX7751kdyuKHjwnhDDJzHzM6wM4lpjoPAgTbtEuDyOR8kRkyPNMKR3m2jPGhgZ699gdhDfDzrBqCivqavc6Jeks9bzZTbhyAku_anG35LgISwQGpC3kGvhn89xB1HFUyDa4wVH5smqV-f2M7-7oC2P-SIs6b3O1AWsVTGRn5btuwoIZN2G9goysUsiiCcuugjMttiCjB2e9lw9aPndUSe8z9qhHU8MeSs6YghE-ZYT3mK3hzWasp5_GZvL6PMvIiJbE9AXvkm1m5RhzZmO0jK4yMqwcclxsw-Dqsn_R5RWFAk89snNcS5Ulvqf91Cffb4QOAoJUSkij0jSLUOQK00h7eWI6tNGgkVqgVsKEAYqsE-xAY_w6NrvAokCjRkkKTx4tMCiVTJVH90UMJeamBSe1JOO3clJGPJ-J7OQek9xjJ_cYW9CuhR1XWlPEgUvyhVGoWnBaP8DX8t-n7f1v-xGsdPu9u_ju-v52H1Z9-x9ce2EbGpP3qTkgnDFJDt23-gQW9cd2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CItAuDNjQCh3zgduwcD76Yh8LW1W2tephRdwiJ3ZgEgqIBGn973l20hbQduBsy7Le50_vE-BYYqaLKM64Q7s8TkTOM2GQF0YpHRc6sNaFBsYTHM3iH1f9q2dd_L7afZGSbHoa3JSmsj69N8XpsvFN-NICt4rVYXDJcR02yBwHTq5n4WCZR0j6fi2yC3RwVKFs22b-_cZL17TCm69SpN7zDHdgu4WMbNDweBfWbLkH71v4yFrlrPZg01dz5tUHMMR8Nv7zl47P_Nqkhzm71LePlk2b_TEVI6zKCPsxV89r5mysr0tb393MDRnUZkl9xUdkp1kz0py5eC2jr9xa1gw8rj7CbPj99_mIt-sUeB6QzeNaKpOFgQ7zkHCAFTqKCF4pIa3Kc5OgKBTmiQ6KzPbpokUrtUCthI0jFKYf7UOnvCvtJ2BJpFGjJOUn7xZZlErmKqD_IsYSC9uFrwtKpvfN1Ix0OR_Z0z0luqee7il2obcgdtpqUJVGPuEXJ7HqwsmCAavj_7928LbrX2Br-m2Y_rqY_DyEd6ETB99p2INO_fBoPxPkqLMjL1VP8CPLsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mixed+Boundary+Value+Problems+for+the+Steady+Magnetohydrodynamics-Heat+System+with+Joule+Effects&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Kim+Tujin&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1007%2Fs00021-025-00968-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon |